
Math 357 MATLAB Project #3 1

Revised 1 February 2017

Project # 3: Haar Wavelet Transform

In this lab you will use Matlab to study the following topics:

• Haar wavelet basis, Haar analysis matrix, and Haar synthesis matrix.

• Fast Haar transform implemented by lifting.

• Applications of the Haar transform

Preliminaries

Reading from Textbook: Before beginning your Matlab work, read Sections 3.2 and 3.3 of the textbook.

Diary File: You will need to record the results of your Matlab session to generate your lab report. Create
a directory (folder) in your computer workspace to save your Matlab work in. Then use the Current

Directory field in the desktop toolbar to change the directory to this folder. Now type

diary lab3.txt

followed by the Enter key. Now each computation you make in Matlab will be saved in your directory
in a text file named lab3.txt. You can then edit this file using your favorite plain text editor (such
as Emacs, Notepad, WordPad, or Word). When you have finished your Matlab session you can turn
off the recording by typing diary off at the Matlab prompt (don’t do this now).

Lab Write-up: Now that your diary file is open, type the comment line

% Math 357 MATLAB Project #3 -- Haar Wavelet Transform

%

at the Matlab prompt. Type

format compact

so that your diary file will not have unnecessary spaces. Put labels to mark the beginning of your work
on each part of each question, so that your edited lab write-up has the format

% Question 1 (a) . . .
...

% Question 1 (b) . . .

and so on. Be sure to answer all the questions in the lab assignment. Insert comments in your diary
file as you work through the assignment.

Random Seed: When you start your Matlab session, initialize the random number generator by typing

rand(’seed’, abcd)

where abcd are the last four digits of your Student ID number. This will ensure that you generate your
own particular random vectors and matrices.

BE SURE TO INCLUDE THIS LINE IN YOUR LAB WRITE-UP

Math 357 MATLAB Project #3 2

The lab report that you hand in must be your own work. The following problems use randomly
generated matrices and vectors, so the matrices, vectors, and graphs in your lab report will
not be the same as those of other students doing the lab. Sharing of lab report files is not
allowed in this course.

Question 1. Haar Basis and Haar Transform Matrices

(a) Haar Multiresolution Basis: This basis for R8 is built from the scaling vector h0 (all components
1), and the wavelet vector h (see Section 3.3.1 of the textbook). Write the following function m-file to generate
the wavelet vectors at various levels:

% haar wavelet of length 2ˆn and level k

function h = hwavelet(n,k)

% create vector of length 2ˆn
h = zeros(2ˆn, 1);

h(1:2ˆ(n-k),1) = 1;

h(2ˆ(n-k)+1:2ˆ(n-k+1),1) = -1;

Save this file as hwavelet.m. Then use it to create the Haar multiresolution basis for R8: First generate the
scaling vector h0 and the basic wavelet vectors h1, h2, and h4 at levels 1, 2, and 3:

h0 = ones(2ˆ3, 1)

h1 = hwavelet(3,1)

h2 = hwavelet(3,2)

h4 = hwavelet(3,3)

The other wavelet vectors at level 2 and 3 are obtained by shifting the vectors h2 and h4. Use the shift.m

function from Matlab Project #2 to generate the 8 × 8 shift matrix S, and then apply this matrix to h2
and h4.

S = shift(8)

h3 = Sˆ4 * h2

h5 = Sˆ2 * h4,

h6 = Sˆ4*h4,
h7 = Sˆ6*h4

(b) Haar Transform Matrices: Now make the Haar basis vectors for R8 that you generated in (a)

into the columns of the 23 × 23 three-scale Haar synthesis matrix W
(3)
s :

Ws = [h0 h1 h2 h3 h4 h5 h6 h7]

Calculate Ws’*Ws. What does this tell you about the orthogonality properties and squared lengths of the
Haar basis vectors?

The Matlab command diag(v) creates a matrix with the entries of the column vector v on the diagonal
and all other entries zero. Use this command to create a diagonal matrix D such that Wa = Dˆ(-1)*Ws’ is

the Haar analysis matrix W
(3)
a in equation (3.8) of the textbook. (Hint: Remember that left multiplication

by a diagonal matrix multiplies each row by the corresponding diagonal entry.) Use Matlab to verify that
Wa is the inverse matrix to Ws.

(c) Data Compression: Generate a random digital signal u of length 8 and plot it as a solid red line
(we consider u as a sample of an analog signal and use linear interpolation between the data points in the
graph):

u = round(50*rand(8,1))

plot(u, ’r-’), axis([1 8 0 60]), hold on

Calculate the Haar transform v = Wa*u. Then create a compressed vector vc5 by replacing any entries in
v whose absolute value is ≤ 5 by 0. For example, if v(2) = -3.5, then set vc5(2) = 0). This is the data
compression step. This is a nonlinear transformation, just like quantization.

Math 357 MATLAB Project #3 3

• Calculate the compression ratio (the number of nonzero entries in the vector v divided by the number
of nonzero entries in the compressed vector vc5).

Calculate the inverse transform uc5 of the compressed vector and plot the graph of uc5 on the same axes
as the original signal u (using a dashed green line):

uc5 = Ws*vc5

plot(uc5, ’g--’)

You should get a graph similar to Fig. 3.5 in the textbook (of course, your random signal is not the same as
the signal in Fig. 3.5, so your graph will differ in details). Notice that the graph of uc5 is fairly close to the
graph of the uncompressed signal u.

• Calculate 100*norm(u - uc5)ˆ2/norm(u)ˆ2 to measure the relative percentage difference in energy
between the compressed and uncompressed signals.

Finally, perform a more drastic compression on the signal u. Create another compressed Haar transform
vector vc10 by replacing all the entries in the Haar transform v whose absolute value is ≤ 10 by 0. (Caution:
You must modify the transform vector v, not the original signal u.)

• Calculate the new compression ratio for vc10.

Calculate the inverse transform uc10 of vc10 and plot the graph of uc10 on the same axes as the original
signal u (using a dotted blue line):

uc10 = Ws*vc10

plot(uc10, ’b:’)

The new graph will not be close to the original graph as the previous compression (unless your random
transform vector v had no entries with absolute value ≤ 5). However, this graph follows the general trends
of the original graph (this is the advantage of the wavelet method of compression).

• Calculate 100*norm(u - uc10)ˆ2/norm(u)ˆ2 to measure the relative percentage difference in energy
between the compressed and uncompressed signals.

Insert arrows and labels on the graphs, indicating the original signal, the compression thresholds (5 and 10)
of the two compressed signals, and the relative differences in energies of the two compressed signals. Insert
the title Fig. 1: Haar Wavelet Compression of Length 8 Signal. Print the graph and include it with your
report.

Question 2. Fast Multiscale Haar Transform

The matrix formulation of the Haar transform and inverse Haar transform in Question #1 is helpful in
understanding the theory of this transform and how it is similar to the discrete Fourier transform (we use
the Haar basis instead of the Fourier basis; both bases are orthogonal). For numerical calculation, however,
the matrix formulation is impractical, since for a signal of length N direct matrix multiplication requires the
order of N2 arithmetic operations. Just as in the case of the Fourier transform, there is a fast implementation
of the Haar transform through lifting. This algorithm only requires the order of N arithmetic operations.

(a) Implementing the one-scale Haar transform: Create the following function m-file

% one-step discrete Haar wavelet transform

function T = dwthaar(Signal)

N = length(Signal); s = zeros(1, N/2); d = s;

for n=1:N/2

s(n) = 1/2*(Signal(2*n-1) + Signal(2*n));

d(n) = Signal(2*n-1) - s(n);

end

T = [s, d];

Math 357 MATLAB Project #3 4

Save this file as dwthaar.m. Notice that we are now writing signals as row vectors rather than column
vectors. Test the file on the signal

Signal = [56 40 8 24 48 48 40 16]

that is used in Table 3.1 in Section 3.2 of the textbook. Calculate

y = dwthaar(Signal)

The row vector y should be the same as the second row in Table 3.1.

(b) Inverting a one-scale Haar transform: Create the following function m-file:

% one-step discrete inverse Haar wavelet transform

function R = iwthaar(T)

N = length(T); R = zeros(1, N);

for n=1:N/2

R(2*n - 1) = T(n) + T(N/2 + n);

R(2*n) = T(n) - T(N/2 + n);

end

Save this file as iwthaar.m. Test it on the vector y by calculating

z = iwthaar(y)

You should obtain the row vector Signal.

(c) Complete Haar Wavelet Decomposition: To carry out a J-step Haar wavelet decomposition on
a signal of length N = 2K (where J ≤ K), we must apply the one-scale Haar transform J times to obtain
a J ×N matrix. The bottom row of the matrix will be the J-step Haar wavelet decomposition. Create the
following function m-file to do this:

% Discrete Haar wavelet decomposition to level J

function T = haarwave(Signal, J)

N = size(Signal,2); T = zeros(J, N); L = N;

T(1,:) = dwthaar(Signal);

for j=2:J

L = L/2;

T(j, 1:L) = dwthaar(T(j-1, 1:L));

T(j, L+1:N) = T(j-1, L+1:N);

end

Save this file as haarwave.m. Then test it by calculating

Table = haarwave(Signal, 3)

You should get a 3 × 8 matrix T whose bottom row is given in Table 3.5 of the textbook.

Remark. Notice that the first row of T is the one-scale Haar wavelet transform of the input signal y.
The for loop implements the lifting step to obtain row j of T from row j-1. It applies the one-scale Haar
wavelet transform to the initial segment of the row vector that is one-half the length of the segment used for
the previous row.

(d) Inverting the level J Haar Wavelet Decomposition: Create the following function m-file:

% Inverse of level J Discrete Haar wavelet decomposition

function T = ihaarwave(y, J)

N = size(y,2); T = zeros(J, N); L = N/2ˆ(J-1);
T(J,1:L) = iwthaar(y(1:L));

T(J, L+1:N) = y(L+1:N);

for k = J-1:-1:1

L = 2*L;

Math 357 MATLAB Project #3 5

T(k, 1:L) = iwthaar(T(k+1, 1:L));

T(k, L+1:N) = T(k+1, L+1:N);

end

Save this m-file as ihaarwave.m. Test it by entering

y = [35 -3 16 10 8 -8 0 12]

T = ihaarwave(y,3)

The first row of the 3 × 8 matrix T should be the original signal in Table 3.1.

Remark. Note that entries 1:L of row J of T are the one-scale inverse Haar transform of y, where L =

N/2ˆ(J-1). The remaining entries of row J are the same as the corresponding entries of y. The for loop
repeats this inversion algorithm at each level from row J-1 down to row 1 of T, doubling the length L of the
inverse transform vector at each step.

Question 3. Signal Processing with the Haar Transform

You will carry out some signal processing as in Section 3.3.2 of the textbook.

(a) Analyzing a synthetic signal: Consider the analog signal s(t) = sin(4πt). Sample this signal at
29 = 512 equidistant points in 0 ≤ t ≤ 1 to obtain a discrete signal called s9:

s9 = sin([1:512]*4*pi/512);

figure, plot(s9), axis([0 550 -1.2 1.2])

Insert the title Fig. 2: Sine Wave Signal, 512 samples. Save and print the figure.
Now calculate a three-scale Haar wavelet transform of s9 and plot the transform hws9 as a bar graph:

T = haarwave(s9, 3);

hws9 = T(3,:);

figure, bar(hws9, 0.1)

Insert the title Fig. 3: Three-stage Haar transform of Sine Wave Signal, 512 samples. Save and print the graph.

Remark. If you had created a 512 × 512 Haar analysis matrix W
(9)
a following the method of Question

#1(c), then you could have obtained the column vector (hws9)’ as the product of the 512 × 512 matrix

W
(9)
a and the vector s9. This is very inefficient, however, compared to the calculation using the fast Haar

transform, which uses the 3 × 512 matrix haarwave(s9, 3).

To interpret the graph of the Haar transform of the signal, consider the row vector hws9 as a function of
the row index j (for 1 ≤ j ≤ 512). It is made up of a four parts:

Level-3 trend: s6 for 1 ≤ j ≤ 64 (length 26)
Level-3 detail: d6 for 65 ≤ j ≤ 128 (length 26)
Level-2 detail: d7 for 129 ≤ j ≤ 256 (length 27)
Level-1 detail: d8 for 257 ≤ j ≤ 512 (length 28)

Create row vectors in Matlab for each of these parts of the transform and plot the trend s6 as a bar graph:

s6 = hws9(1:64); d6 = hws9(65:128);

d7 = hws9(129:256); d8 = hws9(257:512);

figure, bar(s6, 0.1)

Notice that the level-3 trend s6 is a coarse version of the graph of the original signal (with a sampling rate
of 64 = 512/23). Insert the title Fig. 4: Level-3 Trend of Signal. Save and print the figure.

(b) Approximating a signal: Create an approximate version fhws9 of the Haar transform using only
the level-3 trend s6 and level-3 detail d6 of the signal (zero out the level-1 and level-2 details). Then take
the inverse Haar transform fs9 of fhws9 and plot it:

Math 357 MATLAB Project #3 6

fhws9 = hws9; fhws9(129:512) = 0;

fs9 = ihaarwave(fhws9, 3);

figure, plot(fs9(1,:)), axis([0 550 -1.2 1.2])

The graph is an approximation to the original signal. The first row fs9(1,:) of the 3 × 512 matrix fs9 is
the projection of s9 onto the subspace spanned by the first 128 Haar wavelet basis vectors (out of the total
of 512). Although these are only one-fourth of the total basis vectors, they capture most of the information
in a smooth signal such as a low-frequency sine wave. Calculate the relative approximation error

error = norm(s9 - fs9(1,:))/norm(s9)

Insert the title Fig. 5: Approximation of Signal Using Level-3 Trend and Detail. Save and print the figure.

(c) Compressing a noisy signal: Now add some pops to the signal s9 to indicate some event such
as a loud noise whose timing you want to determine. Do this by first generating a random two-component
vector pop whose entries are integers between 100 and 400.

pop = round(100 + 300*rand(2,1))

Now create a signal with pops by adding 1 to the two components of s9 whose indices are given by the
numbers in pop:

ps9 = s9;

ps9(pop(1)) = s9(pop(1)) + 1;

ps9(pop(2)) = s9(pop(2)) + 1;

Finally, add some normally-distributed random static noise and plot the noisy version of the original signal:

nps9 = ps9 + 0.1*randn(1, 512);

figure, plot(nps9), axis([0 550 -1.5 1.5])

The location of the two pops should be clear in the graph. Insert the title Fig. 6: Signal with Pops and Static.
Save and print the figure.

Use the Haar transform to compress the signal while still retaining the information about time location of
the pops. This is something that is not possible with the discrete Fourier transform; recall the train whistle
analysis from Project #2 (Example 2.10 in the textbook).

Calculate a three-scale Haar wavelet transform of the noisy signal with pops nps9:

T = haarwave(nps9, 3);

hwnps9 = T(3,:);

As before, create row vectors in Matlab for each of the four parts of the transform:

s6 = hwnps9(1:64); d6 = hwnps9(65:128);

d7 = hwnps9(129:256); d8 = hwnps9(257:512);

Plot bar graphs of the trend vector s6 and the detail vectors d6, d7, and d8 in four windows of the same
figure:

figure, subplot(2,2,1), bar(s6, 0.1)

subplot(2,2,2), bar(d6, 0.1)

subplot(2,2,3), bar(d7, 0.1)

subplot(2,2,4), bar(d8, 0.1)

Notice that the pops are mostly hidden in the level-3 trend s6, and may or may not show in the level-3 detail
d6 because of the random noise. However, they are the very clear in the details d7 and d8. Put title Fig.
7 Trend and Details of Signal with Noise and Pops at the top of the figure, and then put titles s6, d6, d7, d8
to the right of each of the plot windows (s6 is the upper left plot, d6 is the upper right, d7 is the lower left,
and d8 is the lower right). Save and print this graph.

In the Haar transform most of the coefficients in the detail vectors d7 and d8 are less than 0.1 in absolute
value, and are largely due to the random noise. The only significant coefficients come from the two pops.

Math 357 MATLAB Project #3 7

Compress and remove noise from the signal by setting to zero all entries in d7 and d8 that are less than
0.1 in absolute value (do not change the trend vector s6 or the detail vector d6). You did this by hand in
Question #1(c); however, now we have need to modify a vector with 512 − 128 = 384 entries. To do this
easily, create the following function m-file:

% threshold truncation function

% Zeros out all components of row vector x smaller than the level parameter

function y = threshold(x, level)

y = x.*(abs(x) >= level);

Save this file as threshold.m. Notice the period before * in the formula for y; this makes the product an
entry-by-entry multiplication. The factor in parentheses after .* is a logic vector: its entries are 1 when the
inequality is true for the corresponding entry of the vector abs(x) of absolute values of x, and 0 otherwise.
Test this m-file by typing

Signal

threshold(Signal, 10)

(where Signal is the row vector from Question #2(a)). The answer should be a vector in which each
component of Signal that is less than 10 has been replaced by 0.

Execute the following code which creates a row vector of length 384 by concatenating the detail vectors d7

and d8, removes the small components using the threshold function, and then concatenates this compressed
row vector with s6 and d6 to obtain the compressed Haar wavelet transform of s9:

detail = [d7 d8];

cdetail = threshold(detail, 0.1);

chws9 = [s6 d6 cdetail];

To calculate the compression ratio in this case, count the number of nonzero coefficients in the vector cdetail
by

count = ones(1, 384).*(abs(cdetail)>0);

ratio = 512/(128 + sum(count))

Finally, take the 3-scale inverse transform of the compressed Haar wavelet transform and plot the com-
pressed version cs9 of the noisy signal s9:

T = ihaarwave(chws9, 3);

cs9 = T(1,:);

figure, plot(cs9), axis([0 550 -1.5 1.5])

Note that the graph of cs9 shows the main features of the signal with the two pops, namely the slow oscillation
of the main signal and the location of the pops. Some of the static noise has been removed (other wavelet
transforms are more efficient at removing such noise). Insert the title Fig. 8: Denoised and Compressed Signal
with Pops and Static. Insert labels on the graph indicating the compression ratio and the locations of the
pops. Save and print the graph.

Final Editing of Lab Write-up: After you have worked through all the parts of the lab assignment,
you will need to edit your diary file. Remove all errors and other material that is not directly related to
the questions. Your write-up should only contain the keyboard input and the Matlab output (including
Figures 1-8), together with the answers to the questions that you have written.

Preview the document before printing and remove unnecessary page breaks and blank space. Put your
name and four-digit ID number on each page. (If you have difficulty doing this using your text editor, you
can write this information by hand after printing the report.)

Do not include the codes for the m-files in your lab writeup, but be sure to save these m-files in your
workspace for future use.

