
Preliminaries for the "Nullclines that are not lines" example in 
section 5.2
> with(linalg):
> x1:=2*x*(1-x/2)-x*y;
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> y1:=y*(9/4-y^2)-x^2*y;

 := y1 −y
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> stapt:=solve({x1,y1},{x,y});
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These should be all stationary points.  However, the fourth point is on the negative part of the 
y-axis, while the analysis in the text was confined to the first quadrant.  The fifth point is a little 
troublesome, since it is a single expression that stands for two points.
> vecfld:=vector([x1,y1]);

 := vecfld
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This introduces a single vector expression for the right side of the equation.

Building the Jacobian matrix.
> col1:=map(diff,vecfld,x);

 := col1 [ ],− −2 2 x y −2 x y
> col2:=map(diff,vecfld,y);

 := col2
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> J:=augment(col1,col2);

 := J
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The origin.
> stapt[1];

{ },=x 0 =y 0
> subs(stapt[1],op(J));
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The eigenvalues are both positive and the eigenvectors point along the axes.  The origin is an 
ordinary source.

On the positive x-axis.
> stapt[2];

{ },=y 0 =x 2
> subs(stapt[2],op(J));
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> eigenvects(%);
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Two negative eigenvalues.  The point is a sink.

On the positive y-axis.
> stapt[3];
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> subs(stapt[3],op(J));
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> eigenvects(%);
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Real eigenvalues of opposite sign.  The point is a saddle.

On the negative y-axis.
> stapt[4];
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> subs(stapt[4],op(J));
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> eigenvects(%);
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Another saddle point.

On the circle.
> stapt[5];
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There are two points represented by this formula.  We need to separate them.
> stapt2:=allvalues(stapt[5]);
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The different roots have conjugate expressions involving the square root of 2.

One point
> subs(stapt2[1],op(J));
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> eigenvects(%);
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Exact expression, but not very useful.
> evalf(%);

,[ ], ,-.309250208 1. { }[ ],-1.917121916 1. [ ], ,-4.001409964 1. { }[ ],.1926836578 1.
> evalf(stapt2[1]);

{ },=x .6464466095 =y 1.353553390
This shows that the leftmost of the points on the circle is a sink.



The other point.
> subs(stapt2[2],op(J));
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> eigenvects(%);
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If you look closely, you will see that the sign of the square root of 2 has changed in all 
formulas.
> evalf(%);

,[ ], ,.466015541 1. { }[ ],-.7438868450 1. [ ], ,-2.655355369 1. { }[ ],1.039753675 1.
> evalf(stapt2[2]);

{ },=x 1.353553390 =y .6464466095
This shows that the rightmost point on the circle is a saddle point.

Here is a uniform expression for the Jacobian matrix at the two points.
> simplify(subs(stapt[5],op(J)));
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Regions in the first quadrant.

Region A. A triangular region along the positive y-axis
Arrows on the boundary of the region point down and to the right.  If you have a computer, 
another approach is to find an interior point and evaluate the diection field there.  
> subs({x=3/2,y=1/4},op(vecfld));
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Note the first entry is positive (to the right) and the second is negative (down).  The left side 
of the region is a trajectory.  On the other two sides, the arrows point into the region.  The 
point on the positive y-axis was a saddle:  solutions approach the point along the axis, but are 
repelled horizonally.  The point at the right end of the base is the leftmost point on the circle, 
which we saw to be a sink.  There would be trouble if this were not the case, since we have 
found many ways into the region, but no way out.  This poit is the way out. There is one more 
feature to describe.  Some points are on paths entering along the line at the top; others ar on 
paths entering along the circle on the bottom.  The boundary between these types is a 
separatrix connecting the two stationary vertices of the region.



Region B. The small sector of the circle.
An interior point
> subs({x=21/20,y=21/20},op(vecfld));
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Up and to the left.  Exactly the opposite of what we saw on the opposite side of the common 
vertex with A.  This is exactly what is expected at a point with a proper linearization.  Again, 
the arrows on the boundary curves point into the region, and the sink at the left corner is the 
only way out.  There is a separatrix from the other stationary vertex (which is a saddle point) 
dividing the region according to where the trajectory enters the region.

Region C. A triangle along the positive x-axis.
An interior point
> subs({x=1/4,y=3/2},op(vecfld));
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Down and to the right.  Another reflection in a stationary point on the circle. Solutions enter 
the region along the sides and exit at the sink on the x-axis. A seoaratrix joins the two 
stationary vertices, as before.

Region D. The bulk of the circle.An interior point
An interior point
> subs({x=3/4,y=3/4},op(vecfld));
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Up and to the right.  This was already obvious from the behavior on the axes. Except for the 
axes, where trajectories run along the side, trajectories exit the region along edges.  The only 
entrance is the source at the origin.There must also be separatrices dividing the region 
according to the exit side.  There are two: one terminating at each of the statinar points on the 
circle.  These paths can only start at the origin.

Region E. The outside.
An interior point
> subs({x=3/2,y=3/2},op(vecfld));
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Down and to the left.  Towards the circle.  Again there will be two separatrices.  The 
techniques for dealing with behavior "near infinity" has not been treated in this course.  A 
general rule for algebraic expressions is to look at the highest degree terms, which are degree 
3 in this case and only present in the expression for dy/dt.  The other derivative should be 
treated as zero, so the direction field at distant points is essentially straight down. The 
separatrices will then originate at the top of any window. 


