Mathematics 356:
Elementary Number Theory
 

Rutgers University, Fall 2001

Professor Stephen Miller
miller@math.rutgers.edu

TuTh 1:10-2:30


Text: Kenneth H. Rosen; Elementary Number Theory and Its Applications (fourth edition);
Addison Wesley, 2000 (544 pp.); (ISBN# 0-201-87073-8).

Grading Scheme:


Syllabus:
 
9/4 §1.1 Introduction, Calendar Mind Tricks
9/6 §§1.2,1.3 The Formula for Fibonacci Numbers
9/11 §1.4 Integers and Division
9/13 §2.1 Representing Integers
9/18 §§2.2,2.3 Computers and Integer Calculations (Rosh Hashana)
9/20 §3.1 Plenty of Primes, Review
9/25 Midterm 1
9/27 NOVA special about Fermat's Last Theorem (Yom Kippur)
10/2 §§3.2,3.3 GCDs and the Euclidean Algorithm (Sukkot)
10/4 §3.4 Factoring
10/9 §3.6 Change for a Dollar: integral solutions to equations (Shemini Atzeret)
10/11 §4.1 The Last Digit: working with congruences, Calendar revisited
10/16 §4.2 Dividing through congruences
10/18 §4.3 Chinese Remainder Theorem
10/23 §§4.4,4.6 Polynomial Congruences and Internet Security
10/25 §§6.1,6.2 Fermat's "Little" Theorem and prime imposters
10/30 §6.3 Miller-Rabin Test, Euler's Theorem
11/1 §7.1 The Euler "Totient" Function (Nifsu Sha'ban)
11/6 §7.2,7.3 Perfect Numbers: the oldest unsolved problem, Review
11/8 Midterm 2
11/13 §§7.4 Möbius Inversion
11/15 §11.1 Quadratic Residues: Congruence Squares
11/20 §11.2 Gauss' Golden Theorem
11/27 §11.5 Zero-Knowledge Proofs
11/29 §12.1 Decimal Expansions and Rational Numbers
12/4 §12.2 Continued Fractions
12/6 Handout Irrationality of zeta(3)=1+1/8+1/27+1/64+1/81+1/125+....+1/n^3+.....
12/11 Review