
MATH 252:01 — HOUR EXAM 2
Suggested Solutions

1. Let A =

(−6 5

−4 3

)
in the following questions (a), (b), and (c).

(a) Find the eigenvalues of A and find an eigenvector belonging to each eigenvalue.

We have (λI−A) =

(
λ+ 6 −5

4 λ− 3

)
, so det(λI−A) = (λ+6)(λ−3)+20 = λ2+3λ+2 = (λ+1)(λ+2) =

0, with roots λ = −1 and λ = −2. Putting λ = −2 gives λI − A =

(
4 −5

4 −5

)
with null solutions spanned

by V1 =

(
5

4

)
. Putting λ = −1 gives λI −A =

(
5 −5

4 −4

)
with null solutions spanned by V2 =

(
1

1

)
.

(b) Find the general solution of the system
dY(t)
dt

= AY(t), using your results of (a).

The general solution is given by taking linear combinations of the “straight-line solutions” associated

with the eigenvalue/eigenvector pairs, i.e., Y(t) = k1e
−2t

(
5

4

)
+ k2e

−t

(
1

1

)
.

(c) Using your results of (b), find the solution of Y′ = AY for which Y(0) =

(
1

0

)
.

Since (b) gives Y(0) =

(
k1 · 5 + k2

4 · k1 + k2

)
=

(
1

0

)
, we have to solve the linear system 5k1 + k2 = 1,

4k1 + k2 = 0. The solution is k1 = 1, k2 = −4 so the solution Y(t) = 1 · e−2t

(
5

4

)
− 4 · e−t

(
1

1

)
=(

5e−2t − 4e−t

4e−2t − 4e−t

)
is the solution satisfying the given initial conditions.

2. Let A =

(−1 −8

2 −1

)
in the following questions (a), (b), and (c).

(a) Find the eigenvalues of A (which will be complex).

Here det(λI−A) = det

(
λ+ 1 8

−2 λ+ 1

)
= (λ+1)2+16 = 0, so λ = −1±4i. (Expanding the polynomial

into λ2 + 2λ+ 17 = 0 and using the quadratic formula would give the same result.)

(b) Find the (complex) eigenvector belonging to one (your choice) of the eigenvalues you found in (a).

With λ = −1 ± 4i one has λI − A =

(±4i 8

−2 ±4i

)
; the null solutions of this matrix are spanned by

V± =

(±2i

1

)
. Note that any complex scalar multiple of one of these eigenvectors will also be an eigenvector

belonging to the same eigenvalue, so correct results for this and for (c) below may look considerably different
from the solutions given here.

1 Math 252:01 Spring 2000 Hour Exam 2 suggested solutions



(c) Give the elements of the basis of R2 that is involved in solving the differential equation Y′ = AY
using the eigenvector you found in (a).

The real and imaginary parts of V± are

(
0

1

)
and

(±2

0

)
respectively. Again, a different choice of the

complex eigenvector can lead to apparently different results here that are no less correct.

3. The eigenvalues of A =

(
4 −5

5 −4

)
are λ = ±3i, and a complex eigenvector belonging to 3i is

(
4 + 3i

5

)
.

Use that information to answer the following questions (a), (b), and (c).

(a) What is the complex solution of Y′ = AY associated with the complex eigenvalue and eigenvector
given above?

e3it

(
4 + 3i

5

)
= (cos 3t+ i sin 3t)

(
4 + 3i

5

)
=

(
4 cos 3t− 3 sin 3t

5 cos 3t

)
+ i

(
4 sin 3t+ 3 cos 3t

5 sin 3t

)
.

(b) Using the complex solution you gave in (a) above, give two linearly independent R2-valued solu-
tions of Y′ = AY.

Here one wants the real and imaginary parts of the complex solution found above,

Yreal(t) =

(
4 cos 3t− 3 sin 3t

5 cos 3t

)
and Yimag(t) =

(
4 sin 3t+ 3 cos 3t

5 sin 3t

)
.

(c) State whether the origin is a source, a sink or a center for the system Y′ = AY.

Since the real part of the complex eigenvalue is zero, the origin is a center for the system; the trajectories
are closed curves (ellipses).

4. (a) The homogeneous second-order linear differential equation

(∗) d2y

dt2
+ 3

dy

dt
+ 2y = 0

governs the motion of an overdamped spring. Find the general solution of (∗).
Trying y(t) = est leads to the equation s2 + 3s + 2 = (s + 1)(s + 2) = 0 as a necessary and sufficient

condition for this function to satisfy (∗), so any function of the form y(t) = k1e
−t + k2e

−2t satisfies the
equation, and since the two terms are linearly independent, this is the general solution.

(b) Let C > 0 be a positive real number. Find the particular solution of (∗) that satisfies y(0) = 1,
y′(0) = −C. Your solution will contain the number “C” in one or more places.

For the general solution found for (a) above, we have y(0) = k1 + k2 and y′(0) = −k1 − 2k2, so the
coefficients have to satisfy k1 + k2 = 1 and −k1 − 2k2 = −C. Solving gives k2 = C − 1 and k2 = 2 − C, so
the solution of (∗) satisfying the given initial conditions is y(t) = (2 − C)e−t + (C − 1)e−2t.

(c) Explain, by giving an equation satisfied by t1, why your solution of (b) shows that if y′(0) =
−C is sufficiently large and negative, there will exist a time t1 > 0 for which y(t1) = 0. (This is plausible
from the mechanical standpoint: if the mass is displaced positively from equilibrium and thrown back, hard
enough, toward the equilibrium position, it will pass through the equilibrium position once [in fact, exactly
once].)

Setting the function y(t) obtained in (b) equal to zero gives the equation y(t) = (2−C)e−t+(C−1)e−2t =
0 as the condition that our “t1” must satisfy. This equation is equivalent to (2 − C)et + (C − 1) = 0 or

et =
C − 1
C − 2

. This has a solution with t > 0 if and only if the r. h. s. is > 1, and the inequality
C − 1
C − 2

> 1

holds for C > 0 if and only if C > 2. So an initial velocity > 2 directed toward the equilibrium is needed
to make the moving mass cross the equilibrium position. (It can do that only once, since the function
(2− C)et + (C − 1) is a decreasing function of t; the unique solution is our t1.)
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5. Find a particular solution of the (inhomogeneous) second-order linear DE

(∗∗) d2y

dt2
− dy

dt
− 2y = −10 cos t .

You may use either a complex-exponential “good guess” method or a method of undetermined coefficients
(substitute y = A cosωt+B sinωt for a suitably chosen ω, compare coefficients on the r. h. and l. h. sides of
(∗∗), then solve the resulting equations for the constants A and B).

In the “good guess” method one replaces the driving function −10 cos t by the complex exponential
−10eit—whose real part is −10 cos t—and tries to determine a constant C for which y(t) = Ceit solves
d2y

dt2
− dy

dt
− 2y = −10eit. The result of the substitution is (−1 − i − 2)eit = Ceit, which is equivalent to

C =
−10
−3− i = 3 − i. Then y(t) = (3 − i)eit = (3 − i)(cos t + i sin t) = (3 cos t + sin t) + i(3 sin t − cos t), so

the real part ypart(t) = 3 cos t+ sin t of this function is a particular solution of the original DE (∗∗).(1)

With the method of undetermined coefficients, one seeks a solution of the form y(t) = A cos t+ B sin t
(the choice ω = 1 is due to the fact that the original driving function was cosωt with ω = 1). Successive
differentiation, and multiplication by the coefficients of the equation, yields

−2 · y = A cos t+B sin t
−1 · y′ = B cos t−A sin t
1 · y′′ = −A cos t+−B sin t

y′′ − y′ − 2y = (−3A−B) cos t+ (A− 3B) sin t = −10 cos t

which upon comparison of the coefficients of cos t and sin t on both sides of the last equal sign gives the
equations −3A−B = −10 and A− 3B = 0. Solving these equations simultaneously gives B = 1 and A = 3,
so y(t) = 3 cos t+ sin t, the same particular solution as that obtained by the “good guess” method.(2)

6. (a) Find the general solution of the differential equation

d2y

dt2
+ 2

dy

dt
+ y = 0 .

Trying y(t) = est leads to the equation s2 + 2s+ 1 = 0, as in the preceding problem. Since s2 + 2s+ 1 =
(s+ 1)2 = 0 has s = −1 as a root of multiplicity 2, there is only one solution of the form e−t, but te−t is a
second solution linearly independent of e−t. The general solution has the form y(t) = k1e

−t + k2te
−t.(3)

(b) Solve the initial-value problem

d2y

dt2
+ 2

dy

dt
+ y = 2 cos 2t

y(0) = 0, y′(0) = 0 .

The first step is to find a particular solution of this DE. Again the “good guess” method using complex

exponentials is most efficient, so we try for a solution of the equation
d2y

dt2
+ 2

dy

dt
+ y = 2e2it, of which we

shall then take the real part. If the solution is to have the form Ce2it, then substituting this into the equation
and solving for C gives

C =
2

(2i)2 + 2 · 2i+ 1
=

2
−3 + 4i

=
−6− 8i

25

(1)
For a sample application of this technique, see the BD&H example on p. 367 (before the page turn—they’re only looking for a

particular solution at this point).

(2)
For an example of this technique (though it is not carried out in detail) see BD&H’s problem 15, p. 371.

(3)
For a discussion of this “critically damped oscillator” situation showing this second independent solution, see BD&H, p. 307.
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and so
−6− 8i

25
· (cos 2t+ i sin 2t) satisfies the equation y′′ + 2y′ + y = 2e2it. It follows that the real part of

this function, which is
−6 cos 2t+ 8 sin 2t

25
, is a particular solution of the original differential equation.

In view of the results of (a), the general solution(4) of the (inhomogeneous) equation y′′+2y′+y = 2 cos 2t

is y(t) = k1e
−t + k2te

−t +
−6 cos 2t+ 8 sin 2t

25
. We now have to determine the coefficients k1 and k2 to make

y(0) = 0 = y′(0). Evaluation, and differentiation followed by evaluation, give the initial position and
derivative of this function as

y(0) = k1 +
−6
25

y′(0) = −k1 + k2 +
16
25

and setting these equal to zero and solving gives k1 =
6
25

, k2 =
−10
25

. The final result is thus

y(t) =
6
25
e−t − 10

25
te−t +

−6 cos 2t+ 8 sin 2t
25

.

7. Below are four first-order linear homogeneous 2 × 2 systems of ordinary differential equations. Label
each equation with the answers to the following questions about the equilibrium at 0. You need
not give details, but no partial credit will be given.

(a) Are the eigenvalues of the matrix of the system real or complex-and-not-real?

(b) If the eigenvalues are real, is 0 a source, a sink or a saddle?

(c) If the eigenvalues are nonreal, is 0 a source, a sink or a center, and do the solutions move in a counter-
clockwise (positive) or clockwise (negative) angular direction?

dY
dt

=

(
1 −5

2 −4

)
Y(t)(i)

The characteristic equation is λ2 + 3λ + 6 = 0, with complex eigenvalues λ =
−3± i

√
15

2
. This is a

spiral sink and the columns of the matrix indicate that the trajectories spiral counterclockwise (positively).

dY
dt

=

(
9 −10

8 −9

)
Y(t)(ii)

The characteristic equation is is λ2 − 1 = 0 with real roots λ = ±1; the origin is a saddle point.

dY
dt

=

(
2 2

1 3

)
Y(t)(iii)

The characteristic equation is λ2 − 5λ + 4 = 0 with roots λ = 1 and λ = 4, so the origin is a (real)
source.

(4)
A similar problem, with this method of finding the general solution of an inhomogeneous second-order equation, is given in detail

on BD&H’s pp. 363–364.
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dY
dt

=

(
9 2

−30 −6

)
Y(t)(iv)

The characteristic equation is λ2− 3λ+ 6 = 0 with roots (by the quadratic formula) λ =
3± i

√
15

2
; it is

a spiral source and the columns of the matrix indicate that the trajectories spiral in the negative (clockwise)
direction.
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