
Math 252:01 — Spring 2002

MTh3 SEC-212

Prof. Bumby

Project 2: A famous autonomous system

Project should be handed in by Thursday, April 11. Grade will be based on content as well as on clarity and
neatness of presentation. The use of a computer is neither required nor prohibited.

1. Introduction. The system
dx

dt
= y

dy

dt
= −x + (1− x2)y

(V)

is described in Section 2.4 (page 187) of the text. It is equivalent to the second-order equation

d2x

dt2
− (1− x2)

dx

dt
+ x = 0,

which is known as theVan der Pol equation. The equation arose from a model of certain vacuum-tube
circuits, and was subsequently found to model biological processes. Theobserved behaviorof the circuit
included a stable oscillation. Important theoretical work arose from seeking a proof that the model showed
the same behavior. This project follows some of that analysis. Since the independent variablet does not
appear on the right side of(V), the system isautonomous, allowing the solutions to be studied in aphase
planewith coordinatesx andy. Solutions are characterized, except for a translation int by their projections,
called trajectories, into the phase plane. For convenience, here is a graph of the slope field and some
solutions.
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Some important curves in the phase plane.The conditiondx/dt = 0 determines the points where the
tangent to the solution is perpendicular to thex axis, and the conditiondy/dt = 0 determines the points
where the tangent to the solution is perpendicular to they axis. Each of these conditions defines a curve that

is easily found from(V). The equilibrium points, wheredy
dt = dx

dt = 0, are clearly on both of these curves.

Exercise 1.Define thewindow W by−3≤ x ≤ 3 and−3≤ y ≤ 3. Graph the two curves described above
in the windowW. Although the tangentline to the trajectories is known where it crosses one of these curves,
the direction of increasingt on that line was suppressed in this construction. However, that information is
easily recovered. Moreover, the direction of crossing can reverse only at an equilibrium point. Illustrate this
by drawingonerepresentative of the direction field on each arc of these curves between equilibrium points.
Do not show a computer-generated direction field in this graph — only the points where the field is parallel
to an axis are of interest here. You can draw the graphs with a computer, but you should add the directions
by hand.

Equilibrium points and linearization. Sincedx/dt is only zero on the liney = 0 (the x axis), and
substitutingx = 0 into the expression fordy/dt givesdy/dt = −x on thex axis, the only equilibrium point
is (0,0).

Since products of small numbers (i.e., numbers close to zero) arevery small, near the origin the
expressions for the derivatives in(V) are dominated by the terms of degree 1. The system containing just
the linear terms

dx

dt
= y

dy

dt
= −x + y

(L)

is called thelinearization of the system(V) at (0,0). A discussion of this example appears in Section 5.1
of the textbook, which we will get to soon enough.

Exercise 2.Show that(L) has aspiral sourceat the origin (see Section 3.4).

Angular Motion. The angleθ from the positivex axis can be defined as arctan(y/x) whenx > 0. Thus

dθ

dt
= x dy

dt − ydx
dt

x2+ y2
. (A)

This expression makes senseeverywhereexcept for(x, y) = (0,0), and allows arunning totalof the angle
θ to be computed on any curve. For closed curves, the line integral of this expression, once around the curve,
is 2nπ for an integern. Here,n is called thewinding number of the curve around the origin. For curves
enclosing the origin once in the counterclockwise direction, the winding number is+1, and reversing the
direction of travel replaces the winding number by its negative.

Thus it is interesting to consider a curve where

x
dy

dt
= y

dx

dt
. (2)

This curve locates the points where the tangent points directly towards, or directly away from, the origin.
On one side of this curve the trajectories move around the origin in a counterclockwise direction; on the
other side, the motion is clockwise. Any equilibrium point is clearly on this curve.
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Exercise 3.First, show that the origin is an isolated solution of(2). That is, no point near(0,0) except for
(0,0) itself satisfies equation(2). Then find the other solutions of(2) inside the windowW, make a copy
of the graph obtained in Exercise 1 and add this graph to it. Also, as in Exercise 1, addone representative
of the direction field on each arc of this curve between equilibrium points. (This makes sense even though
the origin is the only critical point, and the curve doesn’tpass throughthe origin, because the graph of(2)
has more than one branch.

Exercise 4.Your figure should have symmetry with respect to “reflection in the origin”, i.e. if(x, y) belongs
to the figure, so does(−x,−y). Show that the solutions to the equation have the same symmetry.

Global behavior of trajectories. The curves obtained in Exercise 3 divide the plane into a number of
regions. If you start at a point in one region and trace a solution to(V) in either the positive or negative
direction, the solution will either cross one of the bounding curves or escape to infinity. For this example,
only the negative direction leads to infinity. In the positive direction, all solutions havedθ/dt < 0 for large
t , so all solutions tend towards a clockwise motion.

Measuring time from the trajectories. Sincedx/dt = y on any trajectory, it is also true thatdt/dx = 1/y,
so time can be recovered as a line integral ∫

dx

y

along any arc of a trajectory wherey 6= 0. Similarly,∫
dy

−x + (1− x2)y

measures time along arcs of trajectories where−x + (1− x2)y 6= 0. Moreover, combining these formulas
with expressions for derivatives of other quantities with respect tot allows anything expressible in terms
of t , x and y to be written as a line integral. This would not seem to be useful since the trajectories are
not known, but the same qualitative analysis that allows us to obtain a rough sketch of the solutions from a
direction field allows us to estimate these integrals.

Indeed, Picard’s proof of the existence and uniqueness of solutions of initial value problems exploits
this idea by showing that evaluating such integrals using good enough approximate solutions will lead to
better approximations.

Although these formulas need to be used with care because they have denominators that can be zero,
any trajectory can be subdivided into arcs where one or the other of these integrals will be defined.

Moreover, once we have decided to use line integrals, more complicated expressions can be investigated.
Consider, for example, ∫

y dx− x dy

x2− xy+ y2+ x3y
.

A direct calculation from(V) shows that

y
dx

dt
− x

dy

dt
= x2− xy+ y2+ x3y

on any trajectory, so this is yet another line integral along trajectories the measures time.
Using the usual polar coordinate formulasx = r cosθ , y = r sinθ , so that

dx

dθ
= −r sinθ + dr

dθ
cosθ

dy

dθ
= r cosθ + dr

dθ
sinθ
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Thus,y(dx/dθ)− x(dy/dθ) = −r 2, so this integral simplifies to∫ −r 2 dθ

r 2− r 2 cosθ sinθ + r 4 cos3 θ sinθ
= −

∫
dθ

1− cosθ sinθ + r 2 cos3 θ sinθ

≈ −
∫

dθ

1− cosθ sinθ

if r is small. Note that the negative sign signifies thatt decreases asθ moves in the positive (counterclockwise)
direction. Since the integrand in the approximate integral is periodic, the integral will take the same value
P on any interval of length 2π . This valueP is the approximate time for a solution of(V) that is close to
the origin to wind once around the origin.

Exercise 5.ComputeP. Mapleknows enough tricks to be able to evaluate this approximate period integral
exactly.

Distance and Green’s Theorem.Another interesting function to consider is the distance from the origin.
Thesquareof the distance is more useful because it leads to easier calculus. First: its derivative with respect
to t is

d

dt
r 2 = d

dt
(x2+ y2) = 2x

dx

dt
+ 2y

dy

dt

= 2x(y)+ 2y
(−x + (1− x2)y

) = 2y2(1− x2)

(∗)

If we multiply the integrands of any of the integrals along trajectories that givet by this expression, the result
will be an integral such that the integral along a trajectory is the difference of the value ofr 2 at the endpoints
of the trajectory.

If the endpoints are connected by an arc on which the line integral is zero, Green’s Theorem∮
A dx+ B dy=

∫∫
Bx − Ay dx dy.

can be applied. Here, the integral on the left follows a closed curve in the counterclockwise direction and the
integral on the right is the integral over the region bounded by the curve with respect to area. The subscripts
in the integral on the right represent partial derivatives.

Care must be taken when using Green’s Theorem since it is only valid when both the line integral and
the double integral exist. In particular, points that make the denominator zero must be avoided, not just on
the path, but also in the interior of a region on which Green’s Theorem is to be applied.

Exercise 6.First, integrate(∗) along a trajectory usingdt = dx/y, and find some arcs on which this integral
is zero that can be used to give a closed path. Apply Green’s Theorem to find an equivalent double integral.
Find a line integral with respect toy that is equivalent to this by Green’s Theorem.
Remark. The integral obtained in Exercise 6 can be used to prove that there is a unique closed orbit that
other orbits approach. While all the clues have been given, the proof is too technical to be given as an
exercise, so we stop with finding the integral.


