
Math 252 — Fall 2002
Supplement on Euler’s Method

Introduction. The textbook seems overly enthusiastic about Euler’s method. These notes aim to present a
more realistic treatment of the value of the method and its relation to other numerical methods for solving
differential equations.

First, although Euler’s method can be performed on a simple calculator, it cannot be considered well
suited for hand computation. The repetitive steps require that the whole program be stored by the computing
device to guarantee that they will be performed consistently and correctly. If machine computation is to be
used, other methods are available to deliver high accuracy quickly with only a small increase in the complexity
of the program. Nevertheless, this method illustrates the principle on which all numerical methods are based.

Note that our analytic methods aim to findgeneral solutionsthat contain a parameter, allowing initial
value problems to be solved by identifying the value of the parameter that is consistent with the initial data,
but numerical methods need the initial condition to give a characterization of a unique function which the
method attempts to calculate.

The main value of Euler’s method is that it is easy to analyze, and this analysis can be used to prove a
form of theexistence and uniqueness theoremthat would be good enough for the purposes of this course.
The textbook does not take full advantage of this, although it does describe how one estimates the error in
Euler’s method in Section 7.1. However, that discussion appears late in the book and the key ideas may be
lost in the technicalities needed to give a complete proof.

No proofs are given to the theorems stated in the text since the usual proofs use special methods to
get a strong result from a weaker hypothesis. If you require the right side of the differential equation to be
continuously differentiable, then you can get an error estimate that bounds the work required to get within a
given distance of a solution by Euler’s method. This estimate will show that Euler’s approximations converge
to a solution as the step size goes to zero.

Although we refer to the problem we are studying as an “initial value problem”, and usually specify
y(0), our method will find a solution fort < 0 as well as fort > 0.

Examples. You should useMaple to produce the direction fields of these examples. In order to have the
necessary tools available, begin a new worksheet with the instruction
with(DEtools):

Then, you can get the illustrations of these examples using theDEplot function (seeMaple Helpfor
a full list of options). In particular,
DEplot(diff(y(t),t)=(1+t*y(t))/(2+y(t)ˆ2),y(t),t=-2..2,y=-2..2);#A

DEplot(diff(y(t),t)=tˆ2+y(t)ˆ2,y(t),t=-2..2,y=-2..2);#B

DEplot(diff(y(t),t)=2*(t+sqrt(tˆ2-y(t))),y(t),t=-2..2,y=-1..4);#C
The Maple functiondfieldplot could be used in place ofDEplot . The two functions take the same
arguments, allow the same options, and produce the same results, except thatDEplot allows initial condi-
tions to be specified after giving the range of the variablet . The plot will then show solution curves as well
as the direction field.

Examples A and B were constructed to avoid the patterns of equations that can be solved in closed
form, yet they will be seen to have a unique solution through each point of the plane. The solutions to A

1



can be extended to be defined for allt , but all solutions of B are unbounded over a bounded interval oft . To
see some solutions, add the option{[y(0)=-1],[y(0)=0],[y(0)=1]} between the specification of
the t andy ranges. (The individual initial conditions are to be enclosed in brackets since alist is required.
Brackets may be used in place of braces around the whole collection; since alist is an alternative to theset
that is denoted by braces.)

Example C is very different. The right side of the equation is only defined fory ≤ t2. This leads
to difficulties in numerical methods since the approximate solution may stray into the forbidden zone. On
the other hand, we can give an exact description of the solution through each such point. First, check that
y = t2 is a solution. Then, show that the portion of the liney = 2ct − c2 wheret < c is a solution. If you
start at some point(t0, y0) strictly belowy = t2, the solution can be found by solvingy0 = 2ct0 − c2 for
c and selecting the solution that is greater thant0. There is a unique solution that follows this line until it
becomes tangent to the parabola at(c, c2), to the right of the starting point, and then it follows the parabola.
Thus, for each point(a,a2) on the parabola, the solutions through that point are all the curves that we just
described starting from points(t0, y0) with t0 < a and 2at0 − a2 < y0 < a2 (i.e., points to the left of the
given point between the parabola and the tangent line at the given point). The failure of the uniqueness
theorem is related to difficulties in using numerical methods to solve this equation.

The nature of a numerical solution. The true solution of the equation

dy

dt
= f (t, y) (1)

givesy as a function oft . If there is an exact solution, this is achieved by giving a formula that we know how
to evaluate. Such a formula is useful if it can be writtenbriefly . This allows the behavior of the function
to be illustrated by a graph as well as allowing easy computation ofy for arbitraryt to fairly high accuracy.
To get similar performance from a numerical method, an interpolation formula will be used to give a similar
computation of the function anywhere in its domain from a list of its values at a finite number of points. In
Euler’s method, the values oft will be tk = t0 + kh for some smallstep sizeh and integersk. We want to
allow k to be either positive or negative, but the computation will typically use only positivek. To get the
points for negativek, it is customary to change the sign ofh and repeat the method of solution. To get the
value at other points, linear interpolation between the closesttk can be used. To fix notation, letyk = y(tk) be
the value of the solution of the initial value problem consisting of the equation(1) and the initial condition
y(t0) = y0 at tk, and letvk be the approximation toyk computed by Euler’s method. Although theyk are
not known, we shall see that we know enough to produce an upper bound on|yk − vk|.

It is reasonable to takev0 = y0 in order to satisfy the initial condition exactly. Then, take

vk+1 = vk + h f (tk, vk) (2)

Mathematical induction shows that such a process determines allvk for all nonnegative integersk.

Using the equation to find the second derivative.
Although our goal is to prove that equations have solutions, we begin by assuming that we have a

solution and seek to learn more about it. Thus, we suppose that we have a solutiony(t) to equation(1)
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and look for additional properties of the solution. In particular, we can differentiate both sides of(1) with
respect tot to obtain (via the chain rule for functions of two variables)

d2y

dt2
= ft (t, y)+ fy(t, y) · dy

dt
= ft (t, y)+ fy(t, y) · f (t, y)

(3)

where the subscript onf indicates the partial derivative with respect to the variable named in the subscript.
Thus, if f (t, y) is differentiable, the solutiony(t) will have a second derivative. This can be continued to
find higher derivatives ofy(t) as long as the partial derivatives off exist, but the expressions become messy
very quickly. Fortunately, no more thand2y/dt2 is needed for the analysis of Euler’s method.

For examples A and B, these expressions exist everywhere. For example C, existence of this quantity
requiresy < t2: there is a square root oft2 − y in the denominator, so we need to be sure both that the
square root exists and that it is not zero. Interestingly, in this case, the expression ford2y/dt2 simplifies to
zero. This tells us that any solutions must lie along straight lines as long as they remain belowy = t2.

In general, the expression for the second derivative will depend on botht andy, but in any bounded
region where this expression is continuous, we can compute a bound on the second derivative of any function
y(t) satisfying the equation, while the graph of the solution lies in this region. Specifying bounds ony means
that we announce that we will lose interest in a solution as soon as it gets too far from the initial value. Without
this restriction, we would only be sure of our solution on an interval around the initial value oft that was so
small that the solution could not reach the top or bottom of our graphing window. This is the only reason
for the mysteriousε in the statements in the textbook.

An important consequence of this follows from Taylor’s formula:

y(t) = y(tk)+ y′(tk)(t − tk)+
1

2
y′′(τ )(t − tk)

2 (4)

whereτ is some number betweent andtk. The first two terms on the right give the equation of the tangent
line to the solution curve att = tk. Although the last term in(4) contains much that is not known, the

assumption that the solution lies in our given region means that(3) gives

y′′(τ ) = ft (τ, η)+ fy(τ, η) · f (τ, η)

at some point(τ, η) in our bounded region. Any bound on this expression translates into a proof that the
tangent is close to the curve whent − tk is small. Confining attention to a bounded rectangle in the(t, y)
gives a uniform bound

∣∣y′′(τ )∣∣ ≤ M (assuming that the partial derivatives off (t, y) are continuous). Thus,

for Euler’s method with a step size ofh, a single step introduces an error that is a bounded multiple ofh2.

Nearby Solutions. After we have been using Euler’s method for a while, the current point is no longer on the
solution through the starting point. If this is not to cause too much trouble, the tangent lines at the true point
(tk, yk) and the calculated point(tk, vk) should have roughly the same direction. Fortunately, a quantitative
version of this condition can be expressed in terms of things that can be estimated. One needs only the mean
value theorem to show that the difference of the slopes,f (tk, yk)− f (tk, vk) is fy(tk, η) · (yk − vk) with η
betweenvk andyk. Again, as long as both the true solution and the approximate solution stay in the given
region, we have a quantityL such that

∣∣ fy(t, y)
∣∣ ≤ L. For #C, fy(t, y) is unbounded ify− t2 is small, and

the uniqueness theorem has been seen to fail for points on this parabola.
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The technical part of the proof constructs an inductive argument to show that this component of the
error has a an effect that is bounded independent of the step size. For Euler’s method, the error in each step
was bounded by a fixed multiple ofh2, but the number of steps to go a fixed distance is proportional to 1/h,
so the total error should be proportional toh.

This is good enough to show that the method approximates solutions, but not good for computing
solutions to a reasonable accuracy. To increase the accuracy by a single decimal place requires ten times as
much computation. In addition, the simple act of adding together a million numbers means that a million
round-off errors are accumulated. This requires that higher accuracy must be maintained throughout the
computation to keep these errors from affecting the part of the answer that is expected to be accurate.

Existence and Uniqueness. If we prove this error estimate for Euler’s method, then, on any closed and
bounded regionD where the value ofd2y/dt2 computed from the equation is continuous, the computed
approximations converge to any solution of a given initial value problem. Since a convergent sequence has
a unique limit, this means that an initial value can have at most one solution onD.

To prove the existence of solutions, similar methods are applied to estimate the difference between
the quantities computed by Euler’s method with different step sizes. You are probably not interested in the
details, but this shows that Euler’s method will converge to something. The final step is to show that any
such limiting function must satisfy the differential equation.

Technicalities of compounding. Unfortunately, errors don’t justaccumulate, theycompound. In addition
to thetk, yk andvk, let

wk+1 = yk + h · f (tk, yk).

That is,wk+1 is the point that would be computed if we made one step of Euler’s method starting from
(tk, yk). The triangle inequality gives

|yk+1− vk+1| ≤ |yk+1− wk+1| + |wk+1− vk+1| .
The comments above show that

|yk+1− wk+1| ≤
Mh2

2
,

and
|wk+1− vk+1| ≤ |yk − vk| · (1+ Lh).

Induction on this gives

|yk − vk| ≤
Mh2

2

k−1∑

j=0

(1+ Lh) j .

The sum is a geometric series, so we have

|yk − vk| ≤
Mh2

2

(1+ Lh)k − 1

(1+ Lh)− 1
.

The fraction at the end of this expression is a difference quotient of the functionxk, so

(1+ Lh)k − 1

(1+ Lh)− 1
= k(1+ θLh)k−1
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for someθ between 0 and 1. Since(1+ 1/x)x increases toe asx→+∞,

(1+ θLh)k−1 < (1+ Lh)k < eLhk,

and

|yk − vk| ≤
Mh2k

2
eLhk.

In this expression,hk= tk− t0 , which is the total horizontal displacement. This depends on the point being
computed, but not on the step size. We are assuming a bound of the form|tk − t0| ≤ H , so we find

|yk − vk| ≤
M Hh

2
eL H .

Now, everything in this bound is constant except for one factor ofh.
Instead of comparing the Euler approximation to a true solution, one can compare Euler approximations

of different step sizes. A similar result will hold. If the step size is repeatedly cut in half, this error estimate
will show that the sequence of functionsek(t) obtained will have allow a functiony(t) to be defined as

y(t) = lim
k→∞

ek(t),

and this function will satisfy the given initial value problem.
The only part of this analysis that is specific to Euler’s method is the single-step bound ofMh2/2.

One factor ofh gets multiplied byk to give H . Any local error estimate will suffer the same fate. The
Runge-Kutta method, which Maple uses for its numerical solutions, has a single-step bound of the form
Rh5, so its global error bound isRHh4eL H .
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