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Exact Solution of the Predator-Prey System

Introduction . In Section 2.1 of the textbook, the system

dR

dt
= 2R − 1.2RF

dF

dt
= −F + 0.9RF

(P )

is studied from several different viewpoints. The aim is to collect evidence that the solutions follow closed
curves in theRF -plane (thephase planeof the system). Such a strong conclusions should have a more
convincing proof. These notes aim to provide such a proof. Along the way, we will sketch a proof that the
curves in the phase plane representing the solution of an autonomous system do not cross except possibly
at equilibrium points of the system. A more powerful approach is given in Section 2.4, but the case of
autonomous systems in two variables can be done using only results that you have already seen.

Slope fields, vector fields and direction fields. When we were studying equations of the formdy/dt =
f (t, y) in a(t, y)-plane, we drew lines of slopef (t, y) at an array of points(t, y). These lines were usually
scaled to have the same length, just because it gave a prettier picture. In the text, short line segments were
used to illustrate such aslope field, butMapleadded an arrow at the end with the larger value oft .

In the case of an autonomous system, the right sides of the equations give the components of a vector that
shows the derivative with respect tot of the dependent variables of the system along a solution curve. This is
a velocity vector of a particle whose motion is governed by the system. A collection of these velocity vectors
on an array of points in the phase plane gives avelocity field. Just as for single autonomous equations, we
will see that each solution determines a family of solutions that differ only by a translation oft , so a picture
in a phase space coordinatized only by the dependent variables of the system gives useful information about
the solutions of the equation. If these velocity vectors are drawn, they give some indication of the speed
with which the curves in the phase plane are being drawn.

Just as in the study of curves inMultivariable Calculus, it is common to suppress the details of a
parameterization of a curve and represent the direction of a curve at a point by itsunit tangent vectorwhich
is the velocity vector scaled to have length 1. Theequilibrium points are special since the functions which
have those points as constant values satisfy the equation. For all other points, the velocity vector is nonzero,
and hence has a well-defined direction. Using these unit vectors gives adirection field in the phase plane.
The direction field shows the nature of the solution curves of the equation, except that it has lost information
about how fast we are drawing the curve at different points.

Rabbits and foxes. We now concentrate on the system(P ). SincedR/dt = 1.2R(5/3− F), R will be an
increasing function oft as long as we remain in the region whereR > 0 andF < 5/3. The other regions
bounded by the lines wheredR/dt = 0 will behave similarly. The fact thatR is an increasing function of
t guarantees that there is an inverse function that allows us to locally measure time by counting the number
of rabbits. There will be a complicated relation betweenR and t , and this silly clock will fail whenF
reaches 5/3, but it is still useful for theoretical purposes. In particular, we can eliminatet and considerF as
a function ofR as long asF < 5/3.

This gives the equation

dF

dR
= −F + 0.9RF

2R − 1.2RF
= F

2− 1.2F
· −1+ 0.9R

R
. (Q)
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Equation(Q) is separable, so ∫
2− 1.2F

F
dF =

∫ −1+ 0.9R

R
dR∫ (

2

F
− 1.2

)
dF =

∫ (−1

R
+ 0.9

)
dR

2 lnF − 1.2F = − lnR + 0.9R + C.

The function ofF on the left is increasing forF < 5/3 and decreasing forF > 5/3 (obviously! consider
how it was found), while the function on the right has a minimum atR = 10/9. This means that only values
of C < ln 250− 4 ln 3− 3 ≈ −1.873 will arise. For each suchC there will an interval of values ofF less
than 5/3 for which we can solve to obtain two values forR. For the limiting value,F = 5/3 the values of
R give the endpoints of the interval for which a value ofF can be found.

Now, we move to the interval whereF > 5/3. The same conclusions are found in this interval, and
the same values ofR corresponding toF = 5/3 are found. In other words, choosing one value ofR for
F = 5/3 determines the same value for the other value ofR with F = 5/3, whether we are looking at the
upper or lower region. This shows that the solutions follow closed curves in the(R, F )-plane.

In those examples in which the solutions show a spiral behavior, the only difference will be that the
formulas for matching endpoints will differ on the two sides of curve where thedF/dR fails to exist.

Taking the fox’s viewpoint. One could also useF to measure time. To do this, this lines wheredF/dt = 0
need to be excluded. These are different lines from those used above, but the analysis is the same. It is useful
to note that, except for the equilibrium points where both derivatives are zero, all points in the plane lie in
the interior of one of regions where we can interpret the direction field of the equation as a slope field. This
means that the closed orbits for this system really are the smooth curves that the numerical methods show.
Unfortunately, the accumulated error in numerical methods would suggest that the orbits might be spirals
instead of closed orbits, so some analysis is required to give the true behavior of the equation. The technique
of linearizationwill allow us to identify examples where there must be spiraling behavior, but closed orbits
turn out to be special.
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