BRIEF GUIDE TO COORDINATES AND MATRICES

References to Fraleigh & Beauregard, for short F & B, are references to John B. Fraleigh and Ray-
mond A. Beauregard, Linear Algebra, 3rd ed. (1995), Addison-Wesley, ISBN# 0-201-52675-1. References to
Blanchard, Devaney & Hall, for short BD&H, are references to Paul Blanchard, Robert L. Devaney & Glen
R. Hall, Differential Equations, Brooks/Cole (1997), ISBN# 0-534-34550-6.

1.0. Codrdinates: If V' is an n-dimensional vector space and B = (by,...,b,) is a(n ordered) basis
of V, then the codrdinate vector, or loosely the coordinates of a vector v € V relative to B is/are
the (column) vector (or its entries) [r1,...,7,]7 € R™ whose entries are the (uniquely determined) scalars
for which v =r1by 4+ ---+r,b,,. See F & B, p. 205, who denote the row version of this vector by vg. (We
shall largely eschew that notation here.) It follows from the uniqueness of the representation of elements
of V' as linear combinations of the elements of B that for any scalar s € R the coordinates of sv are
given by [srq,..., srn]T € R™, and that if v and w are two vectors for which v = r1by +---+ r,b, and
w = s1b; + - - - + s, b, respectively, then “addition vertically”

v=ribi+--+r,b,
w=s1b1 4+ -+ s,by
V+w=(r1+s1)b1+ -+ (1 + sn)by

shows that the coordinates of v +w are [ry + s1,...,7, + 5,|7. This definition agrees with customary usage
in the case where V is R™ and the basis B is the “standard basis” (ei,...,e,) whose j-th element is the
j-th standard basis vector [0,...,1,...,0]T, i.e., the vector of 0’s and 1’s in which the unique “1” is in

the j-th row. Thus once a basis has been chosen, the vector-space operations in V behave exactly like the
vector-space operations on their coérdinate vectors relative to B in R™. This is the isomorphism between
V and R"™ discussed by F & B on pp. 221-223 and in Theorem 3.9. Note that this isomorphism depends on
the choice of B, so that even if V' is R™ this isomorphism may not be the “identity.” The consequences of
this fact are discussed in the next §.

1.1. Coordinates with respect to non-standard bases in R": If B = (by,...,b,) is a(n ordered)

basis of R™ that is not the standard basis, then the codrdinates of a vector v = [x1,...,2,]T with respect
to B will not be the x;’s. However, they are related to the z;’s as follows: if we also denote by B the
blj
matrix whose j-th column is bj, then B is an n X n matrix and b; = c | I [y, ..., ra]T € R™ are the
bn;j
coordinates of v with respect to the basis B, we then have the two representations
z1 Z?:1 7ib1; T1
n
v =Y b= =B
j=1 .
Tn ijl Tibn; n

for v, where the fourth equal-sign holds by the definition of matrix multiplication. Comparing the extreme
. h. and r. h. sides, we see that

[z ] 1
=B
L 2, | T
(21 ] 71
B'| | =
L T, | T

In words: to find the coordinates of v with respect to the basis of R” whose elements
are the columns of the matrix B, simply compute B~ 'v.
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On p. 207, F & B tell the reader to compute these codrdinates by writing the “augmented matrix” [B|v]
and row-reducing it to the form [I,|vp]. Since this is the standard Gauss-Jordan way to solve the (system
T1 X1

of) equation(s) B | : | = | : | where the r’s are regarded as unknown and the x’s as known, of course this

Tn T,

is equivalent to saying vg = B~ 'v, and this method is better than computing B~! for producing
numbers, because it is more efficient computationally; but it is not as good when one has to derive
formulas and/or think.

1.2. Coordinates with respect to a basis B of a k-dimensional subspace V C R": Exactly the

same computations made above show that if B = (by,...,by) is a basis of a k-dimensional subspace V' of
R™, and if B also denotes the matrix whose j-th column is b;, then for any element [z, ... )T =vof V,
we must have
Z1 ™
=B
T, Tk

Since B has only k columns—it is an n X k matrix, and k < n, so it is in general not a square matrix—there
is in general no matrix B~!, so we cannot just apply B! to both sides of this equation to find the r;’s.
However, we can apply BT (which is k x n) to both sides of this equation, and it can be shown that the
k x k matrix BT B must be invertible if the columns of B are linearly independent. Consequently, we can
write

I 71
=B
L Tn | Tk
[21] T
BT | : | =BTB
L Tn Tk
[21] 1
(BTB)™'BT | : | =
L Tn Tk

to give a formula for the r;’s.

In practice—for numerical calculation—one solves the equations

x1 1
BT | : | =(B"B)
T, Tk
by writing the “augmented matrix” [B|v]—which does not have a square B—and then
multiplying it by B” on the left to give an “augmented matrix” [B? B|BTv| corre-

sponding to a k x k system of equations. This is then solved by row-reducing it to
x| v].

@) The Spring 2000 main web page for Math 250:04 has a link to notes “Basis expansions and orthogonal projections” containing a

version of the details.
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T
This is equivalent to multiplying BT | : | by (BTB)~! but represents less numerical work. It is also a

x
more stable numerical procedure when ﬁ(?ating—point calculations are involved.

If B happens to be n x n (because V = R") then (BT B)"1 BT = B~1(BT)~!BT = B~! and this process
reduces to the one considered in 1.1 above. It can be shown that if v € R™ does not belong to V, then the
process that we just described produces the coordinates with respect to B of the orthogonal projection
of v on V. Details—for anyone who might be interested in them—can be found in F & B, §6.4, pp. 360 ff.
This fact implies that the vector orthogonal projection of v € R™ on V is given®) by B(BTB)~'BTv.

2.0. The matrix of a linear transformation: In their §2.3, pp. 142 ff., F & B produce the standard
matrix representation of a given linear transformation 7' : R™ — R™; this is the matrix

| | |
A= T(el) T(eg) s T(en)

| | |
and it has the property that for each x € R", T'(x) = Ax. F & B give the details. Note that if the entries in
A = [a;;] are indexed in the usual way, then the j-th column of the matrix A, which is T'(e;), can be written
as

m
T(ej) = ajje1 +azjez + -+ amjem = Zaijei . (*)
i=1
In the case of a linear transformation 7" : R™ — R™, we have n = m and A is square.

2.1. The matrix of a linear transformation relative to a basis: It is easy to adapt the construction
just given(® to linear transformations T': V — V from one “abstract” vector space to itself: however, since
there is no distinguished “standard” basis in such a V, we have to talk about the matrix, or matrix
representation, of T relative to a basis B = (by,...,b,) of V. We simply replace the e;’s of the
standard construction in the preceding paragraph by the b;’s that we have, so that the matrix we want is
A = [a;;] where

T(b]) = aljbl + agjbg + -+ Clnjbn = Zaijbi . (**)
=1

That is, the j-th column of A is the cotrdinate vector—with respect to the basis B—of T'(b;). Using this
defining relation, it is easy to check that if U : V' — V is a(nother) linear transformation whose matrix
representation is C' = [¢;;], then U o T : v — U(T'(v)) has the matrix representation C'A. Indeed,

n
T(b]) = aljbl + agjbg + 4 an]‘bn = Z ak]‘bk

k=1
n n n
(UoT)(bj) =U(T(b))) =D ar;U(by) = > ax; <Z Cikbi>
k=1 k=1 i=1
=> (Z akjcik> b; = <Z Czkakj> b;
i=1 \k=1 i=1 \k=1
n
so the matrix representation of U o T is given by the matrix (Z cikak]) , which is just the matrix product
k=1

CA (in that order, the same order in which 7" and U are composed).

@) Note that the apparent cancellation in the expression B(BT B)™!B” does not occur if the matrix B is not square.
®3) In fact, one can adapt it for linear transformations T:V —V’ from one “abstract” vector space to another, by selecting a basis B
for V and a basis B’ for V’. The details are in F & B, pp. 223-225. However, the case of a linear transformation of a vector space to

itself is the most important in applications, and conventionally one uses the same basis at “both ends” of T'.
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2.2. Changing bases and changing codrdinates: Suppose V is an n-dimensional vector space and

B =(by,...,b,) and B’ = (b],...,b) are two bases of V; then a vector v € V has two competing vectors
of codrdinates: its coordinates [rq,...,r,]T € R™ relative to B, whose entries are the (uniquely determined)
scalars for which v = r1by + -+ - + r,b,,, and its coérdinates [s1, ..., s,]T € R" relative to B’, whose entries

are the (uniquely determined) scalars for which v = s1b} + --- + s,b),. It is not difficult to see how to
convert one vector of coordinates to the other. Each vector b;» can be written in a unique way as a linear
combination of the b;’s:
n
b; = Z Cijbi .
i=1

Plugging this into the coordinate representation of v relative to B’ gives

n n n n n
7"1b1+"'+rnbn:V:ZSjb;:ZSj (Zcijbi> :Z CijSj bi;
j=1 j=1 i=1 i=1 \j=1
comparing the codrdinates of b; on the extreme 1. h. and r. h. sides of this equation gives
n
T = ZCUS]' fOI‘j = 1,...,’[1
j=1

and those scalar equations are equivalent to the single vector-matrix equation

1 €11 - Cin S1

Tn Cnl " Cpn Sn

The situation is symmetrical with respect to the réles of B and B’, so we can play the same game backwards:
each vector b; can be written in a unique way as a linear combination of the b;’s:

b, = zn: dijb] .
=1

Plugging this into the coordinate representation of v relative to B’ gives
n n n n n
siby + ot sabl =v=) b= (Z dijb;) = | Do digry | b

j=1 j=1 i=1 i=1 \j=1

comparing the codrdinates of b} on the extreme 1. h. and r. h. sides of this equation gives
n
8i = Zdijrj forj=1,...,n
j=1

and those scalar equations are equivalent to the single vector-matrix equation

S1 din - din T1

Sn dp1 -+ dpn Tn
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It follows easily that [d;;][ci;] = I, and [c;][di;] = I as matrix products: the two “change-of-basis matrices”
are each other’s inverses. Thus we have a choice of writing

-1
S1 din - din 1 S1 Ci1t '+ Cin T1

Sn dp1 -+ dpn Tn Sn Cnl  *°° Cpn Tn

as the formula that converts from the coordinates relative to B to the coordinates relative to B’.
For numerical work, it is usually easier to solve the system of equations

i1 Cin S1 1

Cnl ct Cnn Sn Tn

by the usual augmented-matrix/Gauss-Jordan reduction technique than to invert the matrix [c;;]. But notice
that this is an inverse(® relation: if [c;;] is the matrix that writes B’ in terms of B, then [c;;]~! converts
coordinates with respect to B into coordinates with respect to B'.

2.3. Changing bases and changing the matrix of a linear transformation: This follows the
same pattern as changing codrdinates. If T : V — V is a linear transformation, B = (by,...,b,) and

B’ = (b},...,b},) are two bases of V, the matrix representation of T relative to B is [a;;] and the matrices

n n
that write B and B’ in terms of each other are [¢;;] and [d;;] respectively, so b; = Z ¢ijb; and b; = Z di;b;
i=1 =1
respectively, then

T(b;‘) =T (Z ijbk> = Z ijT(bk) = chj (Z agkbg>
k=1 k=1 k=1 =1
=3 | S (St )| -3 (3 ) o )
k=1 1

{=1 i= i=1 \/4=1 k=1

n
Since (#) has the form T'(b}) = Zgijb;, the coefficients that occur in its r. h. s. must be the entries in the
i=1

n n
matrix of T relative to B’. By the definition of matrix multiplication, the double sum (Z Z digagkckj>
=1 k=1
is the ij-indexed entry in the matrix [d;;][ai;][cij] = [cij] ™ aij][eij], so we now know:
If T:V — V is a linear transformation, B = (by,...,b,) and B’ = (b},...,b]) are two

bases of V, the matrix representation of T relative to B is [a;;] and the matrix that
n

writes B’ in terms of B is [¢;;], so b;- = Zcijbi, then the matrix of T relative to B’ is
i=1
[ei]Hais]leis]-
Consider the particular case in which V' = R"”, the role of B is played by the standard basis, and the
role of B’ by a non-standard basis. We are accustomed to call the new basis by the name B, which is a
bit confusing. However, in this case the matrix we called “[¢;;]” in the preceding paragraph is then just the

matrix B = | by --- b, | = [b;;] whose j-th column is the vector b;. So the general formula we just

derived becomes

) The word contravariant is also sometimes used to describe a relation that behaves this way.

5 Math 250:04 and Math 252:01 Spring 2000



If T:R™ — R" is a linear transformation whose standard matrix representation is A =
[aij], B = (b1,...,by) is a(nother) basis of R”, and B = [b;;] also denotes the n x n matrix
whose j-th column is b;, then the matrix of T relative to B is [b;;] '[a;][bi;] = B~ AB.

Reversing the roles of the standard basis and the new basis in the result given above, we see that

If T : R* — R” is a linear transformation whose matrix representation is A = [a;;]
relative to a (non-standard) basis B = (by,...,b,) of R”, and B = [b;;] also denotes the
n X n matrix whose j-th column is b;, then the matrix of T' relative to the standard
basis of R"™ is [b;;][a;;][bi;] 7' = BAB™'.

2.4. Diagonalization and diagonalizable matrices: The most important case of what we have just
done is probably the one that occurs when T : R™ — R™ is a linear transformation for which there is a basis
B = (by,...,by) of R" whose elements are eigenvectors of T, i.e., such that for each b; there is a scalar
A; for which Tb; = A;b;. Such linear transformations are called diagonalizable, since the matrix of T
relative to this basis is easily seen to have the particularly simple diagonal form

M O -0
0 A -+ 0
0 0 - M\

An n x n matrix is then called diagonalizable if its corresponding linear transformation T" : x — Ax of R™
is diagonalizable (with respect to some basis, in general not the standard basis.) The two important results
we listed in 2.3 above specialize in this case to

If T : R" — R" is a linear transformation whose standard matrix representation is
A = [ay;], and if B = (by,...,b,) is a basis of R” such that for each j =1,...,n there is a
scalar \; for which T'(b;) = A\;b;, and B = [b;;] also denotes the n x n matrix whose j-th
column is b;, then the matrix of 7' relative to B is

M 0 - 0
0 X - 0

=B 'AB. )
0 0 -+ A

Reversing the roles of the standard basis and the new basis in the result given above, or simply multiplying
both sides of the equation (!) by B on the left and B~! on the right, we see that

If T: R" — R" is a linear transformation with the property that there is a basis
B = (bi,...,b,) of R” such that for each j = 1,...,n there is a scalar \; for which
T(b;) = A;b;, and if B = [b;;] also denotes the n xn matrix whose j-th column is b;, then
the matrix of T relative to the standard basis—i.e., the standard matrix representation
of T—is the matrix A given by

M 0 - 0
0 X -+ 0

A=B B! (1)
0 0 An
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3.1. Differential-equation specialties(®): For any natural number k we can compute the k-th power
of a diagonalizable matrix A in a particularly easy way: it is trivial to verify that the k-th power of a diagonal
matrix is given by simply raising the diagonal elements to the k-th power:

N O oo 017F A0 -0
0 X --- 0 0 X5 - 0
0 0 - M\ 0 0 - Ak

and this makes computation of the k-th power of a diagonalizable matrix A almost as easy:

M O - 0 k
0 Ao 0
Ak =| B B!
0 0 - A
Ay 0 - 07 Ay, 0 - 0 A 0 - 0
0 X -+ 0 0 X -+ 0 0 X -+ O
=B B™'B B'...B , | B!
LO 0 - A, LO 0 - A\, 0O 0 - A\
k factors
A 0 - 07TM O -+ 0 M 0 -0
0 X -+ 0 0 X -+ 0 0 X -+ 0
:B P B71
LO 0 --- X,JLO O - A, 0O 0 - A\
k factors
M0 - 0T\F AP0 e 0
0 X 0 0 A 0
= B B*lzB B,1
0 0 - Al 0 0 .- Aﬁ

because all the intermediate products B~!B equal the identity. Assuming that the interchange of algebraic
and limiting operations is justified, we can then write for t € R

> k
i (/\]1;) . 0
Ao -0 k=0
oo .
(Aat)*
R Y N 0 y = 0 B
etA:Z o :ZEB . Bl_pn Pt k! B!
k=0 k=0 " :
0 0 - Ak ' ' ' ()
n nt)
| o 0 ]
=0

() Most of this material will be irrelevant for Math 250 students, but Math 252 students may find that it has survival value.
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o0
Ajt)*
and since we know the sums of the series Z ( ]]f') = ¢! on the diagonals of the matrix, we can simply
k=0 )
write
eMt 0 0
R
et=B1 . o .| BTt (%)
0 0 e e)\nt

In some sense this formula “rationalizes” the method of “straight-line solutions” or eigenvectors of
BD&H, §§3.2 and 3.3. There one solved the 2x 2 linear homogeneous system Y’ = AY by finding eigenvectors
V1 and V5 of A corresponding to its two distinct real eigenvalues A\ and A9, and observing that each function
etV satisfied Y/ = AY. One then observed, since {V1,Va} was a basis of R?, that given any initial
position vector Y one could find constants k; and ks for which Yo = k1 V1 + k2 Vo. It then followed that
Y (t) = k1eMtVy + koe*?t'Vy satisfied both the differential equation and the initial condition Y (0) = Yj.
From the standpoint of the equation ($), we are simply writing

eMt 0
etA — B B—l
0 e)\zt
e)\lt
Y(t) =Y, =B B7'Y,
0 eMt

where B is the matrix whose j-th column is V;, j = 1,2; indeed, the equation Yq = kv + k2 V3 is solved

k1 k1 k1
by writing it in vector-matrix form as Yo = [V1 V3] =B , so that = B~1Y, and thus
ko ko ko
eMt 0 k1 kpertt
Y(t) = etAYO =B =B = kle’\ltVl + kge)\thQ .
0 er2t ko kge)‘%

Note what is going on here. If one uses coordinates with respect to the basis {V1, Va} rather than the
standard coordinates that come with the standard basis, then the matrix of Y’ = AY is diagonal: if z1, 29
are the coordinates with respect to that basis, the vector DE Y’ = AY is equivalent to the two uncoupled
scalar DEs 2 = A\12z1 and 2z, = A2z9. The “straight-line solutions” travel along the z1- and z2-axes; other
trajectories have the form z, = £(const.) - (21)**/*1, as in BD&H’s systems on pp. 251-252 and p. 255. Only
one’s insistence on using the standard basis in which to write the equation, instead of using the basis of
eigenvectors of A that the system “wants,” is responsible for “distorted” pictures like Fig. 3.14 and Fig. 3.16.

3.2 Equal eigenvalues, n = 2: In higher dimensions the case of “equal eigenvalues” can get com-
plicated; fortunately, it undergoes remarkable simplification(®) in dimension 2. “Equal eigenvalues” is a
misnomer: if there is a basis {V1, Vao} of R? for which AV; = AV, and Vy = AV, (same )), then the ma-
A0

trix of A relative to the basis {V1, Vao} is , A equals multiplication by the scalar A, and Y (¢) = MY,

0 1

solves the initial value problem for Y’ = AY. The problem comes with a matrix like l ] , whose cha-
—4 4

A =1

racteristic polynomial det
4 N—4

]) =A% —4\+4 = (A —2)? has only one (double) root but which

(©6) I first heard this observation from Professor Sontag, and the exposition here is similar to that in his notes of a few years ago,

available from the “general Math 252 web page.”
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2 -1 Y1

has only one eigenvector. (The eigenvectors belonging to A = 2 are solutions of l ] l ] =0, and
4 -2 Y2

there is only one [up to scalar multiples|, namely V; = .) However, if one chooses any vector Vs linearly

2
independent of the single eigenvector Vi belonging to the single eigenvalue—let’s call it \;—then the two
vectors {V1, Va} will necessarily form a basis of R2, and because

AV =XV, and AV, =aV; + A

)\10&

0 f

for some scalars «, 3, the matrix of A relative to this basis will have the form l . The calculation

)\1 «
0 p
/\1 «

(A= A1)(A = B) = det (AIQ - [
0 g

= (det B~1)det(M — A)(det B) = det(\o — A) = (A — \p)?

= B 'AB

) =det(\ly, — B"'AB) = det(A\B"'B — B"'AB)

then shows that in fact 5 = A; must hold, else the characteristic polynomial of A would have had two distinct
roots—but that is not the case we are now considering. So the matrix of A with respect to the basis B has

)\1 (0% 0 1
the form

0 M

] = MIs + alN, where N is the matrix l
0 0

] with N2 = 0. It follows that
)\1 [0 k
N Mlo +aN)E = XL £ N LaN 4+ (N2 = M + A taN
1
since all the terms containing N ¢ for £ > 2 will be zero, and thus
)\1 [0
exp | ¢
0 M\

)\1 «
exp(tA) = Bexp | ¢ 0
1

aN = eMtL, + ateMtN

) _ i (t(M\lo +aN)F i (ﬂl)kb N i o

k! N k! k!
k=0 k=0 k=0

) B™' =ML, + ateM'BNB!L.

0 1 1 0
Continuing with A = ], for example, we have Vi = [ ] and we might take Vo, = [ 1; then
—4 4 2 1
1
AVy = = V; + 2V,. The matrix of A relative to this basis is then ; a = 1 and we have
4 0 2
10 1 0 -2 1
B = and B! = ,s0 BNB™! = . Finally, then,
2 1 -2 1 -4 2
-2 1 1—2t t
A = 2, 4 te2 — o2t
—4 2 -4t 142t

1-2¢t t
is in fact

It is easy to verify that the derivative of e% [

0 1 1-2t t
o2t
-4 4 -4t 142t
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