
BRIEF GUIDE TO COÖRDINATES AND MATRICES

References to Fraleigh & Beauregard, for short F & B, are references to John B. Fraleigh and Ray-
mond A. Beauregard, Linear Algebra, 3rd ed. (1995), Addison-Wesley, ISBN# 0-201-52675-1. References to
Blanchard, Devaney & Hall, for short BD&H, are references to Paul Blanchard, Robert L. Devaney & Glen
R. Hall, Differential Equations, Brooks/Cole (1997), ISBN# 0-534-34550-6.

1.0. Coördinates: If V is an n-dimensional vector space and B = (b1, . . . ,bn) is a(n ordered) basis
of V , then the coördinate vector, or loosely the coördinates of a vector v ∈ V relative to B is/are
the (column) vector (or its entries) [r1, . . . , rn]T ∈ Rn whose entries are the (uniquely determined) scalars
for which v = r1b1 + · · ·+ rnbn. See F & B, p. 205, who denote the row version of this vector by vB. (We
shall largely eschew that notation here.) It follows from the uniqueness of the representation of elements
of V as linear combinations of the elements of B that for any scalar s ∈ R the coördinates of sv are
given by [sr1, . . . , srn]T ∈ Rn, and that if v and w are two vectors for which v = r1b1 + · · · + rnbn and
w = s1b1 + · · ·+ snbn respectively, then “addition vertically”

v = r1b1 + · · ·+ rnbn
w = s1b1 + · · ·+ snbn

v + w = (r1 + s1)b1 + · · ·+ (rn + sn)bn

shows that the coördinates of v + w are [r1 + s1, . . . , rn + sn]T . This definition agrees with customary usage
in the case where V is Rn and the basis B is the “standard basis” (e1, . . . , en) whose j-th element is the
j-th standard basis vector [0, . . . , 1, . . . , 0]T , i.e., the vector of 0’s and 1’s in which the unique “1” is in
the j-th row. Thus once a basis has been chosen, the vector-space operations in V behave exactly like the
vector-space operations on their coördinate vectors relative to B in Rn. This is the isomorphism between
V and Rn discussed by F & B on pp. 221–223 and in Theorem 3.9. Note that this isomorphism depends on
the choice of B, so that even if V is Rn this isomorphism may not be the “identity.” The consequences of
this fact are discussed in the next §.

1.1. Coördinates with respect to non-standard bases in Rn: If B = (b1, . . . ,bn) is a(n ordered)
basis of Rn that is not the standard basis, then the coördinates of a vector v = [x1, . . . , xn]T with respect
to B will not be the xi’s. However, they are related to the xi’s as follows: if we also denote by B the

matrix whose j-th column is bj , then B is an n× n matrix and bj =


b1j
...

bnj

. If [r1, . . . , rn]T ∈ Rn are the

coördinates of v with respect to the basis B, we then have the two representations
x1

...

xn

 = v =
n∑
j=1

rjbj =


∑n

j=1 rjb1j

...∑n
j=1 rjbnj

 = B


r1

...

rn


for v, where the fourth equal-sign holds by the definition of matrix multiplication. Comparing the extreme
l. h. and r. h. sides, we see that 

x1

...

xn

 = B


r1

...

rn



B−1


x1

...

xn

 =


r1

...

rn

 .

In words: to find the coördinates of v with respect to the basis of Rn whose elements
are the columns of the matrix B, simply compute B−1v.
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On p. 207, F & B tell the reader to compute these coördinates by writing the “augmented matrix” [B|v]
and row-reducing it to the form [In|vB ]. Since this is the standard Gauss-Jordan way to solve the (system

of) equation(s) B


r1

...

rn

 =


x1

...

xn

 where the r’s are regarded as unknown and the x’s as known, of course this

is equivalent to saying vB = B−1v, and this method is better than computing B−1 for producing
numbers, because it is more efficient computationally; but it is not as good when one has to derive
formulas and/or think.

1.2. Coördinates with respect to a basis B of a k-dimensional subspace V ⊆ Rn: Exactly the
same computations made above show that if B = (b1, . . . ,bk) is a basis of a k-dimensional subspace V of
Rn, and if B also denotes the matrix whose j-th column is bj , then for any element [x1, . . . , xn]T = v of V ,
we must have 

x1

...

xn

 = B


r1

...

rk

 .

Since B has only k columns—it is an n× k matrix, and k ≤ n, so it is in general not a square matrix—there
is in general no matrix B−1, so we cannot just apply B−1 to both sides of this equation to find the ri’s.
However, we can apply BT (which is k × n) to both sides of this equation, and it can be shown(1) that the
k × k matrix BTB must be invertible if the columns of B are linearly independent. Consequently, we can
write 

x1

...

xn

 = B


r1

...

rk



BT


x1

...

xn

 = BTB


r1

...

rk



(BTB)−1BT


x1

...

xn

 =


r1

...

rk


to give a formula for the ri’s.

In practice—for numerical calculation—one solves the equations

BT


x1

...

xn

 = (BTB)


r1

...

rk


by writing the “augmented matrix” [B|v]—which does not have a square B—and then
multiplying it by BT on the left to give an “augmented matrix” [BTB|BTv] corre-
sponding to a k × k system of equations. This is then solved by row-reducing it to
[Ik|vB ].

(1)
The Spring 2000 main web page for Math 250:04 has a link to notes “Basis expansions and orthogonal projections” containing a

version of the details.
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This is equivalent to multiplying BT


x1

...

xn

 by (BTB)−1 but represents less numerical work. It is also a

more stable numerical procedure when floating-point calculations are involved.

If B happens to be n×n (because V = Rn) then (BTB)−1BT = B−1(BT )−1BT = B−1 and this process
reduces to the one considered in 1.1 above. It can be shown that if v ∈ Rn does not belong to V , then the
process that we just described produces the coördinates with respect to B of the orthogonal projection
of v on V . Details—for anyone who might be interested in them—can be found in F & B, §6.4, pp. 360 ff.
This fact implies that the vector orthogonal projection of v ∈ Rn on V is given(2) by B(BTB)−1BTv.

2.0. The matrix of a linear transformation: In their §2.3, pp. 142 ff., F & B produce the standard
matrix representation of a given linear transformation T : Rn → Rm; this is the matrix

A =


| | |

T (e1) T (e2) · · · T (en)

| | |


and it has the property that for each x ∈ Rn, T (x) = Ax. F & B give the details. Note that if the entries in
A = [aij ] are indexed in the usual way, then the j-th column of the matrix A, which is T (ej), can be written
as

T (ej) = a1je1 + a2je2 + · · ·+ amjem =
m∑
i=1

aijei . (∗)

In the case of a linear transformation T : Rn → Rn, we have n = m and A is square.

2.1. The matrix of a linear transformation relative to a basis: It is easy to adapt the construction
just given(3) to linear transformations T : V → V from one “abstract” vector space to itself: however, since
there is no distinguished “standard” basis in such a V , we have to talk about the matrix, or matrix
representation, of T relative to a basis B = (b1, . . . ,bn) of V . We simply replace the ei’s of the
standard construction in the preceding paragraph by the bi’s that we have, so that the matrix we want is
A = [aij ] where

T (bj) = a1jb1 + a2jb2 + · · ·+ anjbn =
n∑
i=1

aijbi . (∗∗)

That is, the j-th column of A is the coördinate vector—with respect to the basis B—of T (bj). Using this
defining relation, it is easy to check that if U : V → V is a(nother) linear transformation whose matrix
representation is C = [cij ], then U ◦ T : v→ U(T (v)) has the matrix representation CA. Indeed,

T (bj) = a1jb1 + a2jb2 + · · ·+ anjbn =
n∑
k=1

akjbk

(U ◦ T )(bj) = U(T (bj)) =
n∑
k=1

akjU(bk) =
n∑
k=1

akj

(
n∑
i=1

cikbi

)

=
n∑
i=1

(
n∑
k=1

akjcik

)
bi =

n∑
i=1

(
n∑
k=1

cikakj

)
bi

so the matrix representation of U ◦ T is given by the matrix

(
n∑
k=1

cikakj

)
, which is just the matrix product

CA (in that order, the same order in which T and U are composed).

(2)
Note that the apparent cancellation in the expression B(BTB)−1BT does not occur if the matrix B is not square.

(3)
In fact, one can adapt it for linear transformations T :V→V ′ from one “abstract” vector space to another, by selecting a basis B

for V and a basis B′ for V ′. The details are in F & B, pp. 223–225. However, the case of a linear transformation of a vector space to

itself is the most important in applications, and conventionally one uses the same basis at “both ends” of T .
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2.2. Changing bases and changing coördinates: Suppose V is an n-dimensional vector space and
B = (b1, . . . ,bn) and B′ = (b′1, . . . ,b′n) are two bases of V ; then a vector v ∈ V has two competing vectors
of coördinates: its coördinates [r1, . . . , rn]T ∈ Rn relative to B, whose entries are the (uniquely determined)
scalars for which v = r1b1 + · · ·+ rnbn, and its coördinates [s1, . . . , sn]T ∈ Rn relative to B′, whose entries
are the (uniquely determined) scalars for which v = s1b′1 + · · · + snb′n. It is not difficult to see how to
convert one vector of coördinates to the other. Each vector b′j can be written in a unique way as a linear
combination of the bi’s:

b′j =
n∑
i=1

cijbi .

Plugging this into the coördinate representation of v relative to B′ gives

r1b1 + · · ·+ rnbn = v =
n∑
j=1

sjb′j =
n∑
j=1

sj

(
n∑
i=1

cijbi

)
=

n∑
i=1

 n∑
j=1

cijsj

bi ;

comparing the coördinates of bi on the extreme l. h. and r. h. sides of this equation gives

ri =
n∑
j=1

cijsj for j = 1, . . . , n

and those scalar equations are equivalent to the single vector-matrix equation
r1

...

rn

 =


c11 · · · c1n
... · · ·

...

cn1 · · · cnn



s1

...

sn

 .

The situation is symmetrical with respect to the rôles of B and B′, so we can play the same game backwards:
each vector bj can be written in a unique way as a linear combination of the bi’s:

bj =
n∑
i=1

dijb′i .

Plugging this into the coördinate representation of v relative to B′ gives

s1b′1 + · · ·+ snb′n = v =
n∑
j=1

rjbj =
n∑
j=1

rj

(
n∑
i=1

dijb′i

)
=

n∑
i=1

 n∑
j=1

dijrj

b′i ;

comparing the coördinates of b′i on the extreme l. h. and r. h. sides of this equation gives

si =
n∑
j=1

dijrj for j = 1, . . . , n

and those scalar equations are equivalent to the single vector-matrix equation
s1

...

sn

 =


d11 · · · d1n

... · · ·
...

dn1 · · · dnn



r1

...

rn

 .
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It follows easily that [dij ][cij ] = In and [cij ][dij ] = In as matrix products: the two “change-of-basis matrices”
are each other’s inverses. Thus we have a choice of writing

s1

...

sn

 =


d11 · · · d1n

... · · ·
...

dn1 · · · dnn



r1

...

rn

 or


s1

...

sn

 =


c11 · · · c1n
... · · ·

...

cn1 · · · cnn


−1 

r1

...

rn


as the formula that converts from the coördinates relative to B to the coördinates relative to B′.
For numerical work, it is usually easier to solve the system of equations

c11 · · · c1n
... · · ·

...

cn1 · · · cnn



s1

...

sn

 =


r1

...

rn


by the usual augmented-matrix/Gauss-Jordan reduction technique than to invert the matrix [cij ]. But notice
that this is an inverse(4) relation: if [cij ] is the matrix that writes B′ in terms of B, then [cij ]−1 converts
coördinates with respect to B into coördinates with respect to B′.

2.3. Changing bases and changing the matrix of a linear transformation: This follows the
same pattern as changing coördinates. If T : V → V is a linear transformation, B = (b1, . . . ,bn) and
B′ = (b′1, . . . ,b

′
n) are two bases of V , the matrix representation of T relative to B is [aij ] and the matrices

that write B and B′ in terms of each other are [cij ] and [dij ] respectively, so b′j =
n∑
i=1

cijbi and bj =
n∑
i=1

dijb′i

respectively, then

T (b′j) = T

(
n∑
k=1

ckjbk

)
=

n∑
k=1

ckjT (bk) =
n∑
k=1

ckj

(
n∑
`=1

a`kb`

)

=
n∑
k=1

ckj

[
n∑
`=1

a`k

(
n∑
i=1

di`b′i

)]
=

n∑
i=1

(
n∑
`=1

n∑
k=1

di`a`kckj

)
b′i . (#)

Since (#) has the form T (b′j) =
n∑
i=1

gijb′i, the coefficients that occur in its r. h. s. must be the entries in the

matrix of T relative to B′. By the definition of matrix multiplication, the double sum

(
n∑
`=1

n∑
k=1

di`a`kckj

)
is the ij-indexed entry in the matrix [dij ][aij ][cij ] = [cij ]−1[aij ][cij ], so we now know:

If T : V → V is a linear transformation, B = (b1, . . . ,bn) and B′ = (b′1, . . . ,b
′
n) are two

bases of V , the matrix representation of T relative to B is [aij ] and the matrix that

writes B′ in terms of B is [cij ], so b′j =
n∑
i=1

cijbi, then the matrix of T relative to B′ is

[cij ]−1[aij ][cij ].

Consider the particular case in which V = Rn, the rôle of B is played by the standard basis, and the
rôle of B′ by a non-standard basis. We are accustomed to call the new basis by the name B, which is a
bit confusing. However, in this case the matrix we called “[cij ]” in the preceding paragraph is then just the

matrix B =


| · · · |

b1 · · · bn

| · · · |

 = [bij ] whose j-th column is the vector bj . So the general formula we just

derived becomes

(4)
The word contravariant is also sometimes used to describe a relation that behaves this way.
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If T : Rn → Rn is a linear transformation whose standard matrix representation is A =
[aij ], B = (b1, . . . ,bn) is a(nother) basis of Rn, and B = [bij ] also denotes the n×n matrix
whose j-th column is bj, then the matrix of T relative to B is [bij ]−1[aij ][bij ] = B−1AB.

Reversing the rôles of the standard basis and the new basis in the result given above, we see that

If T : Rn → Rn is a linear transformation whose matrix representation is A = [aij ]
relative to a (non-standard) basis B = (b1, . . . ,bn) of Rn, and B = [bij ] also denotes the
n × n matrix whose j-th column is bj, then the matrix of T relative to the standard
basis of Rn is [bij ][aij ][bij ]−1 = BAB−1.

2.4. Diagonalization and diagonalizable matrices: The most important case of what we have just
done is probably the one that occurs when T : Rn → Rn is a linear transformation for which there is a basis
B = (b1, . . . ,bn) of Rn whose elements are eigenvectors of T , i.e., such that for each bj there is a scalar
λj for which Tbj = λjbj . Such linear transformations are called diagonalizable, since the matrix of T
relative to this basis is easily seen to have the particularly simple diagonal form


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 .

An n× n matrix is then called diagonalizable if its corresponding linear transformation T : x→ Ax of Rn
is diagonalizable (with respect to some basis, in general not the standard basis.) The two important results
we listed in 2.3 above specialize in this case to

If T : Rn → Rn is a linear transformation whose standard matrix representation is
A = [aij ], and if B = (b1, . . . ,bn) is a basis of Rn such that for each j = 1, . . . , n there is a
scalar λj for which T (bj) = λjbj, and B = [bij ] also denotes the n× n matrix whose j-th
column is bj, then the matrix of T relative to B is

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 = B−1AB . (!)

Reversing the rôles of the standard basis and the new basis in the result given above, or simply multiplying
both sides of the equation (!) by B on the left and B−1 on the right, we see that

If T : Rn → Rn is a linear transformation with the property that there is a basis
B = (b1, . . . ,bn) of Rn such that for each j = 1, . . . , n there is a scalar λj for which
T (bj) = λjbj, and if B = [bij ] also denotes the n×n matrix whose j-th column is bj, then
the matrix of T relative to the standard basis—i.e., the standard matrix representation
of T—is the matrix A given by

A = B


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

B−1 . (!!)

6 Math 250:04 and Math 252:01 Spring 2000



3.1. Differential-equation specialties(5): For any natural number k we can compute the k-th power
of a diagonalizable matrix A in a particularly easy way: it is trivial to verify that the k-th power of a diagonal
matrix is given by simply raising the diagonal elements to the k-th power:

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn



k

=


λk1 0 · · · 0

0 λk2 · · · 0
...

...
. . .

...

0 0 · · · λkn


and this makes computation of the k-th power of a diagonalizable matrix A almost as easy:

Ak =

B

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

B−1



k

= B


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

B−1B


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

B−1 · · ·B


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

B−1

︸ ︷︷ ︸
k factors

= B


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

 · · ·

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


︸ ︷︷ ︸

k factors

B−1

= B




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn





k

B−1 = B


λk1 0 · · · 0

0 λk2 · · · 0
...

...
. . .

...

0 0 · · · λkn

B−1

because all the intermediate products B−1B equal the identity. Assuming that the interchange of algebraic
and limiting operations is justified, we can then write for t ∈ R

etA =
∞∑
k=0

tkAk

k!
=
∞∑
k=0

tk

k!
B


λk1 0 · · · 0

0 λk2 · · · 0
...

...
. . .

...

0 0 · · · λkn

B−1 = B



∞∑
k=0

(λ1t)k

k!
0 · · · 0

0
∞∑
k=0

(λ2t)k

k!
· · · 0

...
...

. . .
...

0 0 · · ·
∞∑
k=0

(λnt)k

k!


B−1

(5)
Most of this material will be irrelevant for Math 250 students, but Math 252 students may find that it has survival value.
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and since we know the sums of the series
∞∑
k=0

(λjt)k

k!
= eλjt on the diagonals of the matrix, we can simply

write

etA = B


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλnt

B−1 . ($)

In some sense this formula “rationalizes” the method of “straight-line solutions” or eigenvectors of
BD&H, §§3.2 and 3.3. There one solved the 2×2 linear homogeneous system Y′ = AY by finding eigenvectors
V1 and V2 of A corresponding to its two distinct real eigenvalues λ1 and λ2, and observing that each function
eλjt Vj satisfied Y′ = AY. One then observed, since {V1,V2} was a basis of R2, that given any initial
position vector Y0 one could find constants k1 and k2 for which Y0 = k1V1 + k2V2. It then followed that
Y(t) = k1e

λ1tV1 + k2e
λ2tV2 satisfied both the differential equation and the initial condition Y(0) = Y0.

From the standpoint of the equation ($), we are simply writing

etA = B

[
eλ1t 0

0 eλ2t

]
B−1

Y(t) = etAY0 = B

[
eλ1t 0

0 eλ2t

]
B−1Y0

where B is the matrix whose j-th column is Vj , j = 1, 2; indeed, the equation Y0 = k1v1 + k2V2 is solved

by writing it in vector-matrix form as Y0 = [V1V2]

[
k1

k2

]
= B

[
k1

k2

]
, so that

[
k1

k2

]
= B−1Y0 and thus

Y(t) = etAY0 = B

[
eλ1t 0

0 eλ2t

][
k1

k2

]
= B

[
k1e

λ1t

k2e
λ2t

]
= k1e

λ1tV1 + k2e
λ2tV2 .

Note what is going on here. If one uses coördinates with respect to the basis {V1,V2} rather than the
standard coördinates that come with the standard basis, then the matrix of Y′ = AY is diagonal: if z1, z2

are the coördinates with respect to that basis, the vector DE Y′ = AY is equivalent to the two uncoupled
scalar DEs z′1 = λ1z1 and z′2 = λ2z2. The “straight-line solutions” travel along the z1- and z2-axes; other
trajectories have the form z2 = ±(const.) · (z1)λ2/λ1 , as in BD&H’s systems on pp. 251–252 and p. 255. Only
one’s insistence on using the standard basis in which to write the equation, instead of using the basis of
eigenvectors of A that the system “wants,” is responsible for “distorted” pictures like Fig. 3.14 and Fig. 3.16.

3.2 Equal eigenvalues, n = 2: In higher dimensions the case of “equal eigenvalues” can get com-
plicated; fortunately, it undergoes remarkable simplification(6) in dimension 2. “Equal eigenvalues” is a
misnomer: if there is a basis {V1,V2} of R2 for which AV1 = λV1 and V2 = λV2 (same λ), then the ma-

trix of A relative to the basis {V1,V2} is

[
λ 0

0 λ

]
, A equals multiplication by the scalar λ, and Y(t) = eλtY0

solves the initial value problem for Y′ = AY. The problem comes with a matrix like

[
0 1

−4 4

]
, whose cha-

racteristic polynomial det

([
λ −1

4 λ− 4

])
= λ2 − 4λ+ 4 = (λ− 2)2 has only one (double) root but which

(6)
I first heard this observation from Professor Sontag, and the exposition here is similar to that in his notes of a few years ago,

available from the “general Math 252 web page.”
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has only one eigenvector. (The eigenvectors belonging to λ = 2 are solutions of

[
2 −1

4 −2

][
y1

y2

]
= 0, and

there is only one [up to scalar multiples], namely V1 =

[
1

2

]
.) However, if one chooses any vector V2 linearly

independent of the single eigenvector V1 belonging to the single eigenvalue—let’s call it λ1—then the two
vectors {V1,V2} will necessarily form a basis of R2, and because

AV1 = λ1V1 and AV2 = αV1 + βV2

for some scalars α, β, the matrix of A relative to this basis will have the form

[
λ1 α

0 β

]
. The calculation

[
λ1 α

0 β

]
= B−1AB

(λ− λ1)(λ − β) = det

(
λI2 −

[
λ1 α

0 β

])
= det(λI2 −B−1AB) = det(λB−1B −B−1AB)

= (detB−1) det(λI2 −A)(detB) = det(λI2 −A) = (λ− λ1)2

then shows that in fact β = λ1 must hold, else the characteristic polynomial of A would have had two distinct
roots—but that is not the case we are now considering. So the matrix of A with respect to the basis B has

the form

[
λ1 α

0 λ1

]
= λ1I2 + αN , where N is the matrix

[
0 1

0 0

]
with N2 = 0. It follows that

[
λ1 α

0 λ1

]k
= (λ1I2 + αN)k = λk1I2 + kλk−1

1 αN + (· · ·)N2 = λk1I2 + λk−1
1 αN

since all the terms containing N ` for ` ≥ 2 will be zero, and thus

exp

(
t

[
λ1 α

0 λ1

])
=
∞∑
k=0

[t(λ1I2 + αN)]k

k!
=
∞∑
k=0

(tλ1)k

k!
I2 +

∞∑
k=0

tk · kλk−1
1

k!
αN = eλ1tI2 + αteλ1tN

exp(tA) = B exp

(
t

[
λ1 α

0 λ1

])
B−1 = eλ1tI2 + αteλ1tBNB−1 .

Continuing with A =

[
0 1

−4 4

]
, for example, we have V1 =

[
1

2

]
and we might take V2 =

[
0

1

]
; then

AV2 =

[
1

4

]
= V1 + 2V2. The matrix of A relative to this basis is then

[
2 1

0 2

]
; α = 1 and we have

B =

[
1 0

2 1

]
and B−1 =

[
1 0

−2 1

]
, so BNB−1 =

[−2 1

−4 2

]
. Finally, then,

etA = e2tI2 + te2t

[−2 1

−4 2

]
= e2t

[
1− 2t t

−4t 1 + 2t

]
.

It is easy to verify that the derivative of e2t

[
1− 2t t

−4t 1 + 2t

]
is in fact

[
0 1

−4 4

]
e2t

[
1− 2t t

−4t 1 + 2t

]
.
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