
First-order Linear Systems of Differential Equations
as a concrete example of an abstract vector space

The solutions of these systems form a nice example of “abstract” finite-dimensional vector spaces that
arise in considering a concrete problem. For people who have not yet had a course in differential equations,
or who may need a refresher, here is a brief synopsis of the subject, with some proofs.

A homogeneous linear system of first-order differential equations is a system of equations of
the form

dy1

dt
= a11(t)y1(t) + · · ·+ a1n(t)yn(t)

· · ·
· · ·
· · ·

dyn
dt

= an1(t)y1(t) + · · ·+ ann(t)yn(t)

where the coefficients or coefficient functions {aij(t)}n,ni,j=1 are continuous functions on some interval
(a, b) ⊆ R. A solution of the system on some interval (c, d) ⊆ (a, b) is a family {yi(t)}ni=1 of (continuously)
differentiable functions for which the equations hold identically on (c, d). A simple example is furnished by
the system dy1/dt = −y2(t), dy2/dt = y1(t), a solution of which is given, for any choice of the constants A
and ϕ, by y1(t) = A cos(t − ϕ), y2(t) = A sin(t − ϕ). It is natural to use matrix- and vector-notation for
these objects: introducing the vector and matrix functions

Y(t) =


y1(t)

...

yn(t)

 and A(t) =


a11(t) · · · a1n(t)

...
...

an1(t) · · · ann(t)

 ,

and performing differentiation entry-by-entry (or coördinate-by-coördinate), we can write the system com-
pactly in the form

dY(t)
dt

= A(t)Y(t) .

In many cases—and, indeed, in the only cases that we shall consider explicitly—the matrix of coefficients
A(t) is just a constant matrix A. In the example we gave above, we had a constant matrix of coefficients:
the system had the form [

dy1/dt

dy2/dt

]
=

[
0 −1

1 0

][
y1

y2

]
.

While we are not going to take the time to prove the existence theorem for these systems (although it is
not difficult, it requires the notion of uniform convergence of a sequence of functions on an interval, so it
looks more like analysis [“advanced calculus”] than linear algebra), the following is a fact: if the coefficients
in the system

dY(t)
dt

= A(t)Y(t)

are continuous functions on an interval (a, b) ⊆ R, then given any a < t0 < b and any “initial position vector”
y0, there exists a “solution vector” Y(t) of (continuously) differentiable functions defined for all a < t < b

and such that Y(t0) = y0, satisfying
dY(t)
dt

= A(t)Y(t) for all a < t < b. What we shall prove is that

this solution is unique: if Y(t) and Ŷ(t) are two such functions—so Ŷ(t) is also defined for all a < t < b,

Ŷ(t0) = y0, and
dŶ(t)
dt

= A(t)Ŷ(t) for all a < t < b—then in fact Ŷ(t) = Y(t) for all a < t < b. That proof
will be given below, but it helps to make an observation that shows why one would be interested in these
differential equations in the context of a course in (finite-dimensional) linear algebra.
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The observation is that the set of vector-valued (continuously) differentiable functions on (a, b) that

satisfy the equation
dY(t)
dt

= A(t)Y(t) for all a < t < b is a vector space. To see this, all one has to do is

let Y1(t) and Y2(t) be two functions that satisfy the equation, let a and b be two constants, and check that

d(aY1 + bY2)
dt

= a
dY1(t)
dt

+ b
dY2(t)
dt

= aA(t)Y1(t) + bA(t)Y2(t)
= A(t) [aY1 + bY2] .

Every step follows from such well-known facts as the linearity of differentiation, the distributive law for
matrix multiplication, and the fact that matrix multiplication commutes with the operation of multiplying
by a constant. So if we have two solutions Y(t) and Ŷ(t) of the differential equation, such that Y(t0) = Ŷ(t0)
at some point t0 of their domain, then Z(t) = Y(t)− Ŷ(t) will also be a solution of the differential equation,
and it will satisfy Z(t0) = 0. If we can prove that this forces Z(t) ≡ 0—that Z(t) never changes—that will
prove uniqueness of the solution determined by the “initial value” y0 that it is made to take at t0.

So we shall now prove our uniqueness theorem. To do this it will essentially suffice to prove the following
two lemmas. The first is based on the Cauchy-Bun�ıakovskǐı-Schwarz inequality relating the absolute value
of a dot product to the norms of the dot-factors (see Fraleigh & Beauregard, p. 24, inequality (10)).

Lemma: Let A = [aij ] be an m× n matrix and v = [v1, . . . , vn]T be an n-dimensional vector. If ‖A‖2

denotes the square root of the sum of the squares of the entries of A—in symbols, ‖A‖2 =

√√√√ m,n∑
i=1, j=1

a2
ij—

then the norm of the vector Av is bounded by ‖A‖2 ‖v‖—in symbols, ‖Av‖ ≤ ‖A‖2 ‖v‖. (‖A‖2 is called the
(2-)norm of A.)

Proof. For 1 ≤ i ≤ m denote the i-th row of A, considered as an n-dimensional row vector, by
ai = [ai1, . . . , ain]. Then the definition of matrix multiplication says precisely that the vector Av = [a1 •
v, . . . ,am • v]T . For the i-th coöordinate of this vector, the Cauchy-Bun�ıakovskǐı-Schwarz inequality gives
the estimate |ai • v| ≤ ‖ai‖ ‖v‖. Squaring these estimates and adding, we have

(a1 • v)2 ≤ ‖a1‖2 ‖v‖2

· · ·
· · ·
· · ·

(am • v)2 ≤ ‖am‖2 ‖v‖2
m∑
i=1

(ai • v)2 = ‖Av‖2 ≤ {
m∑
i=1

‖ai‖2} ‖v‖2

‖Av‖2 ≤ {
m∑
i=1

[
n∑
j=1

a2
ij ]} ‖v‖2 = ‖A‖22 ‖v‖2 ,

and the conclusion of the lemma follows by taking the square root of the last displayed formula above.

Lemma: Let Z(t) satisfy the equation

dZ(t)
dt

= A(t)Z(t)

for all c ≤ t ≤ d, where the entries in the matrix A(t) are continuous functions of t, and let t0 lie in the
interval [c, d]. Then there is a constant K such that for all c ≤ t ≤ d the inequality

‖Z(t)‖ ≤ ‖Z(t0)‖ · eK |t−t0|

holds. Thus, in particular, if Z(t0) = 0 at some t0 ∈ [c, d], then Z(t) ≡ 0 for all t ∈ [c, d].
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Proof. First of all, we need the fact that since the entries in the matrix A(t) are continuous functions of
t on the interval c ≤ t ≤ d, so is the sum of their squares ‖A(t)‖22. Therefore, since any continuous function
defined on a closed interval of the real line is bounded, there exists a constant K ≥ 0 for which ‖A(t)‖2 ≤ K
holds for all c ≤ t ≤ d.† Let Z(t) = [z1(t), . . . , zn(t)]T , and let z(t) = ‖Z(t)‖2 = z2

1(t) + · · · + z2
n(t), the

norm-squared of Z(t). Then

dz

dt
= 2 z1(t)

dz1

dt
+ · · ·+ 2 zn(t)

dzn
dt

= 2 Z(t) • dZ
dt

= 2 Z(t) •A(t)Z(t) . (∗)

If we apply the Cauchy-Bun�ıakovskǐı-Schwarz inequality and then the first Lemma above to the r. h. s. of
the relation (∗), we get the estimate

|Z(t) •A(t)Z(t)| ≤ ‖Z(t)‖‖A(t)‖2 ‖Z(t)‖
≤ K ‖Z(t)‖2 (∗∗)

because ‖A(t)‖2 ≤ K holds for all t ∈ [c, d]. Combining (∗) and (∗∗), we get

|dz
dt
| ≤ 2K ‖Z(t)‖2 = 2K z(t), or

−2K z(t) ≤ dz

dt
≤ 2K z(t) . ($)

Now “linear differential inequalities” like ($) can be solved by pretty much the same method employed for
linear differential equations: given the differential equation dz/dt = az, where a is a constant and z(t) is to be
a function of t, one multiplies the equation by the “integrating factor” e−at, obtaining e−at dz/dt = e−ataz,

or e−at dz/dt − e−ataz = 0, or
d

dt
[e−atz] = 0. This last equation says that the function e−atz(t) is a

constant, and one can find out the value of a constant function by evaluating it at any value of t: so one
has e−atz(t) ≡ e−at0z(t0), or z(t) ≡ ea(t−t0)z(t0). Similarly, one can multiply each “half” of the differential

inequality ($) by an integrating factor. For the inequality
dz

dt
≤ 2K z(t), one multiplies by e−2Kt, obtaining

e−2Kt dz

dt
≤ 2K e−2Kt z(t)

e−2Kt dz

dt
− 2K e−2Kt z(t) ≤ 0

d

dt
[e−2Kt z(t)] ≤ 0 .

The derivative’s being ≤ 0 signals that the function e−2Kt z(t) is a decreasing (i.e., non-increasing) function
and therefore for t0 ≤ t one has e−2Kt z(t) ≤ e−2Kt0 z(t0), or z(t) ≤ e2K(t−t0) z(t0). In a similar manner,

but working on the “other half” −2K z(t) ≤ dz

dt
of the inequality, one shows that z(t) ≤ e2K(t0−t) z(t0) for

t ≤ t0. Thus both cases (t ≥ t0 and t ≤ t0) are covered by the single formulation

z(t) ≤ e2K|t−t0| z(t0)

‖Z(t)‖2 ≤ e2K|t−t0| ‖Z(t0)‖2

‖Z(t)‖ ≤ eK |t−t0| ‖Z(t0)‖

and that is the Lemma we set out to prove.

We now have the following uniqueness theorem.

† In many important cases, the matrix A is constant, and one can simply take K to be the 2-norm of A.
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Theorem: Let A(t) = [aij(t)] be a continuous n× n matrix-valued function on an interval (a, b) ⊆ R.
Suppose that Y(t) and Ŷ(t) both satisfy the (system of) differential equation(s)

dY(t)
dt

= A(t)Y(t)

on the interval, and suppose that Y(t0) = Ŷ(t0) at some point t0 ∈ (a, b). Then Y(t) ≡ Ŷ(t) throughout
(a, b).

Proof. Any (other) point t ∈ (a, b) will be contained in some closed interval [c, d] ⊆ (a, b) that contains
both t and t0. Let Z(t) ≡ Y(t) − Ŷ(t); this function also satisfies the same differential equation, and
obviously Z(t0) = 0. By the second Lemma above, Z(·) ≡ 0 throughout [c, d], so in particular Z(t) = 0 and
thus Y(t) = Ŷ(t)—but t ∈ (a, b) was arbitrary, so the two functions are equal throughout (a, b).

Corollary: The (abstract) vector space consisting of all the Rn-valued functions Y(t) that satisfy the

(system of) differential equation(s)
dY(t)
dt

= A(t)Y(t) on (a, b) is finite-dimensional, and its dimension is the
same as the number n of equations of the system.

Proof. Choose a point t0 ∈ (a, b). For each of the standard basis vectors ei of Rn, use the existence

theorem to produce a solution Ei(t) of the equation
dEi(t)
dt

= A(t)Ei(t) on (a, b) with the property that

Ei(t0) = ei, doing this for each i = 1, . . . , n. These solutions are linearly independent, because if one could
write

c1 E1(t) + · · ·+ cn En(t) ≡ 0

then evaluating this equation at t = t0 would produce

c1 e1 + · · ·+ cn en = 0

and since the l. h. s. of this is the vector [c1, . . . , cn]T and the r. h. s. is 0, we would have all the coefficients
c1 = · · · = cn = 0. These solutions are also a spanning set: given a solution Y(t), evaluate it at t0 and write
its value at t0 in terms of the standard basis:

Y(t0) = [c1, . . . , cn]T = c1e1 + · · ·+ cnen .

Then form the solution Ŷ(t) = c1E1 + · · · + cnEn. This takes the same value at t = t0 that Y(t) did;
therefore, by the uniqueness theorem, it takes the same values that Y(t) does for all t ∈ (a, b), which is to
say,

Y(t) ≡ Ŷ(t) = c1E1(t) + · · ·+ cnEn(t)

and we have exhibited Y(t) as a linear combination of the {Ei(t)}ni=1. So those solutions form a basis of
the vector space of all solutions of the (system of) equation(s) Y′ = AY.

Example: In the important case in which the matrix-of-coefficients function A(t) is a constant matrix
A, the solutions of Y′ = AY will be defined for all t ∈ R. Moreover, it is possible to find many solutions of
such a system—in many cases, sufficiently many different solutions to form a basis for the solution space—by
using the eigenvalues and eigenvectors of the matrix A. The method is illustrated by considering the 2 × 2
system whose matrix is the one involved in Fraleigh & Beauregard’s problem 26, p. 262:[

y′1(t)

y′2(t)

]
=

[
1 2

3 2

] [
y1(t)

y2(t)

]
.

We need to find numbers λ and vectors 0 6= v ∈ R2 for which Av = λv; since that equation is equivalent to
(A− λI)v = 0, such an v can exist if and only if A− λI is singular, which happens if and only if

det

[
1− λ 2

3 2− λ

]
= (λ− 1)(λ− 2)− 6 = 0

λ2 − 3λ− 4 = (λ− 4)(λ+ 1) = 0
λ = 4 or λ = −1 .

4 First-order linear systems of d.e.’s 3/24/2000



For λ = 4 we get A−4I =

[−3 2

3 −2

]
and a choice of v =

[
2

3

]
would work (the solution is only determined

up to multiplication by a constant); for λ = −1 we get A + I =

[
2 2

3 3

]
and v =

[
1

−1

]
. Whenever one

has an eigenvector w belonging to the eigenvalue λ for the coefficient matrix A of a constant-coefficient
system Y′ = AY, the vector-valued function eλtw will be a solution of the system:

d

dt
(eλtw) = λeλtw = eλt(λw)

= eλtAw = A(eλtw)

so Y(t) = eλtw satisfies Y′ = AY. Applying these general considerations to our system, we find that the

two functions Y1(t) = e4t

[
2

3

]
and Y2(t) = e−t

[
1

−1

]
are solutions of the system. Since we know that the

(abstract) vector space of solutions of this system has dimension two and these solutions are obviously not
proportional, we see that they are a basis of the space of solutions. For t0 = 0 this is not the basis whose
values at t0 give the standard basis vectors of R2; the reader might find it interesting to find out how those
solutions, which are the functions

E1(t) =
1
5

[
2e4t + 3e−t

3e4t − 3e−t

]
and E2(t) =

1
5

[
2e4t − 2e−t

3e4t + 2e−t

]

respectively, are related to the inverse of the matrix

[
2 1

3 −1

]
whose columns are the eigenvectors of A.

Linear homogeneous differential equations of higher order can be analyzed using what we have just found
out about systems. As an example, consider the equation (Fraleigh & Beauregard’s problem 45a, p. 204):

y(3) − 9y′ = 0 .

Given a solution y(t) of this equation, form the vector-valued function (with values in R3) Y(t) =


y(t)

y′(t)

y′′(t)

.

It is purely a matter of definition to see that

d

dt


y(t)

y′(t)

y′′(t)

 =


0 1 0

0 0 1

0 9 0



y(t)

y′(t)

y′′(t)

 (#)

so Y(t) satisfies Y′ = AY with A =


0 1 0

0 0 1

0 9 0

. On the other hand, if Y(t) =


y1(t)

y2(t)

y3(t)

 is a solution of this

system and we denote its first-coördinate function by y(t), then the system (#) says about this function y(t)
that the second coördinate is y′(t) and the third coördinate is y′′(t), and that its derivative y(3)(t) = 9y′(t).
The correspondence

y(t)←→


y(t)

y′(t)

y′′(t)


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is a 1-1 correspondence between solutions of y(3) − 9y′ = 0 and solutions of Y′ = AY, and it is easy to
see that it preserves the vector-space operations. It follows that the uniqueness theorem carries over to
the solutions of y(3) − 9y′ = 0: two solutions of this equation which at some t0 give the same values of
y(t0), y′(t0) and y′′(t0) must be the same identical function. The vector space of solutions must again have
dimension 3. Finding three linearly independent solutions of Y′ = AY by finding eigenvectors of A will
yield the same result as the “method of undetermined exponents” in which one tries to find an r for which
y(t) = ert satisfies y(3) − 9y′ = 0: we have

det


0− λ 1 0

0 0− λ 1

0 9 0− λ

 = (−λ)(λ − 3)(λ+ 3)

with roots λ = 0, 3, −3 and corresponding eigenvectors [1, 0, 0]T , [1, 3, 9]T and [1,−3, 9]T respectively; the
corresponding solutions of Y′ = AY are then the constant vector [1, 0, 0]T and the vector-valued func-
tions e3t[1, 3, 9]T and e−3t[1,−3, 9]T respectively, whose first coördinates are the three linearly independent
solutions y(t) = 1, y(t) = e3t and y(t) = e−3t that would have been obtained by the method

In y(3) − 9y′ = 0 let y = ert

r3ert − 9rert = 0

ert (r3 − 9r) = 0 with roots r = 0, 3, −3

y(t) = 1, e3t, e−3t

that one learns in elementary differential-equations courses. (Of course, one uses the simpler method in
simple cases like this one, where one is only interested in finding a basis for the vector space of solutions:
going through the eigenvalue/eigenvector analysis is much more work than necessary to get that result. The
point of replacing the single higher-order equation by a first-order system is that theorem-proving [like our
uniqueness theorem above], dimension-counting and analysis of asymptotic behavior [phase-plane analysis,
etc.] are easier for the system.)
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