
Introduction to Matrix Exponentials

1 Definition of Exponentials

A system of autonomous linear differential equations can be written as

dY

dt
= AY

where A is an n by n matrix and Y = Y (t) is a vector listing the n dependent variables. (In most of
what we’ll do, we take n = 2, since we study mainly systems of 2 equations, but the theory is the same
for all n.)

If we were dealing with just one linear equation

y′ = ay

then the general solution of the equation would be eat. It turns out that also for vector equations the
solution looks like this, provided that we interpret what we mean by “eAt” when A is a matrix instead of
just a scalar. How to define eAt? The most obvious procedure is to take the power series which defines
the exponential, which as you surely remember from Calculus is

ex = 1 + x +
1
2
x2 +

1
6
x3 + . . . +

1
k!

xk + . . .

and just formally plug-in x = At. (The answer should be a matrix, so we have to think of the term “1”
as the identity matrix.) In summary, we define:

eAt = I + At +
1
2
(At)2 +

1
6
(At)3 + . . . +

1
k!

(At)k + . . .

where we understand the series as defining a series for each coefficient. One may prove that:

eA(t+s) = eAteAs for all s, t . (1)

and therefore, since (obviously) eA0 = I, using s = −t gives

e−At =
(
eAt
)−1

(2)

(which is the matrix version of e−x = 1
x ). We now prove that this matrix exponential has the following

property:
deAt

dt
= AeAt = eAtA (3)

for every t. Proof: Let us differentiate the series term by term:

deAt

dt
=

d

dt

(
I + At +

1
2
(At)2 +

1
6
(At)3 + . . . +

1
k!

(At)k + . . .

)

= 0 + A + A2t +
1
2
A3t2 + . . . +

1
(k − 1)!

Aktk−1 + . . .

= A

(
I + At +

1
2
(At)2 +

1
6
(At)3 + . . . +

1
k!

(At)k + . . .

)
= AeAt
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and a similar proof, factoring A on the right instead of to the left, gives the equality between the
derivative and eAtA. (Small print: the differentiation term-by-term can be justified using facts about
term by term differentiation of power series inside their domain of convergence.) The property (3) is the
fundamental property of exponentials of matrices. It provides us immediately with this corollary:

The initial value problem
dY

dt
= AY , Y (0) = Y0 has the unique solution Y (t) = eAtY0.

We can, indeed, verify that the formula Y (t) = eAtY0 defines a solution of the IVP:

dY (t)
dt

=
deAtY0

dt
=

deAt

dt
Y0 =

(
AeAt

)
Y0 = A

(
eAtY0

)
= AY (t) .

(That it is the unique, i.e., the only, solution is proved as follows: if there were another solution Z(t) of
the same IVP, then we could let W (t) = Y (t)−Z(t) and notice that W ′ = Y ′ −Z ′ = A(Y −Z) = AW ,
and W (0) = Y (0)− Z(0) = 0. Letting V (t) = e−AtW (t), and applying the product rule, we have that

V ′ = −Ae−AtW + e−AtW ′ = −e−AtAW + e−AtAW = 0

so that V must be constant. Since V (0) = W (0) = 0, we have that V must be identically zero. Therefore
W (t) = eAtV (t) is also identically zero, which because W = Y − Z, means that the functions Y and Z
are one and the same, which is what we claimed.)

So we have, in theory, solved the general linear differential equation. A potential problem is, however,
that it is not always easy to calculate eAt.

1.1 Some Examples

We start with this example:

A =
(

1 0
0 2

)
. (4)

We calculate the series by just multiplying A by t:

At =
(

t 0
0 2t

)

and now calculating the powers of At. Notice that, because At is a diagonal matrix, its powers are very
easy to compute: we just take the powers of the diagonal entries (why? if you don’t understand, stop
and think it over right now). So, we get

eAt =
(

1 0
0 1

)
+
(

t 0
0 2t

)
+

1
2

(
t2 0
0 (2t)2

)
+

1
6

(
t3 0
0 (2t)3

)
+ . . . +

1
k!

(
tk 0
0 (2t)k

)
+ . . .

and, just adding coordinate-wise, we obtain:

eAt =
(

1 + t + 1
2 t2 + 1

6 t3 + . . . + 1
k! t

k + . . . 0
0 1 + 2t + 1

2 (2t)2 + 1
6 (2t)3 + . . . + 1

k! (2t)k + . . .

)

which gives us, finally, the conclusion that

eAt =
(

et 0
0 e2t

)
.

So, in this very special case we obtained the exponential by just taking the exponentials of the diagonal
elements and leaving the off-diagonal elements zero (observe that we did not end up with exponentials
of the non-diagonal entries, since e0 = 1, not 0).
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In general, computing an exponential is a little more difficult than this, and it is not enough to just
take exponentials of coefficients. Sometimes things that seem surprising (the first time that you see
them) may happen. Let us take this example now:

A =
(

0 1
−1 0

)
. (5)

To start the calculation of the series, we multiply A by t:

At =
(

0 t
−t 0

)

and again calculate the powers of At. This is a little harder than in the first example, but not too hard:

(At)2 =
(−t2 0

0 −t2

)

(At)3 =
(

0 −t3

t3 0

)

(At)4 =
(

t4 0
0 t4

)

(At)5 =
(

0 t5

−t5 0

)

(At)6 =
(−t6 0

0 −t6

)
and so on. We won’t compute more, because by now you surely have recognized the pattern (right?).
We add these up (not forgetting the factorials, of course):

eAt =
(

1 0
0 1

)
+
(

0 t
−t 0

)
+

1
2

(−t2 0
0 −t2

)
+

1
3!

(
0 −t3

t3 0

)
+

1
4!

(
t4 0
0 t4

)
+ . . .

and, just adding each coordinate, we obtain:

eAt =
(

1 − t2

2 + t4

4! − . . . t − t3

3! + t5

5! − . . .

−t + t3

3! − t5

5! + . . . 1 − t2

2 + t4

4! − . . .

)

which gives us, finally, the conclusion that

e

(
0 1
−1 0

)
t

= eAt =
(

cos t sin t
− sin t cos t

)
.

It is remarkable that trigonometric functions have appeared. Perhaps we made a mistake? How could
we make sure? Well, let us check that property (3) holds (we’ll check only the first equality, you can
check the second one). We need to test that

d

dt

(
cos t sin t
− sin t cos t

)
= A

(
cos t sin t
− sin t cos t

)
. (6)

Since (sin t)′ = cos t, and (cos t)′ = − sin t, we know that

d

dt

(
cos t sin t
− sin t cos t

)
=
(− sin t cos t
− cos t − sin t

)

and, on the other hand, multiplying matrices:(
0 1
−1 0

)(
cos t sin t
− sin t cos t

)
=
(− sin t cos t
− cos t − sin t

)
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so we have verified the equality (6).

As a last example, let us take this matrix:

A =
(

1 1
0 1

)
. (7)

Again we start by writing

At =
(

t t
0 t

)
and calculating the powers of At. It is easy to see that the powers are:

(At)k =
(

tk ktk

0 tk

)

since this is obviously true for k = 1 and, recursively, we have

(At)k+1 = (At)kA =
(

tk ktk

0 tk

)(
t t
0 t

)
=
(

tkt tkt + ktkt
0 tkt

)
=
(

tk+1 (k + 1)tk+1

0 tk+1

)
.

Therefore,

eAt =
∞∑

k=0

(
tk/k! ktk/k!

0 tk/k!

)

=
(∑∞

k=0 tk/k!
∑∞

k=0 ktk/k!
0

∑∞
k=0 tk/k!

)

=
(

et tet

0 et

)
.

To summarize, we have worked out three examples:

• The first example (4) is a diagonal matrix, and we found that its exponential is obtained by taking
exponentials of the diagonal entries.

• The second example (5) gave us an exponential matrix that was expressed in terms of trigonometric
functions. Notice that this matrix has imaginary eigenvalues equal to i and −i, where i =

√−1.

• The last example (7) gave us an exponential matrix which had a nonzero function in the (1, 2)-
position. Notice that this nonzero function was not just the exponential of the (1, 2)-position in the
original matrix. That exponential would give us an et term. Instead, we got a more complicated
tet term.

In a sense, these are all the possibilities. Exponentials of all two by two matrices can be obtained using
functions of the form eat, teat, and trigonometric functions (possibly multiplied by eat). (Not only
that, but exponentials of any size matrices, not just 2 by 2, can be expressed using just polynomial
combinations of t, scalar exponentials, and trigs. We will not quite prove this fact here; see any linear
algebra book for the details.)

Calculating exponentials using power series is OK for very simple examples, and important to do a
few times, so that you understand what this all means. But in practice, one uses very different methods
for computing matrix exponentials. (remember how you first saw the definition of derivative using limits
of incremental quotients, and computed some derivatives in this way, but soon learned how to use “the
Calculus” to calculate derivatives of complicated expressions using the multiplication rule, chain rule,
and so on.)
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2 Computing Matrix Exponentials

We wish to calculate eAt. The key concept for simplifying the computation of matrix exponentials is
that of matrix similarity. Suppose that we have found two matrices, Λ and S, where S is invertible,such
that this formula holds:

A = SΛS−1 (8)

(one says that A and Λ are similar matrices). Then, we claim, it is true that also:

eAt = SeΛtS−1 (9)

for all t. Therefore, if the matrix Λ is one for which eΛt is easy to find (for example, if it is a diagonal
matrix), we can then multiply by S and S−1 to get eAt. To see why (9) is a consequence of (8), we just
notice that At = S(Λt)S−1 and we have the following “telescopic” property for powers:

(At)k =
[
S(Λt)S−1

] [
S(Λt)S−1

]
. . .
[
S(Λt)S−1

]
= S(Λt)kS−1

since all the in-between pairs S−1S cancel out. Therefore,

eAt = I + At +
1
2
(At)2 +

1
6
(At)3 + . . . +

1
k!

(At)k + . . .

= I + S(Λt)S−1 +
1
2
S(Λt)2S−1 +

1
6
S(Λt)3S−1 + . . . +

1
k!

S(Λt)kS−1 + . . .

= S

[
I + Λt +

1
2
(Λt)2 +

1
6
(Λt)3 + . . . +

1
k!

(Λt)k + . . .

]
S−1

= SeΛtS−1

as we claimed.

The basic theorem is this one:

Theorem. For every n by n matrix A, one can find an invertible matrix S and an upper
triangular matrix Λ such that (8) holds.

Remember that an upper triangular matrix is one that has the following form:


λ1 ∗ ∗ · · · ∗ ∗
0 λ2 ∗ · · · ∗ ∗
0 0 λ2 · · · ∗ ∗
...

...
...

...
...

...
0 0 0 · · · λn−1 ∗
0 0 0 · · · 0 λn




where the stars are any numbers. The numbers λ1, . . . , λn turn out to be the eigenvalues of A.

There are two reasons that this theorem is interesting. First, it provides a way to compute expo-
nentials, because it is not difficult to find exponentials of upper triangular matrices (the example (7) is
actually quite typical) and second because it has important theoretical consequences.

(Two stronger theorems are possible. One is the “Jordan canonical form” theorem, which provides
a matrix Λ that is not only upper triangular but which has an even more special structure. Jordan
canonical forms are not very useful from a computational point of view, because they are what is known
in numerical analysis as “numerically unstable”, meaning that small perturbations of A can give one
totally different Jordan forms. A second strengthening is the “Schur unitary triangularization theorem”
which says that one can pick the matrix S to be unitary. This last theorem is extremely useful in
practice, and is implemented in many numerical algorithms.)

We do not prove the theorem here in general, but only show it for n = 2; the general case can be
proved in much the same way, by means of a recursive process.
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We start the proof by remembering that every matrix has at least one eigenvalue, let us call it λ,
and an associate eigenvector, v. That is to say, v is a vector different from zero, and

Av = λv . (10)

To find λ, we find a root of the characteristic equation

det(λI −A) = 0

which, for two-dimensional systems is the same as the equation

λ2 − trace(A)λ + det(A) = 0

and, recall,

trace
(

a b
c d

)
= a + d

det
(

a b
c d

)
= ad− bc .

(There are, for 2 by 2 matrices, either two real eigenvalues, one real eigenvalue with multiplicity two,
or two complex einegvalues. In the last case, the two complex eingenvalues must be conjugates of each
other.) An eigenvector associated to an eigenvalue λ is then found by solving the linear equation

(A − λI)v = 0

(there are an infinite number of solutions; we pick any nonzero one).

With an eigenvalue λ and eigenvector v found, we next pick any vector w with the property that the
two vectors v and w are linearly independent. For example, if

v =
(

a
b

)

and a is not zero, we can take

w =
(

0
1

)

(what would you pick for w is a were zero?). Now, since the set {v, w} forms a basis of two-dimensional
space, we can find coefficients c and d so that

Aw = cv + dw . (11)

We can summarize both (10) and (11) in one matrix equation:

A (v w) = (v w)
(

λ c
0 d

)
.

We let S = (v w) and

Λ =
(

λ c
0 d

)
.

Then,
AS = SΛ

which is the same as what we wanted to prove, namely A = SΛS−1. Actually, we can even say more. It
is a fundamental fact in linear algebra that, if two matrices are similar, then their eigenvalues must be
the same. Now, the eigenvalues of Λ are λ and d, because the eigenvalues of any triangular matrix are
its diagonal elements. Therefore, since A and Λ are similar, d must be also an eigenvalue of A.
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3 The Three Cases for n = 2

The following special cases are worth discussing in detail:

1. A has two different real eigenvalues.

2. A has two complex conjugate eigenvalues.

3. A has a repeated real eigenvalue.

In cases 1 and 2, one can always find a diagonal matrix Λ. To see why this is true, let us go back to
the proof, but now, instead of taking just any linearly independent vector w, let us pick a special one,
namely an eigenvector corresponding to the other eigenvalue of A:

Aw = µw .

This vector is always linearly independent of v, so the proof can be completed as before. Notice that Λ
is now diagonal, because d = µ and c = 0.

(Proof that v and w are linearly independent: if αv + βw = 0, then αλv + βµw = A(αv + βw) = 0.
On the other hand, multiplying αv +βw = 0 by λ we would have αλv +βλw = 0. Subtracting we would
obtain β(λ − µ)w = 0, and as λ − µ 6= 0 we would arrive at the conclusion that βw = 0. But w, being
an eigenvector, is required to be nonzero, so we would have to have β = 0. Plugging this back into our
linear dependence would give αv = 0, which would require α = 0 as well. This shows us that there are
no nonzero coefficients α and β for which αv + βw = 0, which means that the eigenvectors v and w are
linearly independent.)

Notice that in cases 1 and 3, the matrices Λ and S are both real. In case 1, we will interpret the
solutions with initial conditions on the lines that contain v and w as “straight line solutions” and this is
the subject of Section 3.2 in the book.

In case 2, the matrices Λ and S are, in general, not real. Note that, in case 2, if Av = λv, taking
complex conjugates gives

Av̄ = λ̄v̄

and we note that
λ̄ 6= λ

because λ is not real. So, we can always pick w = the conjugate of w. It will turn out that solutions
can be re-expressed in terms of trigonometric functions — remember example (5) — as we’ll see in the
next section and in Section 3.4 of the book.

Now let’s consider Case 3 (the repeated real eigenvalue). We have that

Λ =
(

λ c
0 λ

)

so we can also write Λ = λI + cN , where N is the following matrix:

N =
(

0 1
0 0

)
.

Observe that:
(λI + cN)2 = (λI)2 + c2N2 + 2λcN = λ2I + 2λcN

(because N2 = 0) and, for the general power k, recursively:

(λI + cN)k =
(
λk−1I + (k − 1)λk−2cN

)
(λI + cN)

= λkI + (k − 1)λk−1cN + λk−1cN + (k − 1)λk−2a2N2

= λkI + kλk−1cN
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so

(λI + cN)ktk =
(
λkI + kλk−1cN

)
tk =

(
λktk kλk−1ctk

0 λktk

)
and therefore

eΛt =
(

eλt cteλt

0 eλt

)
(12)

because 0+ ct+(2λc)t2/2+ (3λ2c)t3/6!+ . . . = cteλt. (This generalizes the special case in example (7).)

4 A Shortcut

If we just want to find the form of the general solution of Y ′ = AY , we do not need to actually calculate
the exponential of A and the inverse of the matrix S.

Let us first take the cases of different eigenvalues (real or complex, that is, cases 1 or 2, it doesn’t
matter which one). As we saw, Λ can be taken to be the diagonal matrix consisting of these eigenvalues
(which we call here λ and µ instead of λ1 and λ2), and S = (v w) just lists the two eigenvectors as its
columns. We then know that the solution of every initial value problem Y ′ = AY , Y (0) = Y0 will be of
the following form:

Y (t) = eAtY0 = S eΛt S−1Y0 = (v w)
(

eλt 0
0 eµt

)(
a
b

)
= a eλtv + b eµtw

where we just wrote S−1Y0 as a column vector of general coefficients a and b. In conclusion:

The general solution of Y ′ = AY , when A has two eigenvalues λ and µ with respective
eigenvectors v and w, is of the form

a eλtv + b eµtw (13)

for some constants a and b.

So, one approach to solving IVP’s is to first find eigenvalues and eigenvectors, write the solution in
the above general form, and then plug-in the initial condition in order to figure out what are the right
constants. Section 3.2 in the book gives us lots of practice with this procedure.

In the case of non-real eigenvalues, recall that we showed that the two eigenvalues must be conjugates
of each other, and the two eigenvectors may be picked to be conjugates of each other. Let us show now
that we can write (13) in a form which does not involve any complex numbers. In order to do so, we
start by decomposing the first vector function which appears in (13) into its real and imaginary parts:

eλtv = Y1(t) + iY2(t) (14)

(let us not worry for now about what the two functions Y1 and Y2 look like). Since µ is the conjugate
of λ and w is the conjugate of v, the second term is:

eµtw = Y1(t) − iY2(t) . (15)

So we can write the general solution shown in (13) also like this:

a(Y1 + iY2) + b(Y1 − iY2) = (a + b)Y1 + i(a − b)Y2 . (16)

Now, it is easy to see that a and b must be conjugates of each other. (Do this as an optional homework
problem. Use the fact that these two coefficents are the components of S−1Y0, and the fact that Y0 is
real and that the two columns of S are conjugates of each other.) This means that both coefficients a+ b
and i(a− b) are real numbers. Calling these coefficients “k1” and “k2”, we can summarize the complex
case like this:
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The general solution of Y ′ = AY , when A has a non-real eigenvalue λ with respective eigen-
vector v, is of the form

k1 Y1(t) + k2 Y2(t) (17)

for some real constants k1 and k2. The functions Y1 and Y2 are found by the following
procedure: calculate the product eλtv and separate it into real and imaginary parts as in
Equation (14).

What do Y1 and Y2 really look like? This is easy to answer using Euler’s formula, which gives

eλt = eαt+iβt = eαt(cosβt + i sinβt) = eαt cosβt + ieαt sin βt

where α and β are the real and imaginary parts of λ respectively. This is what we do in Section 3.4 of
the book.

Finally, in case 3 (repeated eigenvalues) we can write, instead:

Y (t) = eAtY0 = S eΛt S−1Y0 = (v w)
(

eλt cteλt

0 eµt

)(
a
b

)
= a eλtv + b eλt(ctv + w) .

When c = 0 we have from A = SΛS−1 that A must have been the diagonal matrix(
λ 0
0 λ

)

to start with (because S and Λ commute). When c 6= 0, we can write k2 = bc and redefine w as 1
cw.

Note that then (11) becomes Aw = v + λw, that is, (A− λI)w = v. Any vector w with this property is
linearly independent from v (why?).

So we conclude, for the case of repeated eigenvalues:

The general solution of Y ′ = AY , when A has a repeated (real) eigenvalue λ is either of the
form eλtY0 (if A is a diagonal matrix) or, otherwise, is of the form

k1 eλtv + k2 eλt(tv + w) (18)

for some real constants k1 and k2, where v is an eigenvector corresponding to λ and w is any
vector which satisfies (A − λI)w = v.

Observe that (A−λI)2w = (A−λI)v = 0. general, one calls any nonzero vector such that (A−λI)kw = 0
a generalized eigenvector (of order k) of the matrix A (since, when k = 1, we have eigenvectors).

5 Forcing Terms

The use of matrix exponentials also helps explain much of what is done in chapter 4 (forced systems), and
renders Laplace transforms unnecessary. Let us consider non-homogeneous linear differential equations
of this type:

dY

dt
(t) = AY (t) + u(t) . (19)

We wrote the arguments “t” just this one time, to emphasize that everything is a function of t, but from
now on we will drop the t’s when they are clear from the context.

Let us write, just as we did when discussing scalar linear equations, Y ′ − AY = u. We consider
the “integrating factor” M(t) = e−At. Multiplying both sides of the equation by M , we have, since
(e−AtY )′ = e−AtY ′ − e−AtAY (right?):

de−AtY

dt
= e−Atu .
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Taking antiderivatives:

e−AtY =
∫ t

0

e−Asu(s) ds + Y0

for some constant vector Y0. Finally, multiplying by e−At and remembering that e−AteAt = I, we
conclude:

Y (t) = eAtY0 + eAt

∫ t

0

e−Asu(s) ds . (20)

This is sometimes called the “variation of parameters” form of the general solution of the forced equa-
tion (19). Of course, Y0 = Y (0) (just plug-in t = 0 on both sides).

Notice that, if the vector function u(t) is a polynomial in t, then the integral in (20) will be a
combination of exponentials and powers of t (integrate by parts). Similarly, if u(t) is a combination of
trigonometric functions, the integral will also combine trigs and polynomials. This observation justifies
the “guesses” made for forced systems in chapter 4 (they are, of course, not guesses, but consequences
of integration by parts, but the book would lead you to believe otherwise).

6 Exercises

1. In each of the following, factor the matrix A into a product SΛS−1, with Λ diagonal:

a. A =
(

1 1
0 0

)

b. A =
(

5 6
−1 −2

)

c. A =
(

2 −8
1 −4

)

d. A =


 2 2 1

0 1 2
0 0 −1




2. For each of the matrices in Exercise 1, use the SΛS−1 factorization to calculate A6 (do not just
mutiply A by itself).

3. For each of the matrices in Exercise 1, use the SΛS−1 factorization to calculate eAt.

4. Calculate eAt for this matrix: 
 0 1 2

0 0 1
0 0 0




using the power series definition.

5. Consider these matrices:

A =
(

1 1
0 0

)
B =

(
0 −1
0 0

)

and calculate eAt, eBt, and e(A+B)t.
Answer, true or false: is eAteBt = e(A+B)t?

6. (Challenge problem) Show that, for any two matrices A and B, it is true that

eAteBt = e(A+B)t for all t

if and only if AB − BA = 0. (The expression “AB − BA” is called the “Lie bracket” of the two
matrices A and B, and it plays a central role in the advanced theory of differential equations.)
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