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Project #4: Implementation of Wavelet Transforms

In this lab you will use Matlab to study the following topics:

• CDF(2, 2) wavelet transform (matrix form)

• Daub4 wavelet transform (matrix form)

• Fast Daub4 wavelet transform

• Multiresolution analysis using the CDF(2, 2) wavelet transform

Preliminaries

Reading from Textbook: Before beginning your Matlab work, read Sections Section 3.4 and 3.5 of the
textbook.

Function Files: You will need the Matlab function m-files downsamp.m and shift.m from Project #2
and threshold.m from Project #3. Be sure that these files are in the directory that you are using for
your Matlab sessions.

Uvi Wave: Some of the Matlab m-files that are used in Question #4 are from the public-domain
Uvi Wave toolbox. You will need to download and unzip this package of files from the Math 357
web page or the web page of textbook:

http://www.worldscientific.com/worldscibooks/10.1142/9835#t=suppl

Put the Uvi Wave folder and all its subfolders into a subdirectory of your Matlab directory. Set the
path so that Matlab can find this folder and all its subfolders.

Diary File: You will need to record the results of your Matlab session to generate your lab report. Create
a directory (folder) in your computer workspace to save your Matlab work in. Then use the Current

Directory field in the desktop toolbar to change the directory to this folder. Now type

diary lab4.txt

followed by the Enter key. Now each computation you make in Matlab will be saved in your
directory in a text file named lab4.txt. You can then edit this file using your favorite text editor
(such as Emacs, Notepad, or Word). When you have finished your Matlab session you can turn off
the recording by typing diary off at the Matlab prompt (don’t do this now).

Lab Write-up: Now that your diary file is open, type the comment line

% Math 357 Matlab Project #4 -- Implementation of Wavelet Transforms

%

at the Matlab prompt. Type

format compact

so that your diary file will not have unnecessary spaces.

Random Seed: Initialize the random number generator by typing

rand(’seed’, abcd)

where abcd are the last four digits of your Student ID number. This will ensure that you generate your
own particular random vectors and matrices.

BE SURE TO INCLUDE THIS LINE IN YOUR LAB WRITE-UP
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Labels and Comments: Put labels to mark the beginning of your work on each part of each question, so
that your edited lab write-up has the format

% Question 1 (a) . . .
...
% Question 1 (b) . . .

and so on. Be sure to answer all the questions in the lab assignment. Insert comments in your diary
file as you work through the assignment.

The lab report that you hand in must be your own work. The following problems use randomly
generated matrices and vectors, so the matrices, vectors, and graphs in your lab report will
not be the same as those of other students doing the lab. Sharing of lab report files is not
allowed in this course.

Question 1. CDF(2, 2) Wavelet Transform

You will use Matlab to explore the results in Sections 3.4.1 and 3.5 of the textbook.

(a) CDF(2, 2) analysis matrix: Implement the CDF(2, 2) one-scale wavelet transform in matrix form
for periodic signals s of even length N ≥ 4, where s is a column vector, as follows. The N × N analysis
matrix is obtained by the lifting method as the product

Ta = DU P split . (1)

Here split is the downsampling matrix that separates the signal s into subsignals seven and sodd of length

N/2. After downsampling, the first lifting operation is a prediction step that is given by the matrix P in
equation (3.12) in the textbook. Next, there is an update step that is given by the matrix U in equation
(3.16). Finally, there is a normalization step that is performed by the diagonal matrix D in equation (3.17).

Write the following function m-file to generate the matrix Ta. This m-file uses the Matlab function
m-files shift.m and downsamp.m from Project #2.

% Generates N x N analysis matrix for

% one-scale CDF(2, 2) transform

% N >= 4 must be even

function Ta = cdfamat(N)

% generate special matrices

I = eye(N/2); S = shift(N/2); Z = zeros(N/2);

split2 = downsamp(N/2);

% prediction step

P = [I Z; -(1/2)*(I+Sˆ(-1)) I];

% update step

U = [I (1/4)*(I + S); Z I];

% normalization step

D = [sqrt(2)*I Z; Z I/sqrt(2)];

% product of all steps

Ta = D*U*P*split2;

Save this file as cdfamat.m. Test it by generating the 8×8 CDF(2, 2) one-scale analysis matrix Ta, a column
vector x whose entries increase linearly, and the transform y = Tax:

Ta = cdfamat(8), x = [1:2:15]’, y = Ta*x

Your matrix Ta should be the analysis matrix in Example 3.12 in the textbook divided by 4
√

2. The first
four entries in y are the trend s and the last four entries are the detail d. Use the explicit form of the matrix
Ta that you just generated to answer the following questions.
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1. How many entries of x are used to calculate a single entry in s? (Don’t count entries in x that are
multiplied by a zero from a row of Ta.)

2. How many entries of x are used to calculate a single entry in d? (Don’t count entries in x that are
multiplied by a zero from a row of Ta.)

(b) CDF(2, 2) synthesis matrix: The synthesis matrix Ts is the inverse of the analysis matrix. From
equation (3.19) in the textbook

Ts = merge P−1 U−1D−1.

The matrix merge is the inverse (= transpose) of the orthogonal permutation matrix split . Each of the

other matrix inverses are also easy to calculate (this is one of the advantages of the lifting method).
Verify by a hand calculation attached to your lab report that

P−1 =

[
I 0

1
2 (I + S−1) I

]
, U−1 =

[
I − 1

4 (I + S)
0 I

]
, D−1 =

[ 1√
2
I 0

0
√

2I

]
.

Write the following function m-file to generate the matrix Ts (this m-file uses the Matlab function
m-files shift.m and downsamp.m from Project #2):

% Generate N x N synthesis matrix for one-scale CDF(2, 2) transform

% N >= 4 must be even

function Ts = cdfsmat(N)

% generate special matrices

I = eye(N/2); S = shift(N/2); Z = zeros(N/2); merge2 = downsamp(N/2)’;

% prediction step

P = [I Z; (1/2)*(I+Sˆ(-1)) I];

% update step

U = [I -(1/4)*(I + S); Z I];

% normalization step

D = [I/sqrt(2) Z; Z sqrt(2)*I];

% product of all steps

Ts = merge2*P*U*D;

Save this file as cdfsmat.m. Test it by generating the 8×8 CDF(2, 2) one-scale synthesis matrix and checking
that it is the inverse of the analysis matrix:

Ts = cdfsmat(8), norm(Ts*Ta - eye(8), ’fro’)

The matrix Ts should be the synthesis matrix in Example 3.12 of the textbook, multiplied by 4
√

2. The
norm value should be (essentially) zero.

(c) CDF(2, 2) basis vectors: In part (b) you generated the one-scale CDF(2, 2) synthesis matrix Ts of
size 8× 8. The columns of Ts give the CDF(2, 2) basis for R8 (see Example 3.12 of the textbook). Column
1 is the scaling vector. Observe that columns 2–4 of Ts are obtained from column 1 by multiplying with S2,
S4, and S6, where S is the shift operator. The trend vector in a one-scale CDF(2, 2) wavelet synthesis is a
linear combination of these columns. Plot the columns by Matlab:

figure, plot(Ts(:,1), ’r-’), axis([0 9 -.5 1.5]), hold on

plot(Ts(:,2), ’g-’)

plot(Ts(:,3), ’b-’)

plot(Ts(:,4), ’c-’)

(see the left half of Figure 3.9 in the textbook). Insert arrows to identify the plots as column 1, column 2,
and so on; note that ’r-’ plots red lines, ’g-’ green, ’b-’ blue, and ’c-’ cyan. In the Matlab figure
insert the title Fig. 1: CDF(2, 2) Trend Basis Vectors. Save and print the figure.

Column 5 of Ts is the wavelet vector, and columns 6–8 of Ts are obtained from column 5 by multiplying
with S2, S4, and S6, where S is the shift operator. The detail vector in a one-scale CDF(2, 2) wavelet
synthesis is a linear combination of these columns. Plot the columns by Matlab:
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figure, plot(Ts(:,5), ’r-’), axis([0 9 -.5 1.5]), hold on

plot(Ts(:,6), ’g-’)

plot(Ts(:,7), ’b-’)

plot(Ts(:,8), ’c-’)

(see the right half of Fig. 3.9 in the textbook). Insert arrows to identify the plots as column 5, column 6,
and so on. In the Matlab figure insert the title Fig. 2: CDF(2, 2) Detail Basis Vectors. Save and print the
figure.

Question 2. Daub4 Wavelet Transform

You will use Matlab to explore the results in Sections 3.4.2 and 3.5 of the textbook.

(a) Daub4 Analysis Matrix: Implement the Daub4 one-scale wavelet transform in matrix form for
periodic signals s of even length N ≥ 4, viewing s as a column vector. The N × N analysis matrix is
obtained by the lifting method as the product

Ta = DU2 P U1 split (2)

(see the flow chart in Figure 3.7 of the textbook). Here split is the downsampling matrix that separates

the signal s into subsignals seven and sodd of length N/2. After downsampling, the first lifting operation is
an update step given by the matrix U1 in equation (3.21). This is followed by a prediction step given by the
matrix P in equation (3.24). Next, there is a second update step that is given by the matrix U2 in equation
(3.26). Finally, there is a normalization step that is performed by the diagonal matrix D in equation (3.27).

Write the following function m-file to generate the matrix Ta this m-file uses the Matlab function m-files
shift.m and downsamp.m from Project #2):

% Generates N x N analysis matrix for one-scale Daub4 transform

% N >= 4 must be even

function Ta = daub4mat(N)

% generate special matrices

I = eye(N/2); S = shift(N/2); Z = zeros(N/2); split2 = downsamp(N/2);

% first update step

U1 = [I sqrt(3)*I; Z I];

% prediction step

P = [I Z; -(1/4)*(sqrt(3)*I+(sqrt(3)-2)*S) I];

% second update step

U2 = [I -Sˆ(-1); Z I];

% normalization step

D = [(sqrt(3)-1)*I/sqrt(2) Z; Z (sqrt(3)+1)*I/sqrt(2)];

% product of all steps

Ta = D*U2*P*U1*split2;

Save this function m-file as daub4mat.m. Test it by generating the 8× 8 Daub4 one-scale analysis matrix

Ta = daub4mat(8)

The matrix Ta is orthogonal; this is a special property of the Daub4 transform that is not true for the
CDF(2, 2) transform. Check this property by calculating

norm(Ta*Ta’ - eye(8), ’fro’)

(the distance between TaTT
a and the identity matrix). This norm value should be (essentially) zero. Suppose

x ∈ R8 and y = Tax. The first four entries in y are the trend vector s, and the last four entries are the
detail vector d. Use the explicit form of the matrix Ta that you just generated to answer the following.

1. How many entries of x are used to calculate a single entry in s? (Don’t count entries in x that are
multiplied by a zero from a row of Ta.)
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2. How many entries of x are used to calculate a single entry in d? (Don’t count entries in x that are
multiplied by a zero from a row of Ta.)

(b) Two-scale Daub4 wavelet transform: Let s3 be a signal of length 23. To perform a two-scale
Daub4 wavelet transform of s3, we use the pyramid algorithm. First we transform s3 into a trend s2 and a
detail d2, each of length 22, using the 8 × 8 Daub4 analysis matrix. Then we transform s2 into a trend s1
and a detail d1, each of length 2, using the 4×4 Daub4 analysis matrix. We must stop at this point because
the Daub4 transform needs input signals of length at least 4.

Generate the two-scale wavelet analysis matrix W
(2)
a for the Daub4 transform, which we denote as Wa for

Matlab calculations, as follows (be sure to use the semicolons at the end of lines so that only the matrix
Wa appears on screen).

T3 = daub4mat(8);

I = eye(4); Z = zeros(4,4); T2 = [daub4mat(4) Z; Z I];

Wa = T2*T3

Check that the matrix Wa is orthogonal by calculating norm(Wa*Wa’ - eye(8), ’fro’); the answer should
be (essentially) zero.

Since the analysis matrix is orthogonal, you obtain the two-scale Daub4 synthesis matrix by

Ws = Wa’

(c) Two-scale Daub4 basis vectors: Let Ws be the 8 × 8 two-scale Daub4 synthesis matrix from (b).
The columns of Ws give the two-scale Daub4 basis for R8 (see Section 3.5.4 of the textbook). Since Ws is
an orthogonal matrix, this is an orthonormal basis. Column 1 is the scaling vector. Observe that column 2
of Ws is obtained from column 1 by multiplying by S4, where S is the 8× 8 shift matrix. The trend vector in
a two-scale Daub4 wavelet synthesis is a linear combination of these columns. Plot the columns by Matlab:

figure, plot(Ws(:,1), ’r-’), axis([0 9 -1 1]), hold on

plot(Ws(:,2), ’g-’)

Insert arrows into the figure to label the plots column 1 and column 2. Notice the shift by 4 between the two
graphs. Insert the title Fig. 3: Daub4 Two-Scale Trend Basis Vectors. Save and print the figure.

Column 3 of Ws is the coarse wavelet vector. Observe that column 4 of Ws is obtained from column 3 by
multiplying by S4. The coarse detail vector in a two-scale Daub4 wavelet synthesis is a linear combination
of these columns. Plot the columns by Matlab:

figure, plot(Ws(:,3), ’r-’), axis([0 9 -1 1]), hold on

plot(Ws(:,4), ’g-’)

Insert arrows into the figure to label the plots column 3 and column 4. Notice the shift by 4 between the two
graphs. Insert the title Fig. 4: Daub4 Two-Scale Coarse Detail Basis Vectors. Save and print the graph.

Columns 5 of Ws is the fine wavelet vector. Columns 6–8 of Ws are obtained from column 5 by multiplying
by S2, S4, and S6. The fine detail vector in a two-scale Daub4 wavelet synthesis is a linear combination of
these columns. Plot the columns by Matlab:

figure, plot(Ws(:, 5), ’r-’), axis([0 9 -1 1]), hold on

plot(Ws(:, 6), ’g-’)

plot(Ws(:, 7), ’b-’)

plot(Ws(:, 8), ’c-’)

Insert arrows into the figure to label the plots (column 5, column 6, and so on). Notice the shift by 2 between
each graph. Insert the title Fig. 5: Daub4 Two-Scale Fine Detail Basis Vectors. Save and print the graph.

Question 3. Fast Multiscale Daub4 Transform

The matrix formulation of the Daub4 transform and inverse transform in Question 2 is helpful in un-
derstanding the theory of this transform and how it is similar to the discrete Fourier transform (we use the
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Daub4 basis instead of the Fourier basis; both bases are orthogonal). For numerical calculation, however,
the matrix formulation is impractical, since for a signal of length N direct matrix multiplication requires the
order of N2 arithmetic operations. Just as in the case of the Fourier transform, there is a fast implementation
of the Daub4 transform through lifting. This algorithm only requires the order of N arithmetic operations.

(a) Implementing one-scale analysis transform: Create the following function m-file:

% one-scale Daubechies 4 wavelet transform

% input signal S is a row vector of even length N >=4

function T = daub4wt(S)

N = length(S);

% allocate space in memory

s1 = zeros(1, N/2); d1 = zeros(1, N/2);

% first update for trend

s1 = S(1:2:N-1) + sqrt(3)*S(2:2:N);

% right shift first trend with wrap-around

s1shift = [s1(N/2) s1(1:N/2-1)];

% first prediction for detail

d1 = S(2:2:N) - sqrt(3)/4*s1 - (sqrt(3)-2)/4*s1shift;

% left shift first detail with wrap-around

d1shift = [d1(2:N/2) d1(1)];

% second update for trend

s2 = s1 - d1shift;

% normalization of trend

s = (sqrt(3)-1)/sqrt(2)*s2;

% normalization of detail

d = (sqrt(3)+1)/sqrt(2)*d1;

T = [s d];

Save this file as daub4wt.m. Notice that we are now writing signals as row vectors rather than column
vectors. To test this file, let S = [1 0 0 0], calculate T = daub4wt(S) and compare T with the first
column of daub4mat(4).

(b) Implementing one-scale synthesis transform: Create the following function m-file that reverses
the steps of the function in part (a).

% one-scale inverse Daubechies 4 wavelet transform

% input is a row vector T = [s d] of even length N >=4

function S = daub4iwt(T)

N = length(T);

% Separate input into trend and detail

s = T(1:N/2); d = T(N/2+1:N);

% allocate space in memory

S = zeros(1, N);

% inverse normalization of trend and detail

s2 = (sqrt(3)+1)/sqrt(2)*s; d1 = (sqrt(3)-1)/sqrt(2)*d;

% inverse of second update for trend; shift first detail left

s1 = s2 + [d1(2:N/2) d1(1)];

% inverse of first prediction for detail; shift first trend right

S(2:2:N) = d1 + sqrt(3)/4*s1 + (sqrt(3)-2)/4*[s1(N/2) s1(1:N/2-1)];

% inverse of first update for trend

S(1:2:N-1) = s1 - sqrt(3)*S(2:2:N);

Save this file as daub4iwt.m. To test this file, let T = [1 0 0 0], calculate S = daub4iwt(T) and compare
S with the first row of daub4mat(4).

(c) Multiscale Daub4 Scaling and Wavelet Vectors: Write the following function m-file:
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% N-2 scale Daub4 scaling function of length 2ˆN
function S = daub4scale(N)

T = zeros(1, 2ˆN); T(1) = 1;

for k = 1:(N-2)

T = daub4iwt(T);

end

S = T;

Save this file as daub4scale.m. Now write the following function m-file:

% N-3 scale Daub4 wavelet function of length 2ˆN
function S = daub4wave(N)

T = zeros(1, 2ˆN); T(5) = 1;

for k = 1:(N-3)

T = daub4iwt(T);

end

S = T;

Save this file as daub4wave.m. Generate and plot a ten-scale Daub4 scaling function and a nine-scale wavelet
function (both of length 212 = 4096):

S = daub4scale(12); W = daub4wave(12);

figure, plot(S, ’r-’), hold on, plot(W, ’g-’)

Compare with Fig. 3.13 in the textbook, which shows the four-scale scaling and wavelet vectors of length 32.
The jagged appearance is due to the continuous but non-differentiable scale and wavelet functions that are
created when the number of scales goes to infinity. In this respect Daub4 scaling and wavelet functions are
very different from the cosine and sine functions of continuous Fourier analysis. Label the graphs as scaling
function and wavelet. Insert the title Fig. 6: Daub4 Nine-Scale Wavelet and Ten-Scale Scaling Function. Save
and print the graph.

Question 4. Signal Processing with the CDF(2, 2) Transform

You will apply a three-scale CDF(2, 2) transform to analyze a signal, using the filter-bank approach (in-
stead of matrix multiplication) to calculate the wavelet transforms (see Sections 4.5 and 4.8 of the textbook).
For a test signal take the same sine wave with static noise and pops as in Project #3 Question #3. Since
the detail for a one-scale CDF(2, 2) transform is zero on linear functions (except near end points–see Figure
3.10 of the textbook), this transform should yield better results than the Haar transform on signals that are
relatively smooth.

(a) Analysis of Synthetic Signals: Sample the signal s(t) = sin(4πt) at 29 = 512 equidistant points in
0 ≤ t ≤ 1 to obtain a discrete signal s9:

s9 = sin([1:512]*4*pi/512);

Now add some random noise and random pops to the signal s9. Generate a two-component vector pop whose
entries are integers between 100 and 400:

pop = round(100 + 300*rand(2,1))

The following code adds 1 to the two components of s9 whose indices are given by the numbers in pop, adds
some random noise throughout, and plots the resulting signal:

s9(pop(1)) = s9(pop(1)) + 1;

s9(pop(2)) = s9(pop(2)) + 1;

s9 = s9 + 0.1*randn(1, 512);

figure, plot(s9), axis([0 550 -1.5 1.5])
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The location of the two pops should be clear in the plot. Insert the title Fig. 7: Signal with Pops and Static
in the Matlab figure. Save and print the figure.

To calculate a three-scale CDF(2, 2) wavelet transform of the signal, we use the filter bank implementation
in the Uvi Wave toolbox (where the CDF family of transforms are named wspline):

[h,g,rh,rg] = wspline(2,2)

The four filter vectors h,g, rh, rg are obtained from the one-scale CDF(2, 2) analysis and synthesis matrices;
to see use the m-files cdfamat.m and cdfsmat.m from Project #3 to generate these matrices:

Ta = cdfamat(6), Ts = cdfsmat(6)

Compare the filters and the matrices to answer the following questions (see Example 4.24 in the textbook):

1. How are the rows of Ta obtained from the vectors h and g?

2. How are the columns of Ts obtained from the transposes of the row vectors rh and rg?

Now obtain the three-scale CDF(2, 2) transform st of s9 and plot the result by

st = wt(s9,h,g,3);

figure, isplit(st,3,’’,’r.’)

The vector st from the Uvi Wave function wt is the CDF(2, 2) transform of s9. It is a concatenation of the
four vectors making up the transform. The Uvi Wave function isplit separates st into its four parts (as
you did by hand for the Haar transform in Project #3 Question #3(a)). It plots the 3-scale trend coefficients
of s6 and detail coefficients of d6 in the first and second graphs (these are vectors of length 64 = 29−3). The
third graph gives the 2-scale detail coefficients of d7 (a vector of length 128 = 29−2). The fourth graph gives
the 1-scale detail coefficients of d8 (a vector of length 256 = 29−1). Put title Fig. 8: Three-Scale CDF(2, 2)
Wavelet Coefficients at the top of the figure, and then put titles s6, d6, d7, d8 to the left of each of the plot
windows. Save and print this figure.

The multiresolution analysis of the signal is obtained by taking the inverse CDF(2, 2) transforms of the
trend and detail coefficient vectors. Do this using the Uvi Wave function multires:

y = multires(s9,h,rh,g,rg,3);

figure, split(y)

Here y is a 4× 512 matrix whose rows contain d8,d7,d6, and s6; the split command displays a graph for
each row. Put the title Fig. 9: Multiresolution CDF(2, 2) Analysis of Signal at the top of the figure, and then
put titles s6, d6, d7, d8 to the left of each of the plot windows. Save and print this figure.

(b) Filtering and Compression: Just as in the case of the Haar transform in Project #3 Question 3,
the pops are not evident in the trend but are obvious in the details. A crude way of filtering the signal to
remove the pops and some of the static noise is to use only the trend s6 and detail d6 (rows 3 and 4 of the
matrix y):

sfilter = y(3,:) + y(4,:);

figure, subplot(311), plot(s9, ’r-’), hold on

subplot(312), plot(sfilter, ’g-’)

To preserve the pops in the signal but remove the static noise we will need to use all the detail vectors.
From the Matlab figure in (a) you can see that the only large coefficients come from the two pops. We
will compress and denoise the signal by setting to zero all coefficients in the detail vectors that are less than
0.2 in absolute value (do not change the transform coefficients of the trend vector s6). To do this efficiently,
apply the threshold m-file from Project #3 Question 3(c) to the detail entries (in positions 65–512 of the
transform st):

cst = st;

cst(65:512) = threshold(st(65:512), 0.2);



Math 357 Matlab Project #4 9

Then calculate the 3-scale inverse CDF(2, 2) transform of the compressed vector cst and plot it in the same
window as the original signal and the filtered signal:

cs = iwt(cst,rh,rg,3);

subplot(313), plot(cs, ’b-’)

Label the plots as original signal, filtered signal, and filtered signal with pops. Put the title Fig. 10: Filtering
by Removing Wavelet Details and Noise. Save and print the figure.

Final Editing of Lab Write-up: After you have worked through all the parts of the lab assignment,
you will need to edit your diary file. Remove all errors and other material that is not directly related to the
questions. Your write-up should only contain the keyboard input and the Matlab output (including Fig.
1-10), together with the answers to the questions that you have written.

Preview the document before printing and remove unnecessary page breaks and blank space. Put your
name and four-digit ID number on each page. (If you have difficulty doing this using your text editor, you
can write this information by hand after printing the report.)

Do not include the codes for the m-files in your lab writeup, but be sure to save these m-files on your disc
for future use.


