
Math 252 — Fall 2002
Introduction to First-Order Differential Equations

A differential equationis just an equation which involves “differentials”, that is to say, derivatives. A
simple example is

dy

dt
= 0,

where we understand thaty is a function of an independent variablet . (We uset because in many examples
the independent variable happens to be time, but of course any other variable could be used. In current
versions ofMaple, the dependence ofy on t must beexplicit, i.e., one must writey(t).) It is sometimes
convenient to use informal notation and refer to this example asy′ = 0 (a physicist would writėy = 0), but
such notation blurs the distinction betweenfunctioons and theexpressionsused to define them. Ify′ = 0,
y must be constant. In other words, the general solution of the given equation isy ≡ c, for some constant
c. Another easy example of a differential equation is:

dy

dt
= −27.

This means thaty = y(t) has a graph which is a line with slope−27. The general solution of this equation
is y = −27t + c, for some constantc.

An initial value problemis a problem in which we give a differential equation together with an extra
condition at a point, like:

dy

dt
= −27, y(0) = 3.

There is a unique solution of this initial-value problem, namelyy(t) = −27t + 3. It can be found by first
finding the general solutiony = −27t +c and then plugging int = 0 to get 3= −27(0)+c, soc = 3. This
“initial” condition may be specified, of course, at any value of the independent variablet , (not justt = 0)
for example:

dy

dt
= −27, y(2) = 3.

The solution of this initial-value problem can be also obtained by plugging into the general formy = −27t+c:
we substitute 3= y(2) = −27(2) + c, which gives thatc = 57, and so the solution isy(t) = −27t + 57.
Although the word “initial” suggests that we intend to start at that point and move forward in time, the
solutions we have found are defined for all values oft . We will not always be so fortunate, but do we expect
solutions defined on an interval with the “initial” value in the interior.

A slightly more complicated example of a differential equation is:

dy

dt
= sint + t2.

The general solution is (by taking antiderivatives)y = − cost + t3/3+ c. Another example:

dy

dt
= e−t2

.

This equation has a general solution, but it cannot be expressed in terms of elementary functions like
polynomials, trigs, logs, and exponentials. (The solution is the “error function” that is used in statistics to
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define the cumulative probability of a Gaussian or normal probability density.) One of the unfortunate facts
about differential equations is that we cannot always find solutions as explicit combinations of elementary
functions. So, in general, we have to use numerical, geometric, and graphical techniques in the analysis of
properties of solutions.

The examples just given are too easy (even ify′ = e−t2
doesn’t lookthat easy), in the sense that they

can all be solved, at least theoretically, by taking antiderivatives. The subject of differential equations deals
with far more general situations, in which the unknown functiony appears on both sides of the equation:

y′ = f (t, y)

or even much more general types: systems of many simultaneous equations, higher order derivatives, and
even partial derivatives when there are other independent variables (which leads to “partial differential
equations” and are the subject of more advanced courses).

One aspect of differential equations is comparatively easy: if someone gives us an alleged solution of
an equation, we cancheckwhether this is so. Checking is much easier than finding! (Analogy: if I ask you
to find a solution of the algebraic equation 10000x5−90000x4+65100x3+61460x2+13812x+972= 0
it may take you some time to find one. On the other hand, if I tell you thatx = 3/2 is a root, you can
check whether I am telling the truth or not very easily: just plug in and see if you get zero.) For example, if
someone claims that the functiony = 1

/ (
1+ t2

)
is a solution of the equationy′ = −2ty2, we can check

that she is right by plugging in:

(
1

1+ t2

)′
= − 2t

(1+ t2)2
= −2t

(
1

1+ t2

)2

.

But if someone claims thaty = 1
/
(1+ t) is a solution, we can prove him to be wrong:

(
1

1+ t

)′
= − 1

(1+ t)2
6= −2t

(
1

1+ t

)2

because the two last functions oft are not the same. They even have different values att = 0.

1: About Modeling. Most applications of mathematics, and in particular, of differential equations, proceed
as follows.

Starting from a “word problem” description of some observed behavior or characteristic of the real
world, we attempt to formulate the simplest set of mathematical equations which capture the essential
aspects. This set of equations represents amathematical modelof reality. The study of the model is then
carried out using mathematical tools. The power of mathematics is that it allows us to make quantitative
and/or qualitative conclusions, and predictions about behaviors which may not have been an explicit part of
the original word description, but which nonetheless follow logically from the model.

Sometimes, it may happen the results of the mathematical study of the model turn out to be inconsistent
with features found in the “real world” original problem. If this happens, we must modify and adapt the
model, for example by adding extra terms, or changing the functions that we use, in order to obtain a better
match. Good modeling, especially in science and engineering, is often the result of several iterations of the
“model/reality-check/model” loop!
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2: Unrestricted Population Growth. When dealing with the growth of a bacterial culture in a Petri dish,
a tumor in an animal, or even an entire population of individuals of a given species, biologists often base
their models on the following simple rule:

The increase in population during a small time interval of length1t is proportional to
1t and to the size of the population at the start of the interval.

For example, statistically speaking, we might expect that one child will be born in any given year for
each 100 people. The proportionality rule then says that two children per year are born for every 200 people,
or that three children are born for each 100 people over three consecutive years. (To be more precise, the
rate of increase should be thought of as the “net” rate, after subtracting population decreases. Indeed, the
decreases may also assumed proportional to population, allowing the two effects to be combined easily.)

The rule is only valid for small intervals (small1t), since for large1t one should also include com-
pounding effects (children of the children), just as the interest which a bank gives us on savings (or charges
us on loan balances) gets compounded, giving a higher effective rate.

Let us callP(t) the number of individuals in the population at any given timet . The simplest way to
translate into math the assumption that “the increase in populationP(t +1t)− P(t) is proportional to1t
and toP(t)” is to write

P(t +1t)− P(t) = k P(t)1t (1)

for some constantk. Notice how this equation says that the increaseP(t +1t)− P(t) is twice as big if1t
is twice as big, or if the initial populationP(t) is twice as big.

Example: in the “one child per 100 people per year” rule, we would takek = 10−2 if we are measuring
the timet in years. So, if at the start of 1999 we have a population of 100,000,000, then at the beginning of
the year 2001 = 1999+2 the population should be (use1t = 2):

P(2001) = P(1999)+ 10−2P(1999)1t = 108+ 10−2108(2) = 102, 000,000

according to the formula. On the other hand, by the end of January 3rd, 1999, that is, with1t = 3/365, we
would estimateP(1999+ 3/365) = 108+ 10−2108(3/365) ≈ 100, 008, 219 individuals. Of course, there
will be random variations, but on average, such formulas turn out to work quite well.

The equation(1) can only be accurate if1t is small, since it does not allow for the “compound interest”

effect. On the other hand, one can view(1) as specifying a step-by-stepdifference equationas follows.
Pick a “small”1t , let us say1t = 1, and consider the following recursion:

P(t + 1) = P(t)+ k P(t) = (1+ k)P(t) (2)

for t = 0, 1, 2, . . .. Then we computeP(2) not asP(0) + 2k P(0), but recursively applying the rule:
P(2) = (1+ k)P(1) = (1+ k)2P(0). This allows us to incorporate the compounding effect. It has the
disadvantage that we cannot talk aboutP(t) for fractionalt , but we could avoid that problem by picking a
smaller scale for time (for example, days). A more serious disadvantage is that it is hard to study difference
equations using the powerful techniques from calculus. Calculus deals with things such as rates of change
(derivatives) much better than with finite increments. Therefore, what we will do next is to show how the
problem can be reformulated in terms of a differential equation. This is not to say that difference equations
are not interesting, however. It is just that differential equations can be more easily studied mathematically.

If you think about it, you have seen many good examples of the fact that using derivatives and calculus
is useful even for problems that seem not to involve derivatives. For example, if you want to find an integer
t such thatt2− 189t + 17 is as small as possible, you could try enumerating all possible integers (!), or you
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could instead pretend thatt is a real number and minimizet2− 189t + 17 by setting the derivative to zero:
2t − 189= 0 and easily finding the answert = 94.5, which then leads you, since you wanted an integer, to
t = 94 ort = 95.

Back to our population problem, in order to use calculus, we must allowP to be any real number (even
though, in population studies, only integersP would make sense), and we must also allow the timet to be
any real number. Let us see where equation(1) leads us. If we divide by1t , we have

P(t +1t)− P(t)

1t
= k P(t).

This equation holds for small1t , so we may let1t → 0. What is the limit of
(

P(t +1t)− P(t)
) /

1t
as1t → 0? It is, as you remember from Calculus I (yes, you do), the derivative ofP evaluated att . So we
end up with our first differential equation:

P′(t) = k P(t). (3)

This is the differential equation for population growth. We may read it like this:

The rate of change ofP is proportional toP.

The solution of this differential equation is easy: sinceP′(t)/P(t) = k, the chain rule tells us that

(
ln P(t)

)′ = k,

and so we conclude that lnP(t) = kt + c for some constantc. Taking exponentials of both sides, we
deduce thatP(t) = ekt+c = Cekt, whereC is the new constantec. Evaluating att = 0 we have that
P(0) = Ce0 = C, and we therefore conclude:

P(t) = P(0)ekt.

(Actually, we cheated a little, becauseP′/P doesn’t make sense ifP = 0, and also because ifP is negative
then we should have used ln(−P(t)). But one can easily prove that the formulaP(t) = P(0)ekt is always
valid. In any case, for population problems,P is positive.)

Which is better in practice, to use the difference equation(2) or the differential equation(3) ? It is
hard to say: the answer depends on the application. Mathematically, differential equations are usually easier
to analyze, although sometimes, as when we study chaotic behavior in simple one-dimensional systems,
difference equations may give great insight. Also, we often use difference equations as a basis of numerical
techniques which allow us to find an approximation of the solution of a differential equation. For example,
Euler’s method, which we will meet in othernotes, basically reverses the process of going from(1) to (3) .

Let us now look at some more examples of differential equations.

3: Limits to Growth: Logistic Equation. Often, there are limits imposed by the environment on the
maximal possible size of a population: not enough nutrients for a large bacterial culture, insufficient food
for the human population of an island, or a small hunting territory for a given animal species. Ecologists
talk about thecarrying capacity of the environment, a numberN with the property that no populations
P > N are sustainable. If the population starts bigger thanN, the number of individuals will decrease.
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To come up with an equation that represents this situation, we follow the same steps that we did before,
except that now we have thatP(t +1t)− P(t) should be negative ifP(t) > N. In other words, we have
P(t + 1t) − P(t) = f (P(t))1t , where f (P) is not just “k P” but should be instead a more complicated
expression involvingP, and which has the properties that:
• f (0) = 0 (no increase in the population if there is no one around to start with!),
• f (P) > 0 when 0< P < N (the population increases while there are enough resources), and
• f (P) < 0 whenP > N.

Taking limits just like we did before, we arrive to the differential equation:

P′(t) = f
(

P(t)
)
.

From now on, we will drop the “t” when it is obvious, and use the shorthand notationP′ = f (P) instead of
the more messyP′(t) = f

(
P(t)

)
. We must still decide what function “f ” is appropriate. Because of the

properties wanted (f (0) = 0, f (P) > 0 when 0< P < N, f (P) < 0 whenP > N), the simplest choice
is a parabola which opens downward and has zeroes atP = 0 andP = N: f (P) = −cP(P − N), with
c > 0, or, withk = cN, f (P) = k P(1− P/N). We arrive in this way to thelogistic population model

P′ = k P

(
1− P

N

)
. (4)

(Remember: this is shorthand forP′(t) = k P(t)
(

1− P(t)/N
)
. ) The constantk is positive, since it was

obtained ascN.

4: Solution of Logistic Equation. Like P′ = k P, equation(4) is one of those (comparatively few)
equations which can actually be solved in closed form. To solve it, we do almost the same that we did
with P′ = k P (this is an example of the method ofseparation of variables): we write the equation as
d P/dt = k P

(
1− (P/N)

)
, formally multiply both sides bydt and divide byP

(
1− (P/N)

)
, arriving at

d P

P(1− P/N)
= k.

Next we take antiderivatives of both sides, obtaining
∫

d P

P(1− P/N)
=
∫

kdt.

The right-hand side can be evaluated using partial fractions:

1

P(1− P/N)
= N

P(N − P)
= 1

P
+ 1

N − P

so
ln P − ln(N − P)+ c1 = kt + c2

for some constantsc1 andc2, or, with c = c2− c1,

ln

(
P

N − P

)
= kt + c (5)

5



and, taking exponentials of both sides,
P

N − P
= Cekt (6)

with C = ec. This is an algebraic equation forP, but we can go a little further and solve explicitly:

P = Cekt(N − P)⇒ Cekt P + P = Cekt N ⇒ P = Cekt N

Cekt + 1
= N

1+ 1
C e−kt

.

Finally, to findC, we can evaluate both sides of equation(6) at t = 0:

C = P(0)

N − P(0)

and therefore conclude that

P(t) = P(0)N

P(0)+ ( N − P(0)
)
e−kt

. (7)

Observe that, sincee−kt → 0 ast →∞, P(t)→ N, which is not surprising. (Why?)
This formula is also valid for negative values oft with P(t)→ 0 ast →−∞.

Homework assignment: use a computer to plot several solutions of the equation, for various values ofN
and ofP(0).

5: Some “Small-Print Legal Disclaimers”. (You may want to skip this section in a first reading.)
We cheated a bit when deriving the solution for the logistic equation. First of all, we went a bit too

fast over the “divide bydt” business. What is the meaning of dividing by the differential? Well, it turns
out that it is OK to do this, because what we did can be interpreted as, basically, just a way of applying
(backwards) the chain rule. Let us justify the above steps without using differentials. Starting from the
differential equation(4) , we can write, assuming thatP 6= 0 andP 6= N (so that we are not dividing by
zero):

P′

P(1− P/N)
= k. (8)

Now, one antiderivative of 1
/ (

P(1− P/N)
)
, as a function ofP, is the function

Q(P) = ln
(

P / (N − P)
)

(let us suppose thatN > P, so the expression inside the log is positive). So, the chain rule says that

d Q
(

P(t)
)

dt
= d Q

d P

d P

dt
= 1

P(1− P/N)
P′(t).

Therefore, equation(8) gives us that

d Q
(

P(t)
)

dt
= k
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from which we then conclude, by taking antiderivatives, that

Q
(

P(t)
) = kt + c

which is exactly the same as the equation(5) , which had before been obtained using differentials. In general,
we can always justify “separation of variables” solutions in this manner, but from now on we will skip this
step and use the formal method.

There is still a small gap in our arguments, namely we assumed thatP 6= 0 and thatP 6= N (so that we
were not dividing by zero) and alsoN > P, so the expression inside the log was positive. We’ll see later,
when we cover uniqueness of solutions that, becauseP = 0 andP = N are equilibria of the system, any
solution that starts withP(0) > N will always haveP(t) > N, and a similar property is true for each of the
intervalsP < 0 and 0< P < N. So we can treat each of the cases separately.

If N < P, then the antiderivative is ln| P / (N − P) | (that is, we use absolute values). But this doesn’t
change the general solution. All it means is that equation(6) becomes

∣∣∣∣
P

N − P

∣∣∣∣ = Cekt

which can also be written as in(6) but withC negative. We can treat the caseP < 0 in the same way.
Finally, the exceptional cases whenP could be zero orN are taken care of once we notice that the

general solution(7) makes sense whenP(0) = 0 (we getP ≡ 0) or whenP(0) = N (we getP ≡ N).

6: Equilibria. Observe that if, for some timet0, it happens thatP(t0) = 0, then the right-hand side of the
differential equation(4) becomes zero, soP′(t0) = 0, which means that the solution cannot “move” from
that point. So the valueP = 0 is anequilibrium point for the equation: a value with the property that if
we start there, then we stay there forever. This is not a particularly deep conclusion: if we start with zero
population we stay with zero population. Another root of the right hand side isP = N. If P(t0) = N then
P′(t0) = 0, so if we start with exactlyN individuals, the population also remains constant, this time atN.
Again, this is not surprising, since the model was derived under the assumption that populations larger than
N decrease and populations less thanN increase.

In general, for any differential equation of the formy′ = f (y), we say that a pointy = a is an
equilibrium if a is a root of f , that is, f (a) = 0. This means that if we start aty = a, we cannot move
away fromy = a. Or, put in a different way, the constant functiony(t) ≡ a is a solution ofy′ = f (y)
(becausey′(t) = a′ ≡ 0 and alsof (y(t)) = f (a) = 0. One says also that the constant functiony(t) = a
is anequilibrium solutionof y′ = f (y).

The analysis of equilibria allows us to obtain a substantial amount of information about the solutions
of a differential equation of the typey′ = f (y) with very little effort, in fact without even having to solve
the equation. (For “nonautonomous” equations, whent appears in the right hand side:y′ = f (t, y), this
method doesn’t quite work, because we need to plotf against two variables. The technique of slope fields is
useful in that case.) The fundamental fact that we need is that — assuming thatf is a differentiable function
— no trajectory can pass through an equilibrium: if are ever at an equilibrium, we must have always been
there and we will remain there forever. This will be explained later, when covering uniqueness of solutions.

For example, suppose that we know that the plot off (y) againsty looks like this:
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B CA D E

where we labeled the points wheref (y) has roots, that is to say, the equilibria ofy′ = f (y).
We can conclude that any solutiony(t) of y′ = f (P) which starts just to the right ofA will move

rightwards, becausef (y) is positive for all points betweenA andB, and soy′ > 0. Moreover, we cannot
cross the equilibriumB, so any such trajectory stays in the interval(A, B) and, ast increases, it approaches
asymptotically the pointB. To summarize, ify(0) = y0 with y0 ∈ (A, B), then the graph of the solution
y(t) of y′ = f (y) must look more or less like this:

y

t

0

A

B

Homework assignment: For the same functionf shown above, give an approximate plot of a solution of
y′ = f (y) for which y(0) ∈ (B,C). Repeat withy(0) ∈ (C, D) and withy(0) ∈ (D, E).

7: More Examples. Let us discuss some more easy examples.

(a) Populations under Harvesting. Let us return to the population model(4)

P′ = k P

(
1− P

N

)

which describes population growth under environmental constraints. Suppose thatP(t) represents the
population of a species of fish, and that fishing removes a certain numberK of fish each unit of time. This
means that there will be a term inP(t +1t)− P(t) equal to−K1t . When we divide by1t and take limits,
we arrive at the equation for resources under constant harvesting:

P′ = k P

(
1− P

N

)
− K .

Many variations are possible. For example, it is more realistic to suppose that a certain proportion of
fish are caught per unit of time (the more fish, the easier to catch). This means that, instead of a term
−K1t for how many fish are taken away in an interval of length1t , we’d now have a term of the form
−K P(t)1t , which is proportional to the population. The differential equation that we obtain is now
P′ = k P

(
1− (P/N)

) − K P. Or, if only fish near the surface can be caught, the proportion of fish

caught per unit of time may depend on the powerP2/3 (do you understand why? are you sure?). This would
give us the equationP′ = k P

(
1− (P/N)

)− K P2/3.
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(b) Epidemics. The spread of epidemics is another example whose study can be carried out using
differential equations. Suppose thatS(t) counts the number of individuals infected with a certain virus, at
time t , and that people mix randomly and get infected from each other if they happen to be close. One model
is as follows. The increase in the number of infected individualsS(t +1t)− S(t) during a time interval of
length1t is proportional to the number of close encounters between sick and healthy individuals, that is, to
S(t)H(t)1t , becauseS(t)H(t) is the total number of pairs of (sick,healthy) individuals, and the longer the
interval, the more chances of meeting. Taking limits as usual, we arrive toS′(t) = kS(t)H(t), wherek is
some constant. If the total number of individuals isN, thenH(t) = N − S(t), and the equation becomes:

S′ = kS(t)
(

N − S(t)
)

which is a variant of the logistic equation. There are many extensions of this idea. For instance, if in every
1t time interval a certain proportion of infected individuals get cured, we’d have a term−kS(t).

(c) Chemical Reactions. Chemical reactions also give rise to similar models. Let us say that there are two
reactantsA andB, which may combine to giveC via A+ B→ C (for each molecule ofA andB, we obtain
a molecule ofC). If the chemicals are well-mixed, the chance of two molecules combining is proportional
to how many pairs there are and to the length of time elapsed (just like with the infection model, molecules
need to get close enough to react). Soc′(t) = ka(t)b(t), wherea(t) is the amount ofA at timet andb(t)
the amount ofB. If we start with amountsa0 andb0 respectively, and we havec(t) molecules ofC at time
t , this means thata(t) = a0 − c(t) andb(t) = b0 − c(t), since one molecule ofA andB was used up for
each molecule ofC that was produced. So the equation becomes

c′ = k(a0− c)(b0− c).

(d) Air Resistance. Consider a body moving in air (or another fluid). For low speeds, air resistance (drag)
is proportional to the speed of the object, and acts to slow down the object, in other words, it acts as a force
k |v|, in a direction opposite to movement, where|v| is the absolute value of the velocity. Suppose that a
body is falling towards the earth, and let us take “down” as the positive direction of movement. In that case,
Newton’s “F = ma” law says that the mass times the accelerationv′ is equal to the total force on the body,
namelymg(its weight) plus the effect of drag, which is−kv (because the force acts opposite to the direction
of movement):

mv′ = mg− kv.

For large velocities, drag is often modeled more accurately by a quadratic effect−kv2 in a direction opposite
to movement. This would lead to an equation likemv′ = mg− kv2 for the velocity of a falling object. Both
of these equations can be solved exactly. This allows the validity of the model to be tested by comparing
these formulas to experimental results.

(e) Newton’s Law of Cooling. The temperature inside a building is assumed to be uniform (same in every
room) and is given byy(t) as a function of the timet . The outside air is at temperaturea(t), which also
depends on the time of the day, and there is a furnace which supplies heat at a rateh(t) (or, for negativeh,
an air-conditioning unit which removes heat at that rate). What is the temperature in the building? Newton’s
law of cooling tells us that the rate of change of temperaturedy/dt will depend on the difference between
the inside and outside temperatures (the greater the difference, the faster the change), with a term added to
model the effect of the furnace:

mcy′ = −k
(

y− a(t)
)+ h(t),
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where the mass of air in the building is the constantm (no windows can be opened, and doors are usually
tightly closed, being opened rarely and briefly, so we assume thatm is a constant),c is a positive constant
(the heat capacity), andk is another positive constant (which is determined by insulation, building layout,
etc).

(f) Mixing Problems. (See book for this.)

8: Homework Problem. You should match the following word descriptions and differential equations.
More than one equation may match a description, and vice versa.

Descriptions:
1. The rate of change of the population of a certain country, which depends on the birth and death rates as

well as on the number of immigrants, who arrive at a constant rate into the country.
2. The rate of change of the population of a certain country, which depends on the birth and death rates,

but there is a net emigration from the country (at a constant rate).
3. Fish in a certain area, which reproduce in proportion to the population, subject to limits imposed by

the carrying capacity of the environment, and the population of which is also reduced by fishing which
proceeds at a constant rate.

4. The temperature of a building, when the outside temperature varies periodically (it goes down during
the night, up during the day) and there is no heating or air-conditioning.

5. The temperature of a building, when the outside temperature varies periodically (it goes down during
the night, up during the day) and heating is being applied at a constant rate.

6. The temperature of a building, when the outside temperature is constant, and there is no heating or
air-conditioning.

7. The temperature of a building, when the outside temperature is constant, and heating is being applied
at a constant rate.

8. The amount of money in a savings account, when interest is compounded continuously, and also
additional money is being added at a constant rate (the person always deposits a certain percentage of
her paycheck).

9. The rate of change of the volume of a raindrop, which evaporates at a rate proportional to its surface
area.

10. The rate of change of the volume of a raindrop, which evaporates at a rate proportional to its diameter.
11. The mass of a radioactive substance which is decaying (at a rate proportional to the amount present).
12. The amount of chlorine in a swimming pool; chlorinated water is added at a fixed rate, the water in the

pool is well-mixed, and water is being removed from the pool so that the total volume is constant.

Equations (all constants are positive):
• y′ = −ky Answer(s): • y′ = −ky+ c Answer(s):
• y′ = −ky1/3 Answer(s): • y′ = −ky2/3 Answer(s):
• y′ = ky(K − y) Answer(s): • y′ = ky(K − y)+ c Answer(s):
• y′ = ky(K − y)− c Answer(s): • y′ = −k(y− sint)+ c Answer(s):
• y′ = −k(y− sint) Answer(s): • y′ = −k(y− sint)− c Answer(s):
• y′ = −k(y− K )+ c Answer(s): • y′ = −k(y− K )− c Answer(s):
• y′ = −k(y− K ) Answer(s): • y′ = ky Answer(s):
• y′ = ky+ c Answer(s): • y′ = ky− c Answer(s):
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