
FIRST-ORDER LINEAR SYSTEMS WHOSE
COEFFICIENT MATRICES ARE SKEW-SYMMETRIC

These systems turn up often enough in applications to justify looking at them closely. I started on them
in class but didn’t do enough with them because of time pressure. These notes fill in the details for people
who may need them in later courses. This is not examination material.

0. Linear-algebra preliminaries.

In order to read all but the last § of these notes, one should be familiar with the properties of the dot
and cross products in R3 as exposed in most1 calculus textbooks. One should also know that there is a
dot product in Rn analogous to the familiar one in R3; if one thinks of the elements of Rn as n× 1 column
matrices and identifies the 1× 1 matrices with R, then one can write the dot product in the following way:

If x =


x1

...

xn

 , y =


y1

...

yn

 , then x • y = yTx = xTy =
n∑
i=1

xiyi (0.1)

where MT denotes the transpose of a given matrix M—the matrix found from the original M by “inter-
changing rows and columns.” The dot product interacts with matrix multiplication: if A = (aij) is an
n× n matrix applied to x, then the i-th coördinate of Ax is the sum

∑n
j=1 aijxj . Dotting this with y and

computing the sum in reverse order gives

(Ax) • y =
n∑
i=1

 n∑
j=1

aijxj

 yi =
n∑
j=1

xj

[
n∑
i=1

aijyi

]
(0.2)

so that x is being dotted with a vector that is determined by multiplying y by a certain matrix—one
obviously related to A. However, because the summation

∑n
i=1 aijyi is being taken over the “wrong” index,

the matrix being applied to y is not A, but rather its transpose AT . Thus we have the relation

(Ax) • y = x • (ATy) , (0.3)

sometimes expressed by saying that “when the matrix goes across the dot product it gets transposed.” Note
that if one expresses the dot product in terms of transposing the vectors considered as n× 1 matrices, then
(0.2) and (0.3) are neatly expressed by

(Ax) • y = yTAx = (ATy)Tx = x • (ATy) (0.4)

and both follow from the fact that transposition reverses the order of matrix multiplication (and the fact
that the dot product is symmetric in its arguments).

1. Skew-symmetric first-order systems: first principles.

First-semester linear-algebra courses sometimes get as far as investigating the eigenvalue/eigenvector
behavior of symmetric matrices, those for which AT = A. From the standpoint of differential equations,
the skew-symmetric matrices—those for which AT = −A, are every bit as interesting, because of the
following proposition. First we need a small

Lemma: The following properties are equivalent for n× n real matrices A:

(1) For every y ∈ Rn, (Ay) • y = −y •Ay.

(2) For every y ∈ Rn, (Ay) • y = 0.

1
In J. Stewart, Calculus: Early Transcendentals, 3rd ed., see Ch. 11, p. 664 ff.; 4th ed., Ch. 12, p. 782 ff.
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(3) A = −AT , that is, A is skew-symmetric.

Proof. (1) ⇒ (2): The dot product is symmetric in its arguments, so (Ay) • y = y • (Ay) holds for
every A and y; putting that relation together with (1), we find that (Ay) • y = 0 must hold for every
y ∈ Rn. (2) ⇒ (3): replacing y by x + y, we see that for every x ∈ Rn and y ∈ Rn

A(x + y) • (x + y) = 0
(Ax) • x + (Ay) • x + (Ax) • y + (Ay) • y = 0
0 + (Ay) • x + (Ax) • y + 0 = 0
ATx • y = x • (Ay) = (Ay) • x = −(Ax) • y
[(AT + A)x] • y = 0 (1.1)

and because (1.1) holds for every y ∈ Rn, one must2 have (AT + A)x = 0; but since this holds for every
x ∈ Rn (including all the standard basis vectors), the matrix AT +A must be the zero matrix, or AT = −A.
(3) ⇒ (1): If AT = −A then (Ay) • y = y •ATy = −y •Ay holds for every y ∈ Rn.

Proposition: The first-order linear homogenous system Y′ = AY has the property that all its solutions
have constant distance from the origin—‖Y(t)‖ ≡ ‖Y(0)‖—if and only if the matrix of coefficients
satisfies AT = −A; that is, if and only if A is a skew-symmetric matrix.

Proof. The dot product of Y(t) with itself is the length-squared of the vector Y(t). Consequently3

d

dt
‖Y(t)‖2 =

d

dt
(Y(t) •Y(t)) = Y′(t) •Y(t) + Y(t) •Y′(t)

= AY(t) •Y(t) + Y(t) •AY(t) = (AY(t)) •Y(t) + (ATY(t)) •Y(t)
= [(A + AT )Y(t)] •Y(t) . (1.2)

From the last line of (1.2) it follows that if AT = −A, then the derivative of ‖Y(t)‖2 is zero for all t, so the
length of Y(t) is a constant—and the constant must be Y(0). Conversely, if the length of Y(t) is constant
so the derivative of its length-squared is zero, then—since Y(0) could be any vector in Rn—the matrix A
must have the property that [(A + AT )y] • y = 0, or equivalently that (Ay) • y = −y • (Ay) holds for all
vectors y ∈ Rn. By the lemma above, A must be skew-symmetric.

Skew-symmetric matrices have no nonzero real eigenvalues; in fact, their eigenvalues are always pure-
imaginary. The reason is simple: if A is skew-symmetric and x is a real eigenvector belonging to a real
eigenvalue λ of A, then Ax = λx, so λx • x = (Ax) • x = x • (ATx) = −x • (Ax) = −λx • x. If x 6= 0
so its length-squared ‖x‖2 = x • x > 0, we can divide by it to get λ = −λ and therefore λ = 0. On the
other hand, it is known4 that a symmetric matrix always has only real eigenvalues. If A = −AT then the
matrix ATA = −A2 is symmetric; thus if λ is a complex eigenvalue of A with complex eigenvector z we
have A2z = A[Az] = A[λz] = λ2z and λ2 is therefore real. But then one must have λ2 < 0 or λ itself would
have been real; so λ is a square root of a negative number and is therefore a pure imaginary.

If the dimension n of the space is odd, a (real) skew-symmetric n× n matrix always has zero as a real
eigenvalue (with a real eigenvector). The reason is that (in all dimensions) the determinant of any matrix is
the same as that of its transpose, but the determinant of the matrix −I is (−1)n (the product of the (−1)’s
on its diagonal), which is +1 or −1 according to whether n is even or odd respectively. So if n is odd we
have

det(A) = det(AT ) = det(−A) = det((−I)(A))
= (−1)odd det(A) = − det(A)

det(A) = 0 (1.3)

2
If a vector is orthogonal to every vector in Rn, then in particular it is orthogonal to itself; but then, since its dot product with

itself is its length-squared, it must have zero length; therefore it must be the zero vector. Or: let y run through the standard basis

vectors, and thus observe that every coördinate of a vector orthogonal to all vectors must be zero.
3

Apropos differentiation of the dot product of two vector-valued functions, see Stewart, 3rd ed. p. 709, box (5); 4th ed. p. 846,

box (3).
4

See, for example, K. Hoffman & R. Kunze, Linear Algebra, 2nd ed. (1971), p. 312, Theorem 15.
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and so there is some 0 6= x ∈ Rn with Ax = 0.

2. Skew-symmetry in low dimensions.

This is all more concrete than it may look at first, and the cases of dimension n = 2 and n = 3 give
insight into the general situation.

In the case n = 2, a skew-symmetric matrix has to have the form A =

[
0 −ω

ω 0

]
, where ω ∈ R. We

know all about these: the general solution of Y′ = AY for such an A is given by

Y(t) =

[
cos ωt − sin ωt

sin ωt cos ωt

]
Y(0) (2.1)

and the trajectory of every point is the circle centered at the origin that passes through the point; the moving
point traverses the circle at angular velocity ω; the eigenvalues of A are ±iω.

In the case n = 3, we can realize all the skew-symmetric 3 × 3 matrices in a familiar form.

Proposition For any vector a = (a1, a2, a3)T ∈ R3, the matrix of the linear transformation x 7→
a × x (where “×” is the usual cross product) relative to the standard basis is the skew-symmetric matrix

0 −a3 a2

a3 0 −a1

−a2 a1 0

, and every skew-symmetric 3 × 3 matrix is the matrix of such a linear transformation

for an a ∈ R3 that is uniquely determined by the matrix.

Proof. By taking “x” to be each vector of the standard basis {i, j, k} in order, one easily checks that
the matrix of x 7→ a × x is as advertised, so we omit the details. Given a skew-symmetric 3 × 3 matrix A,
we can find one and only one (a1, a2, a3)T ∈ R3 so that the—say—above-diagonal entries of the matrix of
x 7→ a× x match those of A; but then, since both matrices are skew-symmetric, all of the entries match; so
every 3× 3 skew-symmetric matrix is obtained in this way for a unique a ∈ R3.

We can use the “a” of the proposition to help understand the less transparent “A.” For example, since
a×a = 0 for any a ∈ R3, we see where the eigenvector belonging to zero comes from: it’s a itself. The pure-
imaginary eigenvalues are also related to a: the determinant computation that gives us the characteristic
polynomial

det(λI−A) = det


λ a3 −a2

−a3 λ a1

a2 −a1 λ


= λ(λ2 + a2

1) + a3(a3λ− a1a2) + a2(a3a1 + a2λ)
= λ3 + (a2

1 + a2
2 + a2

3)λ = λ(λ2 + ‖a‖2) (2.2)

shows—of course—that λ = 0 is an eigenvalue, and also shows that the other two eigenvalues of A are ±iω
where ω = ‖a‖. Let v3 =

1
‖a‖ a, the unit vector pointing in the same direction as a. We shall show that

from the standpoint of “looking down from the tip of v3,” things look about as they did in R2; namely,
the solutions of Y′ = AY hold the v3-axis fixed and rotate the plane orthogonal to it at angular velocity
ω = ‖a‖. To see this, let w be a complex eigenvector5 of A belonging to iω, and—taking its real and
imaginary parts—write it (uniquely) in the form w = v1 − iv2, where the two vectors v1, v2 ∈ R3. (The

5
At this stage of our development of these ideas, there is considerable ambiguity in picking this eigenvector; we shall adjust its

length (divide it by a positive constant) later.
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perhaps-unexpected minus sign inserted in the imaginary part will make the computations come out more
nicely.) Applying A to both sides of the relation w = v1− iv2 produces, just as in the two-dimensional case
with which we are so familiar,

Av1 − iAv2 = Aw = iωw = iω(v1 − iv2) = ωv2 + iωv1

Av1 = ωv2 and Av2 = −ωv1 . (2.3)

This already tells us that the matrix of A relative to the basis {v1, v2, v3} has the form


0 −ω 0

ω 0 0

0 0 0

—the

upper left 2 × 2 matrix looks familiar—but things will get even better. Indeed, the vectors v1 and v2 are
orthogonal to each other, have the same length, and are both orthogonal to v3. They are orthogonal to each
other because Ax • x = 0 for any vector x due to the skew-symmetry of A, and therefore

ω(v2 • v1) = ωv2 • v1 = Av1 • v1 = 0 ; (2.4)

but since ω = ‖a‖ > 0, one must have v2 •v1 = 0. They have the same length because one can divide ω2 6= 0
out of both sides of

ω2(v2 • v2) = ω2v2 • v2 = Av1 •Av1

= (−A2v1) • v1 = (ω2v1) • v1 = ω2(v1 • v1) ;
‖v2‖2 = v2 • v2 = v1 • v1 = ‖v1‖2 . (2.5)

It now appears that, by dividing the original complex eigenvector w by the common value of ‖v1‖ = ‖v2‖ > 0,
we could have arranged to have ‖v1‖ = ‖v2‖ = 1, so we shall assume that that has been done. Both v1

and v2 are orthogonal to v3, since v3 points in the same direction as a, each ‖a‖vi = ±Avj = ±a × vj ,
and a× x is orthogonal to a for any x ∈ R3. So {v1, v2, v3} is an orthonormal basis of R3; moreover, it is
positively oriented in the sense that it obeys the same ×-multiplication table that {i, j, k} does:

v3 × v1 =
a
‖a‖ × v1 =

Av1

‖a‖ = v2

v1 × v2 = v1 × (v3 × v1) = (v1 • v1)v3 − (v1 • v3)v1 = v3

v2 × v3 = −v3 × v2 = − 1
‖a‖ Av2 = v1 , (2.6)

the second line of (2.6) involving the vector triple product identity.6 The fact that the basis {v1, v2, v3} is

an orthonormal basis makes the change-of basis relation particularly simple, because if Q =


...

...
...

v1 v2 v3

...
...

...


is the matrix whose columns are these three vectors, then Q−1 = QT (verification immediate). We know
from what we have just demonstrated that

Q−1AQ =


0 −ω 0

ω 0 0

0 0 0

 , equivalently A = Q


0 −ω 0

ω 0 0

0 0 0

Q−1 . (2.7)

6
See Stewart, 3rd ed. p. 686, 4th ed. p. 807, box (8) Theorem #6.
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It now follows from what we know about exp

(
t

[
0 −ω

ω 0

])
that

etA = Q


cos ωt − sin ωt 0

sin ωt cos ωt 0

0 0 1

QT , (2.8)

i.e., that the matrix etA rotates R3 around the axis v3, at an angular velocity of ω = ‖a‖, in a positive
direction when viewed from the tip of the vector a (or of its normalized version v3). Since the plane
spanned by {v1, v2} is the plane orthogonal to a, one may view the solution of Y′ = AY, or Y′ =
a ×Y(t), geometrically as follows: given an initial-position vector Y0, resolve it into its components along
and orthogonal to a, calling them (say) Ya and Y⊥. Then Y(t) = Ya + Y⊥(t): the component along the
axis a does not change, but the orthogonal component is rotated in the positive direction, with a rotation
of ωt = ‖a‖ (radians) having been achieved at time t.

This relation among (1) the cross product, (2) skew-symmetric matrices, (3) first-order homogeneous
linear systems of DEs that leave lengths invariant and (4) rotations about a fixed axis at constant angular
velocity, is the reason that the cross product turns up so frequently in the discussions of rotation, torque,
and rotational inertia in classical mechanics. For example, the definitions of torque in the form r× F and

of moment of momentum as r×
(
m
d2r
dt2

)
yield such elegant results precisely because the cross product

is an “infinitesimal rotation about the axis given by one factor”: the exponential series tells us that in a
small time interval ∆t the moving point that started at Y0 at time t = 0 and is now at Y(t) = etAY0 will
be at Y(∆t + t) = e(∆t+t)AY0 = e∆tAetAY0 = e∆tAY(t) ∼ Y(t) + ∆t a ×Y(t) a “short time” ∆t later,
but (because of the distance-preserving property) the distance of the moving point from the origin will not
have changed. (The physical quantities occur in analyzing the motion of a rigid body—rigidity means that
distances do not change with time.)

One should give a concrete computed example, so suppose a = (6, 6, 3)T ; then ‖a‖ = 9 and v3 =
(2/3, 2/3, 1/3)T . The eigenvalues of A are ±9i. To find a complex eigenvector belonging to 9i we have to
solve 

9i 3 −6

−3 9i 6

6 −6 9i



u

v

w

 = 0 . (2.9)

In view of the geometry of the situation we should be able to take v1 to be any unit vector orthogonal to
a, so we try for a solution of (2.9) whose real part7 is the unit vector (1/3,−2/3, 2/3)T . Thus we need to
solve for real numbers x, y, z with 

9i 3 −6

−3 9i 6

6 −6 9i




1/3− xi

−2/3− yi

2/3− zi

 = 0 . (2.10)

The first equation becomes 3i+ 9x− 2− 3iy− 4 + 6iz = 0, so x = 2/3 and y− 2z = 1. The second equation
becomes −1 + 3ix − 6i + 9y + 4 − 6iz = 0, so y = −1/3 and 3x − 6 − 6z = 0, which gives z = −2/3 (and
these are consistent with the earlier equation connecting y and z). This is a unit vector as predicted, and it
is straightforward to verify that the ordered basis {(1/3,−2/3, 2/3)T , (2/3,−1/3,−2/3)T , (2/3, 2/3, 1/3)T}

7
Obviously there is some chicanery going on in the choice of these vectors; I wanted to be able to give pretty numbers to avoid

turning the reader off (to a greater degree than was absolutely necessary, anyway). The vector (1/9)a in this example is one element

of a well-known orthonormal basis that consists of vectors all of whose coördinates are rational; I am making sure that I get the other

two elements of that basis (heh heh).
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is orthonormal and has the correct ×-multiplication table. The interested reader might find it amusing to

compute etA explicitly by writing out (2.8) above with this Q =


1/3 2/3 2/3

−2/3 −1/3 2/3

2/3 −2/3 1/3

 and with ω = 9.

Differentiation at time t = 0 should then give the same result as crossing with a.

3. Skew-symmetry in higher dimensions.

Much of what we did above—as long as we don’t need the cross product, which is not available8 in
higher dimensions, carries over to the case of n × n skew-symmetric matrices for n > 3, at least in the
case in which A has n distinct eigenvalues. If n is even these would necessarily come in distinct conjugate
pure-imaginary pairs except for zero—and for even n we have thus ruled out the possibility that zero is an
eigenvalue, since the null space would have to have dimension at most 1 but its dimension would have to
be even. If n is odd then zero must be an eigenvalue, and it will be the only real eigenvalue. If iω 6= 0 is
a pure-imaginary eigenvalue of skew-symmetric A and w is a complex eigenvector belonging to it, then the
argument that established (2.3), (2.4) and (2.5) above is valid—of course we cannot say ω = ‖a‖, since
there is no a in this context—but the plane spanned by the real and imaginary parts of w (which in the
context of §2 were v1 and v2) is mapped onto itself by A, those two vectors are orthogonal and have the
same length (which we can adjust to be 1), and the matrix of A acting on that plane will be the familiar[

0 −ω

ω 0

]
with respect to that basis. If iω and iϕ are distinct eigenvalues (with ϕ 6= −ω, of course) then

their planes are orthogonal to one another, because if v1 and v2 are the vectors constructed using ω and u1

and u2 the ones constructed using ϕ, then since A2v1 = −ω2v1 and A2u1 = −ϕ2u1, the two vectors v1 and
u1 are eigenvectors of the symmetric matrix −A2 that belong to different eigenvalues, and it is well known
and easy to prove9 that they must be orthogonal to one another. But the choice of the complex eigenvectors
belonging to iω and iϕ was arbitrary, and the real part of w is the imaginary part of iw, so v2 and u1

are just as orthogonal as v1 and u1 were. One can thus write Rn as an “orthogonal direct sum” of planes
(2-dimensional subspaces), each of which is spanned by two orthogonal vectors of length 1 with respect to

which A acting on that subspace has a matrix

[
0 −ω

ω 0

]
. This thus gives us an orthonormal basis of Rn

with respect to which A has a matrix of a form

[
0 −ω1

ω1 0

]
0 · · · 0

0

[
0 −ω2

ω2 0

]
· · · 0

...
...

. . .
...

0 0 0 [0]


. (3.1)

and etA will similarly have a matrix in which the 2× 2 blocks down the main diagonal have the form[
cos ωjt − sin ωjt

sin ωjt cos ωjt

]
Y(0) . (3.2)

where the ωj range through the nonzero eigenvalues ±iωj of A and the “axis” represented by the one-
dimensional block at the bottom of the matrix in (3.1) will be present if and only if n is odd (recall that

8
There are infinitely many cross products available in R7, but they lack many of the properties of the familiar cross prod-

uct in 3 dimensions. Only the 3- and 7-dimensional spaces possess cross products at all. See, for example, the obscure paper

The scarcity of cross products on Euclidean spaces, Am. Math. Monthly 74 (1967), pp. 188–194.
9

See Hoffman & Kunze, ibid.
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we are assuming only one complex eigen-direction for each complex eigenvalue and so the existence of a
unique eigen-direction belonging to 0 makes the dimension odd). Just as in the 2- and 3-dimensional cases
things “rotate in planes,” but because of the high dimension they can rotate at different angular velocities
in different planes.

The most satisfactory treatment of these matters—and a real understanding of them—requires a full-
scale use of complex-inner-product methods, but lets us drop the hypothesis that the eigenvalues are distinct.
One uses the complex dot product or complex inner product on Cn defined by

If z =


z1

...

zn

 , w =


w1

...

wn

 , then z •w = w∗z = z∗w =
n∑
j=1

zjwj

with length-squared ‖z‖2 = z • z =
n∑
j=1

|zj|2 . (3.3)

Here the overbar (for example, w) denotes the complex conjugate, and the adjoint of a matrix C = (cij),
written C∗, is its conjugate transpose, so C∗ = (cji). The effect of this definition is to replace the
(evident) linearity of the operation of taking transposes by conjugate linearity:

(αA + βB)∗ = αA∗ + βB∗ . (3.4)

We put up with such inconveniences because the (crucial!) effect of inserting the conjugations is to make
the complex dot product of z = (z1, . . . , zn)T ∈ Cn with itself be the same number that would result if we
were to write zj = xj + iyj for each complex coördinate (so z = x + iy where each vector x, y ∈ Rn) and
then take the sum of the squares of their components, added together:

‖z‖2 =
n∑
j=1

zjzj =
n∑
j=1

|zj|2 =
n∑
j=1

(x2
j + y2

j ) (3.5c)

=
n∑
j=1

x2
j +

n∑
j=1

y2
j = ‖x‖2 + ‖y‖2 . (3.5r)

Thus, as far as distance relations are concerned, Cn with this notion of length is the same as R2n. Orthogo-
nality of two vectors in Cn continues to be defined by the property of having a dot product—now the complex
dot product—equal to zero. The symmetry of the real dot product is replaced by conjugate-symmetry:

z •w = w • z (3.6)

and since 0 = 0 this makes the relation “z is orthogonal to w” continue to be a symmetric one. The relations
(0.3) and (0.4) above are replaced by

(Az) •w = z • (A∗w) (3.7)

and
(Az) •w = w∗Az = (A∗w)∗z = z • (A∗w) . (3.8)

The notion of a symmetric matrix is replaced by that of a conjugate-symmetric matrix, usually called a
self-adjoint or sometimes Hermitian matrix; these are the matrices (cij) for which cij = cji, or equivalently
C = C∗. These complex matrices have the same property with respect to the complex dot product that
symmetric real matrices have with respect to the real dot product: all their eigenvalues of a self-adjoint matrix
are real (though the vectors that belong to them may still be complex), and they possess orthonormal bases
of eigenvectors. For proofs of these assertions, see Hoffman & Kunze, ibid .
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Conjugate linearity is nicer than it looks for matrices A that are skew-symmetric and have real entries,
because the relation

(−iA)∗ = −iA∗ = i (−A) = −iA (3.9)

turns the difficult skew-symmetric real matrix A into an easy-to-handle complex self-adjoint matrix −iA
that can be diagonalized by a (complex-)orthonormal basis of (complex) eigenvectors. Multiplying −iA by
i turns it back into A but simply multiplies its (complex) diagonalized form by i’s on the diagonal; so A is
also diagonalized, by the same (still complex) basis. The non-real—and therefore nonzero—eigenvalues of A
come in pure-imaginary conjugate pairs, because the characteristic polynomial of A is a real polynomial; and
if −iAz = ωz—equivalently, Az = iωz—then conjugating everything in sight gives iAz = ωz—equivalently,
Az = −iωz. (Note that this implies that the [real] eigenvalues of −iA must have come in positive-negative
pairs, except for zero.)

By reëxamining the diagonalization process for the self-adjoint matrix −iA, we can see how to imitate
the construction we made in the 3-dimensional case. Let ω > 0 be a positive (real) eigenvalue of −iA, and
find a (complex-)orthogonal10 basis of the eigenspace {z ∈ Cn : −iAz = ωz}; if its (complex) dimension is
`, we could index the elements of the basis as {z1, . . . , z`}. Then for each 1 ≤ k ≤ `, we have Azk = iωzk
and therefore—by conjugating everything in sight—Azk = −iωzk, or −iAzk = −ωzk. Thus each zk is
an eigenvector (of the self-adjoint matrix −iA) that belongs to −ω 6= ω, and so each zk is orthogonal to
all the zj ’s, 1 ≤ j ≤ `. In particular, zk ⊥ zk. If we write that fact out in (real) coördinates, writing
zk = (x1− iy1, . . . , xn− iyn)T , we find that because the second factor in a complex dot product is conjugated
inside the definition of the dot product, the relation

0 = zk • zk =
n∑
j=1

z2
j =

n∑
j=1

(xj − iyj)2 =
n∑
j=1

(x2 − y2)− i
n∑
j=1

(2xjyj) (3.10c)

holds. Relation (3.10c) is a complex equation equivalent to the two real equations

n∑
j=1

x2
j =

n∑
j=1

y2 and
n∑
j=1

xjyj = 0 . (3.10r)

These in turn are actually real-dot-product relations: if we set xk = (x1, . . . , xn)T = Re [zk] and yk =
(y1, . . . , yn)T = −Im [zk], then (3.10r) can be written in the equivalent real-vector form

‖xk‖ = ‖yk‖ and xk • yk = 0 . (3.10v)

(Compare (2.4) and (2.5) above in the 3-dimensional case!) If we look at the subspaces of Cn and Rn
spanned by {xk, yk}, then, we see that the discussion above has established the following things:

(1) The 2-complex-dimensional subspace of Cn spanned by {xk, yk} is the same as the 2-complex-
dimensional subspace of Cn spanned by {zk, zk}; moreover, {xk, yk} is a complex-orthogonal basis of it
because it is a real-orthogonal set. The relations

−iA[xk − iyk] = ωxk − iωyk
Axk − iAyk = A[xk − iyk] = ωyk + iωxk

Axk = ωyk Ayk = −ωxk (3.11)

are equivalent to the fact that the matrix of A acting on this subspace relative to this basis is

[
0 −ω

ω 0

]
.

(2) The 2-real-dimensional subspace of Rn spanned by {xk, yk} has {xk, yk} as a real-orthogonal basis.
If zk was normalized to make either (and therefore both) of xk and/or yk have length 1, then {xk, yk} is a

10
But not necessarily orthonormal; we shall want to pick this basis in such a way that the real and imaginary parts of its elements

are real vectors of norm 1, as we shall see in what follows.
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real orthonormal basis of this subspace. The matrix of A acting on this subspace, relative to this basis, is
the same as the matrix of A seen in (1) above.

(3) For distinct indices 1 ≤ j 6= k ≤ `, the 2-complex-dimensional subspace of Cn spanned by {xj , yj} is
complex-orthogonal to the 2-complex-dimensional subspace of Cn spanned by {xk, yk}, because the former
is spanned by {zj , zj} and the latter by {zk, zk}: zj ⊥ zk because their indices are different and zj ⊥ zk
follows from that relation by conjugating everything in sight; zj ⊥ zk because the two vectors belong to
different eigenvalues, and the same is true in the case of zj ⊥ zk.

(4) For distinct indices 1 ≤ j 6= k ≤ `, the 2-real-dimensional subspace of Rn spanned by {xj , yj} is
real-orthogonal to the 2-real-dimensional subspace of Rn spanned by {xk, yk}, because—as we just saw in
(3)—their bases belong to complex-orthogonal subspaces of Cn, and the real and complex inner products
give the same value when applied to real vectors.

(5) If the construction just given is applied to an eigenvalue of −iA different from the ω used above,
then all the resulting vectors are (complex- or real-)orthogonal to those obtained from ω in that construction.
Their complex-orthogonality comes from the fact that they all belong to eigenvalues different from ω and
−ω, and the real-orthogonality follows again from the fact that the real and complex inner products give
the same value when applied to real vectors.

From what we have done so far it is clear that we can find orthonormal pairs of real vectors {xι, yι},
with the pairs mutually orthogonal, such that the matrix of A on the real (or complex) subspace spanned

by {xι, yι} is

[
0 −ω

ω 0

]
. We can pick one such pair for each eigenvalue ω > 0 of −iA, counting the

eigenvalues according to their multiplicity as roots of the characteristic polynomial of −iA, and the complex
subspace spanned by each such pair will be the orthogonal sum of a one-complex-dimensional subspace of
Cn generated by and eigenvector belonging to ω and a one-complex-dimensional subspace of Cn generated
by an eigenvector belonging to −ω. If −iA—or equivalently A—has a nontrivial null space (as it must have
if n is odd), we can pick an orthogonal basis of that also, and we can pick the complex basis to consist of
real vectors of length 1 since if A[x + iy] = 0 then the fact that A has real entries implies that Ax = 0
and Ay = 0 separately. Thus we have shown that there is a real orthonormal basis of Rn (which is also an
orthogonal basis of Cn) with respect to which A has a matrix of the form

[
0 −ω1

ω1 0

]
0 · · · 0

0

[
0 −ω2

ω2 0

]
· · · 0

...
...

. . .
...

0 0 0


0 · · · 0
...

. . .
...

0 · · · 0




. (3.12)

That true phoenix, the interested reader, could try working out the 3 × 3 case using the 3 × 3 matrix
we analyzed at the end of §2 above as an example of this general development. Multiply that matrix by i,
find eigenvectors of iA belonging to ±9, and watch what happens using the complex dot product.
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