
Math 252 — Spring 2000

Matrix Exponentials for Complex Eigenvalues

Introduction . Most of the examples arising in this course involve 2 by 2 matrices. There are special tricks in
this case that allow easy computation of eigenvalues and eigenvectors, so such systems can be solved without
excessive computation. It is also customary in theNever-Never-Landof textbook exercises and examination
questions to arrange for real eigenvalues to be integers, so that eigenvalues can be found by recognizing the
factors of the characteristic polynomial. However, it is also important to allow exercises leading to complex
eigenvalues. In the simplest case, the eigenvalues will turn out to bea+bi with a andb integers, but this turns
out not to be simple enough to get all answers easily if you use methods developed for the real case. In order
to appreciate the discussion that follows, you should work throughoneproblem with complex eigenvalues.
(Exercises 9 through 14 of section 3.4 of the textbook may be considered representative examples.)

The characteristic polynomial. The characteristic polynomial of a matrixA is defined in general to be
det(A−λI). In the 2-by-2 case, this has a simple form that can be derived by introducing individual variables
for the matrix entries. Thus,

det

(
a − λ b

c d − λ
)
= (a − λ)(d − λ)− bc = λ2− (a + d)λ+ (ad − bc).

The coefficient ofλ2 is 1, the constant term is det(A) — since that is what the definition reduces to when
λ = 0 — and the only other coefficient is the negative of the sum of the diagonal entries. The sum of the
diagonal entries of any matrix is called thetraceof the matrix, and is surprisingly important.

The rootsr0 andr1 of a polynomialλ2−Aλ+B are characterized by the polynomial being a multiple of
(λ− r0)(λ− r1). Expanding the product and comparing coefficients ofλ2 shows that the multiplier can only
be 1. Then, comparing the other coefficients givesr0 + r1 = A andr0r1 = B. In the case in whichB is an
integer with only a few factors, one can find all ways of writingB as a product of two integers. If one of the
sums is equal toA, these factors give the roots. This is not really useful, except for recognizing the equations
that have small integer roots. (Although factoring plays an important role in elementary mathematics, its
value depends on having memorized multiplication tables. In particular, no fast ways to factor large integers
are known, a fact that forms the basis of some modern encryption methods.)

One method that always works isCompleting the square, or theQuadratic formulaobtained by applying
the method to a general equation whose coefficients are independent parameters. Themethodis often better
than theformulabecause it can exploit special properties of the coefficients to simplify calculations. This
shows that every quadratic equation can be solved by extracting the square root of a single quantity computed
from the coefficients. If this quantity is negative, there are no real roots, but a system ofcomplex numbers
has been created that gives a interpretation of these quantities that is consist with the familiar rules of algebra.
Every complex number has a unique representation asa + bi wherea andb are real numbers andi is a
square root of−1.

For 2-by-2 matrices, it is easily seen, by direct calculation, that

A2 = tr(A)A− det(A),

which is a special case of a result known as the Cayley-Hamilton theorem.

1



Complex exponentials. Assuming that familiar rules of algebra and calculus extend to complex numbers,
the expression

y = cost + i sint

has derivative
dy

dt
= − sint + i cost = iy.

Thus,y should beCeit for someC. Evaluating att = 0 givesC = 1. Combining this formula with the
addition formula for exponentials leads to

e(a+bi)t = aat( cosbt + i sinbt
)
.

If we get a solution of a differential equation in terms of complex exponentials, we can use this formula to
get solutions in terms of familiar real functions with complex numerical coefficients. This general solution
gives unique coefficients to satisfy any given complex initial conditions. If the initial conditions are real, the
solution will turn out to be real. Any of the results that we obtain by exploiting this notational device can
be checked in the given equation to show that the solution is correct. As long as results are checked, such
speculative methods are safe.

One way to find the solution is to copy the process used for real eigenvalues. An eigenvector for the
eigenvalueλ is anynonzerosolution of(

a − λ b

c d − λ
)(

x

y

)
=
(

0
0

)
.

For example, one could take (
x

y

)
=
(

b

λ− a
)
,

which obviouslymakes the first entry of the product zero. The value of second entry is just the negative of
the characteristic polynomial, so it will be zero precisely whenλ is an eigenvalue. Ifλ = r+ si, this method
gives (

b

λ− a
)
eλt =

(
bert cosst + ibert sinst

(r − a + si)ert cosst + (−s + (r − a)i)ert sinst

)
.

as one solution of the differential equation. (Exercise.Check that this satisfies the given equation.)
The complex conjugate of this solution is a solution corresponding to the eigenvalue that is the complex

conjugate ofλ. The general solution is a linear combination of the two special solutions we have. Finding
the coefficient in this linear combination corresponding to given initial conditions leads to solving equations
whose coefficients are the entries of the eigenvectors.

When matrices have complex entries, every step requires additional care, so even familiar calculations
may become tedious. Following the steps of the method with the numbers used in exercises doesn’t seem
to introduce the simplifications that one finds when dealing with integer eigenvalues, so the best approach
would seem to be to carry a symbolic calculation through to a conclusion that would give a formula to solve
general problems. We will do better! A few interesting properties of the solution will be recorded that allow
the solution to be guessed. Then, the verification that the guess is correct will be routine.

If a linear problem has solutions that are a complex expression and its conjugate, then the solution will
also include the sum and difference of those expressions. The sum is twice the real part of the expression and
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the difference is 2i times the coefficient ofi (this coefficient is called “the imaginary part” of the expression
although it is a real expression) in the expression. Thus, the real and imaginary parts of a solution will be
solutions, and the original solution is a combination with complex coefficient of these solutions. This gives
a description in terms of real numbers or functions of the solutions of the original problem, and the real
linear combinations of these solutions give all real solutions.

Applying this to our given differential equation, we see can write a basis for the space of real solutions.
(Exercise: Do this.) We see that all solutions can be expressed as combinations of vector multiples of the
functionsert cosst andert sinst (though only some linear combinations are solutions).

All solutions can be found fromeAt , which is a matrix whose first column solves the initial value
problemx(0) = 1, y(0) = 0, and whose second column satisfiesx(0) = 0, y(0) = 1. Alternatively, the
wholematrixX(t) = eAt is characterized bydX(t)/dt = AX(t),X(0) = I . If we solve this problem, any
initial value problem for this equation is solved by multiplying this matrix by the column of initial values
(in that order).

The formula. At this point, we know that

eAt = Mert cosst +Nert sinst,

whereM andN are 2-by-2 matrices of real numbers. Puttingt = 0 in this expression gives (immediately!)
thatM = I . We now need only findN .

The product rule of differential calculus builds the derivative ofeAt from two parts which are essentially
the cases corresponding tor = 0 and tos = 0, so these simpler cases will give parts of the formula we
seek that can be assembled later. Ifs = 0, the only possibility isN = 0. That is, the real part of the action
of A should be represented by arI . This means that the part ofA corresponding tosi should beA − rI ,
which is a matrix of trace zero. The part of the Cayley-Hamilton Theorem that we have verified by direct
computation shows that the square of such a matrix is a multiple of the identity. In the case of imaginary
roots, the determinant of the matrix will be positive so that the square of the matrix will be a negative multiple
of the identity. In particular, any matrixJ of trace zero and determinant 1 seems to be trying to play the role
of the special numberi.

For such a matrix, we have
eJ t = I cost +N sint

for some matrixN . Differentiating this gives

JeJ t = −I sint +N cost

and evaluating this att = 0 shows that the only possibility isN = J .
Any matrix of trace zero and positive determinant is a real multiple of such a matrixJ . In particular,

for our given matrixA with eigenvaluesr ± si,
A = rI + sJ

for some matrix J withJ 2 = −I . In this case, we expect

eAt = Iert cosst + Jert sinst. (E)

Having guessed the form of the answer, we can prove that(E) is correct by showing that the quantity on
the right satisfiesdX(t)/dt = AX(t) andX(0) = I . (Exercise: Do this.) Since formula(E) looks exactly
like Euler’s equationeix = cosx + i sinx, it is easy to remember. To use it, we need only discover that the
eigenvalues ofA arer + si, and use this to computeJ = (A− rI )/s
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Direction of rotation . The equation(
x

y

)
= (I cosθ + J sinθ)

(
x0
y0

)
,

for any givenx0 andy0, gives parametric equations of an ellipse. Thus,

eAt
(
x0
y0

)
describes a path that combines multiplication by the scale factorert and rotation-like motion around an
ellipse. We would like to know whether this rotation-like motion is clockwise or counterclockwise.

Geometry suggests that the behavior of all vectors will be the same, so let us look at the the positive
x-axis by settingx0 = 1 andy0 = 0. The positive (i.e., counterclockwise) direction is characterized by
y > 0 for smallt , but the value ofy given by(E) is the positive quantityert sinst times the lower left entry
of the matrixJ . If this entry ofJ is positive, the motion is counterclockwise; if negative, the motion is
clockwise.

Anticlimax . This method was limited to 2-by-2 matrices since the pair of conjugate eigenvalues gave a
unique way to constructJ from A. To apply this to ann-by-n matrixA, one should first identify a plane
spanned by the real and imaginary parts of the eigenvector corresponding to a complex eigenvalue ofA.
This plane is taken into itself byA. Hence, ifS is an-by-2 matrix whose columns are a basis for this plane,
then there is a 2-by-2 matrixA2 such thatAS = SA2. The action ofA on this plane is given by the matrix
A2 and the method just described applies toA2. This calculation is easy for any basis of the plane — no
special basis is required. Ifn = 3, and there is one real eigenvalueλ0, then the eignvector corresponding to
λ0 is the nullspace of the matrixA − λ0I , so it is found by solving a system of equations with this matrix
of coefficients (there are three equations, but one will be revealed to be redundant in the course of solving
the equations). The plane corresponding to the other eigenvalues (which we are assuming to be a complex
conjugate pair) is the column space ofA− λ0I , and we can take any two linearly independent columns as
our basis.

The weak link in this is the computation of the characteristic polynomial. Accurate computation of
a 3-by-3 determinant with some polynomial entries requires special care. There are robust ways to find
characteristic polynomials that avoid the evaluation of determinates, but it would be too much af a digression
to discuss them here.

Exercise. Solve the following initial value problem using formula(E). In more detail: (1) write the
differential equation asX′ = AX; (2) find the characteristic polynomial ofA; (3) solve to obtain eigenvalues
r ± si; (4) writeA = rI + sJ and check thatJ 2 = −I ; (5) write eAt from formula(E); (6) multiply by the
column of initial values; (7) check that you have a solution.

dx

dt
= 7x − 13y

dy

dt
= 2x − 3y

x(0) = 3

y(0) = 1
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