B Preliminariesfor the " Nullclinesthat are not lines' examplein

section 5.2

[>wth(linalg):
[ > x1:=2*x*(1-x/2)-x*y;

S
XL:=2xH =2 xg-xy
y1:=y%-y2%x2y

-> stapt: =sol ve({x1, y1}, {x, y}):

> yl:=y*(9/ 4-y"2)-x"2*y,

3 -3
stapt::{x=0,y:0},{y:O,x:2},{y:§,x=0},{y=5,x:0},

1 1
{x=2-7 RootOf(7 +2 7°-8 Zlabd = L2)y =5 ROotOf(7 +2 7°-8 7 label = _L2)}

" These should be dll stationary points. However, the fourth point is on the negative part of the
y-axis, while the analysis in the text was confined to the first quadrant. Thefifth pointisalittle

L troublesome, since it isasingle expression that stands for two points.
> vecfld: =vector([x1,yl]);

vecfld := %x%—%x%xy,y%—f%xzy%

L [ Thisintroducesas ngle vector expression for the right side of the equation.

B Building the Jacobian matrix.

> col 1: =map(di ff, vecfld, x);

coll:=[2-2x-Y, —2XxY]
> col 2: =map(di ff,vecfld,y);

9
col2:= %x,z—?;yz —XZE

—-2X-y —X

> J: =augnent (col 1, col 2);

2 L2
al -2 Xy 4 3y —Xx
B Theorigin.
> stapt[1];

I {x=0,y=0}
(> subs(stapt[1],o0p(J));
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C> e genvects(%;

2141101, 5 1,10, 1} 5

" Theei genvalues are both positive and the eigenvectors point along the axes. The originisan
L ordinary source.

B On the positive x-axis.

> stapt|[2];
L {y=0,x=2}
> subs(stapt[2],o0p(Jd));
2 -2
4
0 4

"> ei genvects(%;

7
['21 1’ {[11 0]}]’ %’ 1’ {['8! 1]}%

L [ Two negative eigenvalues. The point isasink.

B On the positive y-axis.

> stapt[3];
3
{y=5x=0}
~> subs(stapt[3],o0p(J));
1
5 0
-9
0 2
"> eigenvects(%;
9
%, 1,{[1, 0]}%%, 1,{[0, 1”%

B [ Red eigenvalues of opposite sign. The point isasaddle.

B On the negative y-axis.

> stapt[4];




-3
{y=7,x=0}
"> subs(stapt[4],op(J));
7
5 0
9
L 0 2
> eigenvects(%;
9
3 LUL DR L0 1)

L . Another saddle point.

B Onthecircle.

> stapt[5];

1 1
{x=2-7 RootOf(7 +2 7°-8 Zlabel = L2),y =2 RootOf(7 +2 7°-8 Z label = L2)}

[ There are two points represented by thisformula. We need to separate them.
> stapt2: =allval ues(stapt[5]);

1 1 1 1
Stapt2:={x:1—z 2,y::|_+z-\/z},{y::|_—:‘r 2’X21+Z‘E}
[ The different roots have conjugate expressions involving the square root of 2.

= Onepoint
T > subs(stapt2[1], op(J)):
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C> e genvect s(9;

% \/E+—1/187+22 2, 1{%14 14\/_—14'\/187+22\/E,1EE
%13 3\/_— “4187+2212, 1{%14 ” 2+1—41/187+22\/E,1§E

Exact expression, but not very useful.
> eval (% ;

L [-.309250208, 1., {[-1.917121916, 1.]}], [-4.001409964, 1., {[.1926836578, 1.]}]
r> eval f(stapt2[1]);
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{x=.6464466095, y = 1.353553390}
L [ This shows that the leftmost of the points on the circleisasink.
|




B Theother point.
[ > subs(stapt2[2],o0p(J));

14 Y
2531228 3o 20 o1

- > ei genvects( % ;

% \/E+—1/187 2242, 1{%14 14\/3—14«/187 22&,1%%
% \/_— V1872242 1{%1—4+1—4 2+1—41/187—22\/E,1%%

i you look closely, you will see that the sign of the square root of 2 has changed in all
| formulas.
> eval f(9;
[.466015541, 1., {[-.7438868450, 1.]}], [-2.655355369, 1., {[1.039753675, 1.]}]
- > eval f(stapt 2] 2] );

I

{x=1.353553390, y = .6464466095}
L [ This shows that the rightmost point on the circle is asaddle point.
[ Hereisauniform expression for the Jacobian matrix at the two points.
r> sinplify(subs(stapt[5],0p(J)));

1
2+~ RootOf(7+2 _Z°-8 Z label = L2), -2+

1
> — RootOf(7 +2 _Z°-8 _Z label = _LZ)E

2

77
% 2~ 2RootOf(7 + 2 7°-8 7 labe :_Lz)E

B Regionsin thefirst quadrant.

= Region A. A triangular region along the positive y-axis
[ Arrows on the boundary of the region point down and to the right. If you have a computer,

L another approach isto find an interior point and evaluate the diection field there.
[ > subs({x=3/2,y=1/4}, op(vecfld));

T

" Notethefirst entry is positive (to the right) and the second is negative (down). Theleft side
of theregion isatrgectory. On the other two sides, the arrows point into the region. The
point on the positive y-axis was a saddle: solutions approach the point along the axis, but are
repelled horizonally. The point at the right end of the base is the leftmost point on the circle,
which we saw to be asink. There would be trouble if this were not the case, since we have
found many ways into the region, but no way out. This poit isthe way out. There is one more
feature to describe. Some points are on paths entering along the line at the top; othersar on
paths entering along the circle on the bottom. The boundary between these typesis a

| separatrix connecting the two stationary vertices of the region.




I Region B. The small sector of thecircle.

[

Aninterior point

[ > subs({x=21/ 20, y=21/ 20}, op(vecfld));

21 189%
00’ 4000

[ Up and to the left. Exactly the opposite of what we saw on the opposite side of the common

vertex with A. Thisisexactly what is expected at a point with a proper linearization. Again,
the arrows on the boundary curves point into the region, and the sink at the left corner isthe
only way out. Thereis aseparatrix from the other stationary vertex (which is a saddle point)
dividing the region according to where the trajectory enters the region.

. Region C. A triangle along the positive x-axis.

[ Aninterior point
> subs({x=1/4,y=3/2}, op(vecfld));

$o

" Down and to the right. Another reflection in a stationary point on the circle. Solutions enter

the region along the sides and exit at the sink on the x-axis. A seoaratrix joins the two
L stationary vertices, as before.

. Region D. The bulk of the circle. An interior point

[ Aninterior point
> subs({x=3/4,y=3/4}, op(vecfld));

S

i Up and to theright. Thiswas already obvious from the behavior on the axes. Except for the

axes, where trajectories run along the side, tragjectories exit the region along edges. The only
entrance is the source at the origin.There must aso be separatrices dividing the region
according to the exit side. There are two: one terminating at each of the statinar points on the

L circle. These paths can only start at the origin.

. Region E. The outside.

[ Aninterior point
[ > subs({x=3/2,y=3/2}, op(vecfld));

22

" Down and to the left. Towards the circle. Again there will be two separatrices. The

techniques for dealing with behavior "near infinity" has not been treated in this course. A
general rule for algebraic expressionsisto look at the highest degree terms, which are degree
3inthiscase and only present in the expression for dy/dt. The other derivative should be
treated as zero, so the direction field at distant pointsis essentially straight down. The

| separatrices will then originate at the top of any window.



