
THINGS TO REVIEW FOR EXAM 2

The material to be covered is most of the textbook’s Chapter 3: §§ 3.1–3.6, and §1 of
Chapter 4. There is less material here than there seems to be, so try not to panic.

Most of §1 is a review of linear algebra and matrix manipulation that will already
be familiar from your first-semester linear-algebra course, and of that only the 2× 2 case
occurs. The only DE material that is covered is (a) the process of turning a higher-order
linear scalar DE into a linear system of first-order DEs: this is first introduced on p. 212,
but you have seen it repeatedly since then; and (b) the principle of linearity, or “doing
things term-by-term,” which is beaten to death on pp. 221-227. You may want briefly to
notice how familiar the considerations of problems 16, 17 and 19 on pp. 230–231 seem to
you now.

Some substance begins to appear in §2, in which “straight-line solutions” are intro-
duced. Of course you now know that these are solutions of Y′ = AY—here A is a constant
matrix and Y(t) is a vector-valued function—that have the form Y(t) = eλtV where λ is
an eigenvalue of A and V is an eigenvector belonging to λ. Much of §3.2 is devoted to
a review of those fundamental algebraic concepts: if you don’t have them under control

already, this is the place to work on them. Remember that if a 2 × 2 matrix

(
a b

c d

)
is

known to have a nontrivial null space—for example, if it is λI−A where λ is known to be

an eigenvalue of A—then ±
(

b

−a

)
will automatically belong to the null space. (If this

happens to be the zero vector, use the bottom row instead of the top row!) In the case
in which A has two distinct real eigenvalues, one can already compute general solutions
for Y′ = AY at this point: pick a couple of odd-numbered problems from among 1–14
on pp. 247–249 and do them for practice. Make sure that when you can find the gen-
eral solution of Y′ = AY you can also find the particular solution satisfying Y(0) = Y0

where Y0 is given concretely, “with numbers;” this process usually involves solving a 2×2
system of linear equations. If the system has been produced from a higher-order scalar
equation, do not disparage the “guess-and-test” method to find the general solution of the
higher-order equation directly: plug est into one of the equations in problems 21–25, p. 250
(these are really Ch. 2 problems), and determine s for which the exponential is a solution.
(The equation you have to solve for s will be the same as the characteristic equation you
would have if you converted the higher-order equation into a first-order system.) This is
discussed further in Ch. 4.

§3.3 discusses in great detail the case in which A has two distinct real eigenvalues.
The crucial source/sink/saddle classification is introduced here (pp. 251–258); most people
had that sorted out on Quiz 4, and it is survival information on this examination. These
equilibria are stable when they are sinks and unstable in other cases (p. 259). While it is
a bit much to expect you to give good free-hand sketches of direction fields and trajectories
(aka solution curves) for these equations, you can reasonably be expected to recognize them
from Maple-produced sketches. You should also be able to attack such problems as 17 and
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19 on p. 262 by finding the eigenvalues/vectors and general solutions, and seeing what
effect the choice of initial points has on the long-term behavior of unstable systems.

§3.4 handles the case of two complex eigenvalues, necessarily each other’s conjugates
when A is real. In class we spent quite some time looking at this case from the standpoint
of real coördinates, and you have notes for this: that approach generalizes to higher dimen-
sions. For computational purposes with 2×2 systems, however, the method of finding real
and imaginary parts of complex eigenvectors—pp. 267–269—should be preferred. Note
that if λ = α + βi is a complex eigenvalue of A, then most of the qualitative informa-
tion you might need about the solutions can be obtained from the matrix itself. The real
part α of the complex eigenvalues is tr(A)/2: the origin is a (spiral) sink if the trace is
negative and a (spiral) source if it is positive. If tr(A) = 0, then the origin is a center
(and the trajectories are closed curves, namely ellipses or circles). The angular velocity of
the solutions is given by β, so their period is 2π/β. The direction of travel is most easily
determined by remembering that the velocity vector of a point moving along a trajectory
is AY when the point is at position Y. Since

if A =

(
a b

c d

)
, then A

(
1

0

)
=

(
a

c

)
and A

(
0

1

)
=

(
b

d

)
,

the columns of A give the velocity vectors at the tips of the standard basis vectors; these
“little arrows” make it easy to perceive the direction of rotation. If you can handle the
odd-numbered problems 1–15 and 23 of this section (with perhaps just one rather impres-
sionistic sketch of a trajectory!) you will have no problems with the exam questions on
this material.

We soft-pedaled the material of §3.5 in class because the cases it considers are to some
extent idealizations. Repeated negative eigenvalues still give sinks—and stability; repeated
positive ones still give sources. A system with one zero eigenvalue is intrinsically unstable:
a slight change in A can push that eigenvalue positive or negative without changing the sign
of the other eigenvalue, so these can turn from sinks to saddles or from sources to saddles
with a small change of data in applications. The most important case (and this is easier to
see in §3.6) occurs for the simple-harmonic-oscillator equation y′′ + py′ + qy = 0: q > 0 is
a “spring constant” and somewhat intrinsic to a mechanical system, but if the “damping
coefficient” or “friction coefficient” p can be controlled, the choice p = 2

√
q gives what’s

called critical damping: if the damping coefficient is exactly 2
√
q the system will come to

approximate rest without oscillating, but even if p is a little smaller the oscillations will be
very slow and will damp out very quickly (this material is discussed fully in §3.6, pp. 307–
308). I do not plan to ask detailed questions about the §3.5 material: the important cases
are handled in §3.6.

The §3.6 material occurs in all sorts of applications, mostly because Newton’s F = ma
is a second-order differential equation; so you should understand this material thoroughly.
Fortunately, you can view it qualitatively from the two-dimensional-system standpoint,
and thus you know what to expect. You should find general solutions for these equations
by the “lucky-guess” method, because you understand where it comes from; the only

2 Math 252:05 Spring 1999 2nd exam rev



peculiarity1 is that in the case of a repeated root λ of s2 + ps+ q = 0 the general solution
is k1e

λt + k2te
λt. You should be able to do the odd-numbered problems on p. 309 without

difficulty, but don’t devote all your study time to doing all of them! it’s only an 80-minute
exam.

The material of §§3.7–3.8 is not covered in this examination.

It is very nearly the case that if you understand the §3.6 material you will automat-
ically understand the material of §§4.1–4.2. The following two paragraphs summarize all
you will need to understand of the latter.

The crucial points are: linearity of the “left-hand side operator” y 7→ y′′ + py′ + qy
implies that if k1e

λ1t + k2e
λ2t (or its circular-function analogues when the characteristic

roots are complex) is the general solution of y′′+py′+ qy = 0 and ypart is some solution of
y′′+py′+qy = g(t), then k1e

λ1t+k2e
λ2t+ypart is the general solution of y′′+py′+qy = g(t).

Thus the problem of finding the general solution of an inhomogeneous equation is reduced
to the problem of finding ypart, combined with a problem that we have already completely
solved. Moreover, linearity implies that if the r. h. side g(t) is a sum of several terms, then
ypart can be found by working term-by-term.

For most “driving functions” g(t) = est, a suitable choice of C will produce a particular
solution Cest; usually C = 1/(s2 +ps+q). The exception occurs when s is an eigenvalue of
the homogeneous equation (and thus a root of the denominator in that choice of C); in that
case, try test: see Second Guessing on pp. 354 ff. If the driving function is a polynomial
of degree k, try a polynomial of the same degree with undetermined coefficients—unless
zero is a root of the characteristic equation, in which case try a polynomial of degree k+ 1
(or k+ ` if zero is a root of multiplicity `). If the driving function is a polynomial of degree
k times est , try a polynomial of the same degree with undetermined coefficients times est—
unless s is a root of the characteristic equation, in which case try a polynomial of degree
k + 1 (or k + ` if s is a root of multiplicity `). The coefficients are determined by stuffing
that polynomial into the l. h. side of the equation, simplifying (grouping terms of the same
degree in t), and comparing coefficients on the l. h. and r. h. sides (a “missing” term is
really present, but its coefficient is zero). If cosωt or sinωt occurs in the driving function,
replace it with eiωt and proceed as with est; then take the real part of the solution if cosωt
occurred in the driving function, but take the imaginary part if the driver involved sinωt.
You will not be expected to regurgitate the material contained in the notes on variation
of parameters, nor to produce anything resembling accurate phase-plane graphs in this
situation (as pp. 369–371 unintentionally demonstrate, even a machine can’t do that very
well). If you can do the odd-numbered problems 1–15 of §4.2 (pp. 370–371), your mastery
of this material is adequate at this stage.

1
Of course, because you know how to exponentiate a matrix with a repeated eigenvalue but only one eigen-

vector, you know where these solutions come from.
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