
Math 252 — Spring 2000

Supplement on Euler’s Method

Introduction.

The textbook seems overly enthusiastic about Euler’s method. These notes aim to present a more realistic
treatment of the value of the method and its relation to other numerical methods for solving differential
equations.

First, although Euler’s method can be performed on a simple calculator, it cannot be considered well
suited for hand computation. The repetitive steps require that the whole program be stored by the computing
device to guarantee that they will be performed consistently and correctly. If machine computation is to
be used, other methods are available to deliver high accuracy quickly with only a small increase in the
complexity of the program. Note that our analytic methods aim to findgeneral solutionsthat contain a
parameter, allowing initial value problems to be solved by identifying the value of the parameter that is
consistent with the initial data, but numerical methods need the initial condition to give a characterization
of a unique function which the method attempts to calculate.

The main value of Euler’s method is that it is easy to analyze, and this analysis can be used to prove a
form of theexistence and uniqueness theoremthat would be good enough for the purposes of this course.
The textbook does not take full advantage of this, although it does describe how one estimates the error in
Euler’s method in Section 7.1. However, that discussion appears late in the book and the key ideas may be
lost in the technicalities needed to give a complete proof.

No proofs are given to the theorems stated in the text since the usual proofs use special methods to
get a strong result from a weaker hypothesis. If you require the right side of the differential equation to be
continuously differentiable, then you can get an error estimate that bounds the work required to get within a
given distance of a solution by Euler’s method. This estimate will show that Euler’s approximations converge
to a solution as the step size goes to zero.

Although we refer to the problem we are studying as an “initial value problem”, and usually specify
y(0), our method will find a solution fort < 0 as well as fort > 0.

Examples.

You should useMapleto produce the direction fields of these examples. In order to have the necessary
tools available, begin a new worksheet with the instruction
with(DEtools):

Then, you can get the illustrations of these examples using thedfieldplot function (seeMaple Help
for a full list of options). In particular,
dfieldplot(diff(y(t),t)=(1+t*y(t))/(2+y(t)ˆ2),y(t),t=-2..2,y=-2..2);#A

dfieldplot(diff(y(t),t)=tˆ2+yˆ2,y(t),t=-2..2,y=-2..2);#B

dfieldplot(diff(y(t),t)=2*(t+sqrt(tˆ2-y(t))),y(t),t=-2..2,y=-1..4);# C
Examples A and B were constructed to avoid the patterns of equations that can be solved in closed form,
yet they will be seen to have a unique solution through each point of the plane. The solutions to A can be
extended to be defined for allt , but all solutions of B are unbounded over a bounded interval oft .

Example C is very different. The right side of the equation is only defined fory ≤ t2, but we can give
an exact description of the solution through each such point. First, check thaty = t2 is a solution. Then,
show that the portion of the liney = 2ct − c2 wheret < c is a solution. If you start at some point(t0, y0)

strictly belowy = t2, the solution can be found by solvingy0 = 2ct0 − c2 for c and selecting the solution
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that is greater thant0. There is a unique solution that follows this line until it becomes tangent to the parabola
at (c, c2), to the right of the starting point, and then it follows the parabola. Thus, for each point(a,a2) on
the parabola, the solutions through that point are all the curves that we just described starting from points
(t0, y0) with t0 < a and 2at0− a2 < y0 < a2 (i.e., points to the left of the given point between the parabola
and the tangent line at the given point).

What is a numerical solution?

The true solution of the equation givesy as a function oft . If there is an exact solution, this is achieved
by giving a formula that we know how to evaluate. Such a formula is useful if it can be writtenbriefly. This
allows the behavior of the function to be illustrated by a graph as well as allowing easy computation ofy for
arbitraryt to fairly high accuracy. To get similar performance from a numerical method, an interpolation
formula will be used to give a similar computation of the function anywhere in its domain from a list of its
values at a finite number of points. In Euler’s method, the values oft will be tk = t0 + kh for some small
step sizeh and integersk. We want to allowk to be either positive or negative, but the computation will
typically use only positivek. To get the points for negativek, it is customary to change the sign ofh and
repeat the method of solution. To get the value at other points, linear interpolation between the closesttk
can be used. To fix notation, letyk = y(tk) be the value of the solution of the initial value problem attk, and
let vk be the approximation toyk computed by Euler’s method. Although theyk are not known, we shall see
that we know enough to produce an upper bound on|yk − vk|.

Euler’s method will usevk to find vk+1. The initial condition givesy0 and is is reasonable to take
v0 = y0. Mathematical induction shows that such a process determines allvk for positive integersk.

Using the equation to find the second derivative.

Although our goal is to prove that equations have solutions, we begin by assuming that we have a
solution and seek to learn more about it. Thus, we suppose that we have a solutiony(t) to an equation

dy

dt
= f (t, y) (1)

and look for additional properties of the solution. In particular, we can differentiate both sides of(1) with
respect tot to obtain (via the chain rule for functions of two variables)

d2y

dt2
= ft (t, y)+ fy(t, y) · dy

dt
= ft (t, y)+ fy(t, y) · f (t, y)

where the subscripts onf indicate partial derivatives. Thus, iff (t, y) is differentiable, the solutiony(t)
will have a second derivative. This can be continued to find higher derivatives ofy(t) as long as the partial
derivatives of f exist, but the expressions become messy very quickly. Fortunately, no more thand2y/dt2

is needed for the analysis of Euler’s method.
For examples A and B, these expressions exist everywhere. For example C, existence of this quantity

requiresy < t2: there is a square root oft2 − y in the denominator, so we need to be sure both that the
square root exists and that it is not zero. Interestingly, in this case, the expression ford2y/dt2 simplifies to
zero. This tells us that any solutions must lie along straight lines as long as they remain belowy = t2.

In general, the expression for the second derivative will depend on botht andy, but in any bounded
region where this expression is continuous, we can compute a bound on the second derivative of any function
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y(t) satisfying the equation, while the graph of the solution lies in this region. Specifying bounds ony means
that we announce that we will lose interest in a solution as soon as it gets too far from the initial value. Without
this restriction, we would only be sure of our solution on an interval around the initial value oft that was so
small that the solution could not reach the top or bottom of our graphing window. This is the only reason
for the mysteriousε in the statements in the textbook.

An important consequence of this follows from Taylor’s formula:

y(t) = y(tk)+ y′(tk)(t − tk)+ 1

2
y′′(τ )(t − tk)

2

whereτ is some number betweent andtk. The first two terms on the right give the equation of the tangent
line to the solution curve att = tk. Although the last term contains much that is not known, the assumption
that the solution lies in our given region means thaty′′(τ ) is given by ft (τ, η)+ fy(τ, η) · f (τ, η) at some
point (τ, η) in our bounded region. Any bound on this expression translates into a proof that the tangent is
close to the curve whent − tk is small. Confining attention to a bounded rectangle in the(t, y) plane gives
a uniform bound

∣∣y′′(τ )∣∣ ≤ M (assuming that the partial derivatives off (t, y) are continuous). Thus, for

Euler’s method with a step size ofh, a single step introduces an error that is a bounded multiple ofh2.

Nearby Solutions.

After we have been using Euler’s method for a while, the current point is no longer on the solution
through the starting point. If this is not to cause too much trouble, the tangent lines at the true point(tk, yk)

and the calculated point(tk, vk) should have roughly the same direction. Fortunately, a quantitative version
of this condition can be expressed in terms of things that can be estimated. One needs only the mean value
theorem to show that the difference of the slopes,f (tk, yk)− f (tk, vk) is fy(tk, η) · (yk−vk)with η between
vk andyk. Again, as long as both the true solution and the approximate solution stay in the given region,
we have a quantityL such that

∣∣ fy(t, y)
∣∣ ≤ L. For #C, fy(t, y) is unbounded ify − t2 is small, and the

uniqueness theorem fails for points on this parabola.
The technical part of the proof constructs an inductive argument to show that this component of the

error has a an effect that is bounded independent of the step size. For Euler’s method, this means that for
anya for which the solution betweent = t0 andt = a remains in the given bounded region,y(a) has an
error bounded by a fixed multiple ofh2 for each step of sizeh. The number of steps is proportional to 1/h,
so the total error is proportional toh.

This is good enough to show that the method approximates solutions, but not good for computing
solutions to a reasonable accuracy. To increase the accuracy by a single decimal place requires ten times as
much computation. In addition, the simple act of adding together a million numbers means that a million
round-off errors are accumulated. This requires that higher accuracy must be maintained throughout the
computation to keep these errors from affecting the part of the answer that is expected to be accurate.

Existence and Uniqueness.

The error estimate in Euler’s method shows that, on any closed and bounded regionD where the value of
d2y/dt2 computed from the equation is continuous, the computed approximations converge to any solution
of a given initial value problem. Since a convergent sequence has a unique limit, this means that an initial
value can have at most one solution onD.

To prove the existence of solutions, similar methods are applied to estimate the difference between
the quantities computed by Euler’s method with different step sizes. This shows that Euler’s method will
converge to something. The final step is to show that any such limiting function must satisfy the differential
equation.
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Technicalities of compounding.

In addition to thetk, yk andvk, let

wk+1 = yk + h · f (tk, yk).

That is,wk+1 is the point that would be computed if we made one step of Euler’s method starting from
(tk, yk). The triangle inequality gives

|yk+1− vk+1| ≤ |yk+1− wk+1| + |wk+1− vk+1| .
The comments above show that

|yk+1− wk+1| ≤ Mh2

2
,

and
|wk+1− vk+1| ≤ |yk − vk| · (1+ Lh).

Induction on this gives

|yk − vk| ≤ Mh2

2

k−1∑
j=0

(1+ Lh) j .

The sum is a geometric series, so we have

|yk − vk| ≤ Mh2

2

(1+ Lh)k − 1

(1+ Lh)− 1
.

The fraction at the end of this expression is a difference quotient of the functionxk, so

(1+ Lh)k − 1

(1+ Lh)− 1
= k(1+ θLh)k−1

for someθ between 0 and 1. Since(1+ 1/x)x increases toe asx→+∞,

(1+ θLh)k−1 < (1+ Lh)k < eLhk,

and

|yk − vk| ≤ Mh2k

2
eLhk.

In this expression,hk= tk− t0 , which is the total horizontal displacement. This depends on the point being
computed, but not on the step size. We are assuming a bound of the form|tk − t0| ≤ H , so we find

|yk − vk| ≤ M Hh

2
eL H .

Now, everything in this bound is constant except for one factor ofh.
Instead of comparing the Euler approximation to a true solution, one can compare Euler approximations

of different step sizes. A similar result will hold. If the step size is repeatedly cut in half, this error estimate
will show that the sequence functionsek(t) obtained will have allow a functiony(t) to be defined as

y(t) = lim
k→∞

ek(t),

and this function will satisfy the given initial value problem.
The only part of this analysis that is specific to Euler’s method is the single-step bound ofMh2/2.

One factor ofh gets multiplied byk to give H . Any local error estimate will suffer the same fate. The
Runge-Kutta method, which Maple uses for its numerical solutions, has a single-step bound of the form
Rh5, so its global error bound isRHh4eL H .
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