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INTRODUCTION

In almost every field of science, and nowhere more than in biology, a tension has
existed constantly between the experimentalists and the theorists; the tension is
particularly strong in biology because there the theorists have not produced the
kinds of advances that have come from the theoretical physicists and chemists.
Among the biological theorists, the sub-class of mathematical modellers has often
suffered the most from the onslaughts of their “more practical” brethren. To some
extent, this tension has been the result of misunderstandings on the part of both
groups. The experimentalists have often been almost innocent of the mathematical
techniques needed for model-building. The modellers, often recruited from either
physics or mathematics, have plunged directly into some of the most difficult biolog-
ical problems with an impressive array of mathematical skills and an equally impres-
sive innocence of biological principles. The reading required for this paper has led
me to believe that the ex-mathematicians in particular display an almost cavalier
disregard for the biological literature. When a faulty citation in one paper, involving
an inversion in the order of authors, is repeated in a series of papers by at least three
other authors, I am led to wonder whether the later authors bothered to look up
the original paper, much less read it. A result of this lack of care has been the
rediscovery of the wheel at regular intervals.

Certainly some of the difficulties between the two groups stem from basic misun-
derstandings, on both sides, of the nature and function of mathematical models.
Models are too often considered simply as predictors, and any inability to predict
accurately is accepted as prima facie evidence of the uselessness of the technique.
Actually, only those engineering models designed to fit a particular set of circum-
stances are even moderately successful as predictors. The more general models of
theoretical biology are used to deduce the form of possible solutions, rather than
to predict future states of the system being modelled.
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If one were to erect a spectrum of model types, the end members would be the
descriptive and the analytical models. The descriptive model is essentially a method
for expressing data in a condensed form, emphasizing the regularities to be found.
Starting with an accumulation of data, a line or curve of best fit is found. In its purest
form, the terms in the descriptive model are all fitting constants; no mechanisms or
actual physical quantities are implied. There is no unique descriptive model for a
given system. Usually one can construct any number of equally valid descriptive
models for the same collection of data. The great virtues of this type of model are
its simplicity and its closeness of fit.

The analytical model, on the other hand, is constructed from consideration of the
mechanisms involved in the system. It is generally based primarily on logic, with
a minimum of actual data. It is almost always complex, but all of the variables
involved correspond to actual physical or biological quantities or rates. This kind
of model allows us to follow the effects of changes in the system on each of the parts,
and leads to a better understanding of the workings of the system. Where the
descriptive model permits, at best, limited prediction in stable circumstances, the
analytical model at its best permits the prediction of the behavior of the system
under unstable or greatly changed conditions. Sinee the aim of many of these models
is prediction under changed, or changing, circumstances, it is understandable that
the analytical model should be the aim of the theoretical ecologist. The great danger
of these models is their abstraction from the natural condition, since the models are
so complex that some simplifying assumptions must always be incorporated to
permit either analytical solution or numerical approximation.

Most biological models are neither purely descriptive nor purely analytical; they
are attempts to construct analytical models, with descriptive terms inserted to make
the model fit the available data. The danger in such an in-between model is that the
terms that are really fitting constants will be given names and will begin to assume
biological characteristics never intended by their creators. I discuss several cases of
this sort below.

Model builders make certain explicit assumptions in order to reduce the com-
plexity of their models to a level permitting solution or approximation. They are not
always aware, however, of the assumptions implicit in the mathematical form they
choose for their models. In many cases, the kinds of solutions possible are severely
restricted by these implicit assumptions; we should not be surprised by the answers
we get when we ask such limited questions.

In this paper, I do not attempt to review the entire literature on the Lotka-
Volterra models; this literature has grown almost as much as has the pollution
literature in the past few years. Much of this literature is reviewed in a recent book
edited by May (136). Instead, I indicate the major directions of investigation in the
field, and mention papers I have found particularly illuminating or stimulating.

THE GROWTH OF A SINGLE SPECIES POPULATION

The foundation of all deterministic models of interactions between species is the
model for the growth of a single species in an unvarying environment. Most of these
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models are direct descendants of the Malthusian model, which proposes an exponen-
tial increase in population size with time, as

dx/dt = rx, 1.

where x = population number and » = a constant rate of increase. The explicit
assumption made in this equation is that the rate of increase remains the same no
matter what the population size. While this appears a priori to be a biologically
unreasonable assumption, the exponential mode of population increase is apparently
common in laboratory populations whenever they are not limited by lack of nutri-
ents or space.

If we accept 7 simply as a constant, chosen to fit the equation to the straight-line
portion of population growth data, we cannot get into too much trouble. However,
if we try to assign biological significance to this constant, we can quickly find
ourselves making unsupportable assumptions. One of the usual assumptions is
that the constant » can be decomposed into the difference between two terms, as
(b — d), where b is the birthrate, d is the death rate, and both are constant with
respect to population number. The constant » then becomes the “intrinsic rate of
natural increase,” which is expected somehow to be a property of the species.

A little reflection on the mechanisms of population growth will suggest that this
rate is dependent upon the genetics of the population and the quality of the environ-
ment. The rate cannot, therefore, be specific to the species, or even to the particular
population,; it is specific to the experiment, and to nothing else. We might insist that
for a given species there is some value of 7 that cannot be exceeded, that results when
the genetic strain yielding the most offspring is raised in the environment most suited
to it. This would be a Platonic ideal of 7, since we could never know when we had
achieved it. Even when the birthrate was at its physiological limit, there would
always be the possibility that in some more salubrious environment the death rate
might be decreased.

Such a definition for the intrinsic rate of natural increase is operationally difficult.
Since even in experimental populations raised under laboratory conditions this rate
will seldom (if ever) be achieved, we must rewrite the original growth equation in
the form

dx/dt = prx, 2.

where p is the proportion of the maximum rate of increase actually achieved in the
particular experiment. This approach makes » an estimated value, based on our
judgment of the maximum birth and minimum death rates possible, and thus turns
p into our “fitting” constant; for a single fitting constant we have substituted two
estimates (of b and d) and a new fitting constant, with little gain in understanding.

In any case, unless we are writing a Sunday supplement article on human popula-
tion growth we cannot accept a growth equation as simple as equation 1. Every
species studied so far has shown some sort of control over its ultimate population
size, if only that of starvation of the weaker members as food becomes scarce.
Density-dependent population control was the subject of intensive debate in earlier
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years. The negative viewpoint was held primarily by field scientists who worked with
insect populations on which the influence of the weather was greater than any
possible influence of increased density. Similar findings were reported for some
northern birds and mammals (154, 155), and Dodson (46) suggested that in natural
populations of Daphnia rosea, the summer decrease can be explained entirely by
predation. The skeptical position was considerably strengthened by the difficulty in
determining by mathematical analysis whether a particular population showed any
density dependent effects (18, 48, 128, 180, 235). In our later discussion of the effects
of time lags on population models we will see theoretical reasons why the efforts to
elucidate density dependence by regression techniques should indeed fail.

However, with increased examination of the mechanisms by which birth and
death rates are affected by population size, the influence of population density on
these rates has largely been accepted. Almost every conceivable method for altering
either birth or death rates has been found. Perhaps because of the well-recognized
fluctuations in population size in some small mammals, much of the early laboratory
and field work was done with mice, lemmings, voles, and rats. Christian’s early work
(25, 26) on fluctuations in adrenal weight with population size focused attention on
the physiological basis for density-dependent regulation in these small mammals
(10, 89, 120, 122, 205). Other workers have chosen to look particularly at behavioral
expressions of physiological change, such as increased aggressiveness with increas-
ing population density, in such diverse organisms as various species of mice (81, 107,
191, 210, 226), the red grouse (234), and the cockroach (52).

Changes in both fetal (93, 118) and infant mortality (53, 73, 85, 145, 146, 148,
204) have been demonstrated. Differences in behavior attributed to crowding of the
mother during pregnancy have been seen in mice (100); interruptions in the breeding
cycle, including early cessation of breeding (43, 101) and delay of sexual maturity
(99) have been reported. In insects, competition for egg-laying sites seems to be a
common means of density-dependent control (7, 33, 227), a mechanism also re-
ported in green sea turtles (22). Changes in the growth rate of green hydra (207),
in the length of adult life in the azuki bean weevil (215), in its mortality rate (140),
and in egg cannibalism in Tribolium (141), all connected with increased population
density, also affect the rate of increase. Two particularly interesting mechanisms of
control are the suppression of growth in tadpoles by soluble materials added to the
water by larger tadpoles (176), and the lengthening of the mean sterile period
between births in primitive human populations by an increase in the lactation period
(189). The regulation of numbers in vole populations has been reported, without
examination of possible mechanisms, from a variety of environments (28, 29, 117,
233). Tanner (200) examined 111 populations, including 71 species, and found
definite density effects in 47 species. He concluded that most animal species regulate
their numbers by some density-dependent mechanism, rather than by predation. An
excellent semipopular account of the effects of crowding on populations has been
written by McBride (139).

Density-dependent population control can be incorporated into a growth equa-
tion by the addition of a term modifying the rate of growth as the population
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increases. The damping term introduced in this fashion usually functions as some
power of the population number; the term is normally given as a function of x2, as

dx/dt = rx [(K - x)/K] 3.
or
dx/dt = rx [1 - (x/K)). 4.

In these equivalent representations, it is assumed that there is some number of
organisms that the environment can support, expressed as K, the equilibrium num-
ber or the carrying capacity. These equations are variant expressions of the logistic
equation. Through the years the damping term, [(K — x)/K], has come to be called
the “biotic resistance;” along with the name has come the implication that it should
in some way be measurable as something other than a fitting function. If we wish
to make no assumptions concerning equilibrium levels, the growth equation can be
written as

dx/dt = rx — ax?, 5.

where a is a fitting constant.

The logistic equation fits many population growth experiments about as well as
any biological data are ever fitted; for this reason, as well as for its simplicity, it has
generally been accepted as the standard model for single-species population growth.
Only two constants must be determined, the “intrinsic rate of natural increase” or
“biotic potential,” and the “biotic resistance” or carrying capacity. While neither
of these quantities is really amenable to exact mathematical definition, both repre-
sent tendencies easily envisioned by the average ecologist. Two extremes of evolu-
tionary strategy may be recognized: (@) an evolution toward the fastest possible
growth rate: the r strategy; and (b) evolution toward the most efficient use of the
environment, resulting in the largest carrying capacity, the K strategy. It is gener-
ally considered that the pure 7 strategy is followed by opportunistic species, species
that can expand rapidly into favorable environments, or into marginal environments
in particularly favorable years. A pure K strategy is followed by species using more
stable environments, and possibly. by those with a lower carrying capacity. The
trade-offs involved in » and X selection strategies were discussed by MacArthur &
Wilson (125), and by a large number of other workers since then.

In order for the logistic equation to be used as a model for population growth,
certain assumptions, not always stated, must be accepted. The use of a differential
equation implies that both birth and death may be treated as continuous processes,
with no seasonality involved. One can argue that the model may be applied as long
as the sampling interval is long enough so that the birth and death rates can be
treated as averages over the span between samples. However, if the population being
studied is one that exhibits large fluctuations during the year (28), sampling on a
given date or through a single short period may give a false picture of the normal
behavior of the population (Figure 1). The model is thus most applicable to those



194 WANGERSKY

organisms whose life span is either very short or very long compared to the time
span of normal environmental change; it is useful for amoebae and elephants, but
not for voles and mice, except during periods of active population increase.

The rate of increase, 7, is calculated from the straight-line portion of the growth
curve, that region in which a stable age distribution is thought to exist. The age
distribution will be altered as density-dependent restraints are applied to the popula-
tion; the way in which this distribution changes will depend upon the mechanisms
by which the control is exerted. Obviously, a control based upon increased infant
mortality will lead to a different age structure than one based upon decreased length
of adult life or decreased length of fertile life. The way in which a population
recovers from density-induced constraints will depend upon the age distribution at
the time of the release from constraint. There is no way of modelling such differences
in a simple deterministic equation. Models do exist in which age structure can be
incorporated directly; these involve quite different mathematical approaches, such
as network models (115), matrix algebra models (14, 212), or stochastic models
(86, 149, 172, 236, 238). While these approaches are interesting, they usually do
not lend themselves to the study of multispecies interactions because of the com-
plexity of the mathematics. It is possible to incorporate age structure into deter-
ministic models of the Lotka-Volterra type, but the increase in complexity is consid-
erable.

A number of attempts have been made to generalize the logistic equation, and to
examine its mathematical properties (219, 228, 242). Relatively simple variations on
the model have been proposed, such as the incorporation of a monotonically increas-
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Figure I Growth of a population with a summer maximum and a reduced winter kill. Solid
line is the actual number, and the dotted line is the number estimated from an annual sampling
period of one week. A theoretical extension of work by Clarke (28).
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ing value of K (211), random variation in growth rates (116), variations in both
r and K (121), variations in the form of the survival curve (183), variations in »and
K as functions of population size (113, 184, 198), and the use of a two-stage growth
equation, separating mortality and fecundity (208).

It would be possible to pursue these lines of research to a still greater complexity;
one of the advantages of the relatively simple logistic equation is that its constants
can easily be manipulated, with the aid of a modern pocket-sized programmable
calculator, to simulate anything from a varying environment to a varying response.
However, rather than elaborate what is admittedly too naive a model, let us examine
models of the next level of complexity (and possibly reality).

One of the unstated assumptions in the logistic equation is that the damping term,
[1 — (x/K)], always acts as the square of the population density. There is no
biological justification for this assumption; in fact, it would be unusual if there were
only one kind of damping term for all the mechanisms of density dependence.
Gilpin, Case, & Ayala (66) proposed a growth equation of the form

dx/dt = rx [1 - (x/K)f), 6.

where 6 can be other than one. The authors felt that the values of § > 1 correspond
to growth in species where the controlling mechanism is territoriality, and where
no constraint on growth occurs until all of the territories are occupied. Cases where
0 < 1 occur when there is some sharing of the scarce commodities, and the pressure
of added population is felt early in the population increase.

An increase in the value of @ results in a steepening of the growth curve and a
higher value for the inflection point (Figure 2). Theoretically, this change in formu-
lation is very important, since it permits a variety of expressions for the damping
factor. Practically speaking, the curves resulting could be fitted within the usual
tolerances for biological data by the use of a higher value for 7 in the simpler form
of the equation. The shift in inflection point would probably not be noticed. If » were
to be calculated from biological first principles, instead of simple curve fitting, then
a variable § might be useful in fitting theory to experiment, and mechanisms
resulting in particular values of  might be forthcoming. Numerical calculations do
point out, however, that two populations with the same birth and mortality rates
when not subjected to density-dependent constraints can have different apparent
values for 7 if density dependence is effected by different mechanisms. This again
points out that » must be considered as a constant chosen to fit a given data set,
and not as a rate determined by relatively simple biological interactions.

We might also make a case for selection for high values of @ as one form of r
selection. Higher apparent » values could be obtained for a given value of 7, as
determined under conditions of low population density, by selecting for density-
dependent controls that act as a higher power of the damping fraction (x/K). These
controls would take effect later in the growth process and would be more severe.
Territoriality would be a good example of a mechanism of this type.

A more important limitation of the logistic equation is its inability to fit any
growth curve other than the monotonic approach to equilibrium. It has long been
known that some natural populations are subject to periodic fluctuations in size. The



196 WANGERSKY

species involved include a wide variety of organisms and types of life history, such
as the azuki bean weevil (213), the muskrat (49), Daphnia spp. (171), Tribolium
castaneum (160), the blow fly (150), Microtus californicus (106), the cotton rat (76),
and the house fly (202), among many others. One of the best-known and most
fruitful of ecological symposia concerned itself entirely with the question of cycles
in animal populations (83). It is the combination of the inability of the logistic
equation to predict population oscillations and the obvious evidence for such oscilla-
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Figure 2 Single species growth curves, » and K held constant, § varied.
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tions in nature that has led to the dominant position in ecological theory of the
Lotka-Volterra prey-predator equations; for a period, every cycle found in a natural
population was attributed to some form of prey-predator interaction. This view-
point was undermined considerably by the discovery of similar oscillations in labora-
tory populations in the absence of predation and in the presence of excess food. It
was obvious that the logistic equation was insufficient as a model for these popula-
tions.

In biological terms, the logistic equation presents a logical absurdity, since it
requires that cause and effect occur simultaneously. It is difficult to imagine a form
of density-dependent control that would take effect so abruptly; instantaneous mor-
tality for all members of the population in excess of the equilibrium number might
work in this fashion. Most forms of population control take effect some time after
the population begins to feel the increase in density. Thus, a time lag should be
incorporated into any single-species growth model; in its most general form, a
discrete lag is introduced into the damping term of the equation, as

dx/dt = rx[1 = (x/K)); -+ 7.

where 7 is the time lag between cause and effect: The equation in this form has a
long and honorable history, having been introduced by Hutchinson (94); the mathe-
matical consequences of the formulation were apparently first worked out on the
back of an envelope by Lars Onsager during tea at the Elizabethan Club at Yale.
An analytical solution to this equation was later supplied by Cunningham (34).
Since that time, a number of essentially similar equations have been proposed (27,
38, 91, 114, 194, 246). In these models differential equations are used. For every
differential equation, there is an analogous difference equation; models using the
difference-equation structure have also been proposed (132, 135, 138, 179, 192, 225).
It is also possible to introduce lags into models using other mathematical forms
altogether. Lefkovitch (109) incorporated delayed responses into a matrix algebra
model for population growth.

The incorporation of even the simplest form of time lag into the growth equation
results in an increase in the kinds of solutions possible. The lag in the response of
the system to an increasing population density allows the population to overshoot
the equilibrium level. With relatively short lags, the population growth form is a
monotonic approach to equilibrium, much like that of the logistic equation. With
higher values, an overshoot appears, which can become a damped oscillation. With
still higher values, a limit cycle may result (Figure 3). The point at which the form
of the growth curve changes is dependent on the product 7. When r7 < 0.7, a
monotonic approach to equilibrium results. At 0.7 < r7 < 1.8, damped oscillations
about an equilibrium level are found; at 7 > 1.8, a limit cycle appears (230). With
slightly different formulations for the equation, slightly different values may define
the shapes of the curves (38), but the principle remains the same.

When lags of this sort are incorporated into the growth equation, it is no longer
necessary to postulate prey—predator interactions to explain every oscillating popu-
lation. Actually, many of the apparent prey—predator oscillations may better be

explained as the response of the predator organism to a fluctuating food supply
(232). .
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Figure 3 Single species growth curves, 7 and K held constant, 7 varied.

Many complications can be imposed upon this most general time lag equation.
The 6 formulation can be employed, as in

dx/dr = rx[1 - (x/K)%), _,,. 8.

As 1 have already indicated, the effect of including the @ term is to modify the
apparent value of r. There is actually a greater effect than a simple increase or
decrease in 7; high values of # lead to limit cycles with very sharp peaks, since
the density-dependent controls take effect late in the population cycle. However,
this effect is not so marked that the difference between high € and high » could
be distinguished easily in data from experimental populations. For all practical
purposes, an increase in 6 can be modelled just as well by substituting a higher
apparent r.

The lag used in these studies is necessarily a single discrete lag; as such, it is at
least theoretically a poor representation of the temporal relationships in real popula-
tions. The actual extent of the time lags must depend upon the mechanisms control-
ling population density and may vary in length with population size. If control is
exerted through reduced fertility or reduced breeding, the normal lag for an organ-
ism that breeds continuously would be the length of the gestation period. If the
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control occurs through increased mortality, then the length of the lag will depend
upon where in the life span the increase in mortality appears. The formulation of
a realistic lag may be very complex, but the results, as far as they have been
developed, appear to be much like those found with discrete lags (24).

Most models of population growth have assumed that the environment remains
essentially constant throughout the experiment. Some attempts have been made to
consider the effects of variations in the environment. If the environment fluctuates
_periodically, variations affecting the carrying capacity can force a population, nor-
mally growing in the logistic form, into oscillations (152, 232). If the normal growth
form of the population is a limit cycle, only those frequencies close to the normal
frequency of the population limit cycle will have much effect on the population
growth (152).

When the environment fluctuates in a random fashion, it may be difficult to
determine the normal growth form. Even a small amount of stochastic variability
may render the normal tests for periodicity useless (133, 137, 170). It seems obvious
that even a small increase in complexity, particularly in the modelling of the influ-
ence of the environment on population growth, can result in a model whose output
cannot be distinguished from that of a completely Markovian universe. There seems
to be little profit in pursuing the growth model to this extreme.

It is possible to construct a model for population growth that considers actual
mechanisms of density-dependent control, rather than the simple damping term
[1 - (x/K)]. Such a model could have more realistic lags built into the system, and
might take the form

dx/dt = bx _,y-dx_ 1, >

where b is the birth rate and is a function of x at time (¢ — 7,), and d is the mortality
and is a function of x at time (7 — 7,). The mechanisms of density-dependent control
will then determine the shape of the two functions and the lags involved. However,
this form of growth equation is far removed from the Lotka-Volterra equations.

If the normal growth form for a population is a damped oscillation or a limit
cycle, the use of autocorrelation functions to determine the extent of density depen-
dence will not be successful. Half of the time the correlation between the population
size at time ¢ and that at # + 1 will be positive, and half the time it will be negative.
Each point on the growth curve should really be designated by a number and a
direction, either positive (growing) or negative (decreasing). Some form of nonpara-
metric statistics would then have to be employed, since the relationship of x; to
X, + 1y even if the positives and negatives were grouped separately, will be dis-
tinctly nonlinear.

PREY-PREDATOR EQUATIONS

The classical approach to the description of the interaction between two species, one
of which feeds upon the other, is the Lotka-Volterra prey-predator model, where
dx/dt = rx — axy

10.
dy/dt = Bxy - Dy,



200 WANGERSKY

with x = the number of prey organisms, y = the number of predator organisms,
a = a proportionality constant linking the prey mortality to the number of prey and
predators, 8 = a proportionality constant linking the increase in predators to the
number of prey and predators, and D = a constant of mortality for the predators.

The model produces the prey—predator cycles familiar to all ecologists, with
growth in the predator populations trailing that in the prey. As I have already
mentioned, almost every population that showed periodic fluctuations was once
considered to be part of such a prey—predator interaction. In field populations, such
interactions could be postulated, but seldom demonstrated conclusively. Perhaps
the most famous examples have been found in the fluctuations of arctic animals: the
snowshoe hare-lynx (50), and the brown lemming—grass (206) interactions. Neither
of these cycles has yet been demonstrated conclusively to be due to a prey—predator
interaction, in spite of many years of work. It is unlikely that any amount of
statistical analysis or collection of data in the field will settle this question; long-term
field experiments are clearly necessary. Somewhat better data and analyses are
available from insect populations (88, 218), in part because of the shorter life spans
of the organisms involved.

Examples of prey—predator interactions that fit the model more closely are avail-
able from laboratory populations. These experiments have included such pairs of
species as the bacterium Klebsiella aerogenes and its protozoan predator Tet-
rahymena pyriformis (220); the classical prey—predator pair, Paramecium aurelia
and Didinium nasutum (181); Paramecium and the rotifer Asplanchna (129); Hy-
dra and its parasite, Hydramoeba hydroxena (195); two studies using the house fly,
Musca domestica, and parasites, Mormoniella mestica (41) and Nasonia vitripennis
(169); two species of mites (175); the host-parasite pair Trialeurodes vaporariorum
and Encarsia formosa (21); and the azuki bean weevil, Callosobruchus chinensis, and
its parasite, Heteropilus prosopidis (216). Oscillations were found in most of these
populations. In most cases, the oscillations were of the type predicted by the Lotka-
Volterra equations. Pimentel (169) and Utida (216) found damped oscillations
rather than limit cycles. These forms cannot result from Lotka-Volterra prey—
predator interactions. These authors attributed the damping to genetic selection.
DeBach & Smith (41), using a somewhat artificial experimental plan, predicted
expanding oscillations leading to the extinction of either prey or parasite.

The classical Lotka-Volterra formulation has been carried much further; the
effect of minor perturbations has been considered (13, 182), the effect of varying age
structures has been studied (12), and the general behavior of such systems of
equations has been studied (20, 47, 54, 57, 72, 87, 111, 119, 244). An attempt has
been made to use the Lotka-Volterra model to select the point at which to interfere
with a prey—predator interaction in order best to control the predator population
(70). Stochastic versions of the model have been constructed (77, 237). A graphical
approach to predation theory has also developed (177, 178, 197, 223); to some
extent, this is outside the frame of reference of this paper.

Several investigators have analyzed the behavior of the standard prey-predator
equations, sometimes with purely theoretical populations, and sometimes with num-
bers derived from experimental populations. In many cases, some form of density
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dependence had to be included in the growth term of the prey population in order
to find stable solutions (51, 60, 75, 124, 167, 199, 201, 222). One mathematical
statement of this incorporation of density dependence might be

dx/dt = rx[1 - (x/K)] - axy

11.
dy/dt = Bxy - Dy.

There are a number of ways in which density dependence can be introduced in
these models: simple density dependence, without specification of the mechanisms
involved (51, 124, 201); limitation of prey birthrates (199); territoriality (60); and
migration and local extinction (222). Models have also been constructed with densi-
ty-dependent limitation on the predator population (75, 167). It is evident that in
many models the rate of growth of the prey population, if unmodified by density
effects, cannot be controlled by predation as long as the interaction between the two
populations is kept strictly linear. In other models, strict linearity results in the
extinction of the prey during periods of high population of the predators.

This restriction on interactions becomes even more marked when we consider
models in which temporal relationships are maintained. As in the single-species
growth curve, effect must follow cause by some perceptible lag. While an extremely
complex model can be constructed, with lags incorporated into every term, such a
model is unusable except on the largest computers. Much can be learned by the
examination of even so simple a system as

dx/dt = rx - axy
dy/dt = Bxy,_. - Dy.

This pair of equations was investigated by Wangersky & Cunningham (231). The
equations in this form have no stable solutions. In ecological terms, this means that
in a system so described, with a lag between the reaction of the predator population
to changes in the prey population, the growth of the prey cannot be regulated simply
by any linear interaction between prey and predator. This situation has also been
discussed by Luckinbill (123). When density-dependent regulation of the prey
growth is incorporated into the model, as

dx/dt = rx[1 - (x/K)] - axy
dy/dt = Bxy _ n — Dy,

the solutions fall into three classes and one special case. The special case, where
T =0, is the familiar Lotka-Volterra prey—predator cycle. For low values of 7, both
prey and predator populations approach equilibrium monotonically. For higher
values, a damped oscillation of both populations about their equilibrium values can
be found. Still higher values result in limit cycles of the Lotka-Volterra variety.
Thus, instead of a single response, the limit cycle, a whole array of responses can
be found; the form of the system response is determined by both the size of the lag
between the change in prey population and the response of the predator, and by the
strength of the coupling between the populations. If the growth of the prey popula-

12.

13.
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tion is rapid compared to that of the predator, and a, the interaction factor, is small,
the predator may have little effect on the growth of the prey. In such cases, the
growth curve of the predator may be a simple response to that of the prey popula-
tion.

Interactions between prey and predator populations can be other than linear.
Arguments can be made for almost any interaction form one would care to use. In
one admittedly highly artificial experiment on predation by DeBach & Smith (41),
linear interaction terms were used, and the resulting population forms were expand-
ing oscillations of the type postulated by Nicholson & Bailey (151), leading to
extinction of one or both of the populations. The interaction could be fitted more
closely by a hyperbolic tangent function. When such a function was inserted, the
two populations quickly settled into limit cycles, with an exceptional fit to the
experimental data points (232).

It is apparent that there is not just one possible model for the prey—predator
interaction with time lag, but at least three: one in which there is no density-
dependent control on the growth of the prey population, but the interaction terms
are nonlinear; one with linear interaction terms and density dependence; and one
with nonlinear interaction terms and density dependence. One could also consider
the case in which both prey and predator are subject to density-dependent control.
The model to be preferred must depend upon the biology of the system.

Models of predation and parasitism incorporating time lags have become more
numerous in recent years (6, 15, 17, 36, 37, 104, 126, 127, 144, 190). Many of these
papers are more rigorous in their mathematics than the Wangersky & Cunningham
papers (230, 231, 232), but suggest little that is new in their conclusions. Arditi,
Abillon & Da Sylva (6) consider the effects of a lag in the predator’s death term,
and suggest that such a lag can stabilize an otherwise unstable model. Murray (144)
includes a term for diffusion of a population, which permits travelling wave solu-
tions. Brauer (17) introduces the possible use of harvesting to stabilize the popula-
tions. Most of the modellers who have worked with time lags have concluded that
there is little to be gained from the study of systems more complex than the one-lag
models described in this paper.

COMPETITION MODELS

If the Lotka-Volterra prey—predator cycle is considered one of the founding princi-
ples of modern theoretical ecology, then the competition equations are surely an-
other, and of equal importance. In their simplest form, these equations describe the
interaction of two species in competition for a common resource. The equations can
take the form

dx/dt = rx [(K; - x - ay)/K,]

14.
dy/dt = ry (K, - y Bx)/K,].

This form of the equation states that the presence of a species y depresses the rate
of growth of a species x in a manner proportional to the numbers of species y
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present, and vice versa. The form of the solutions thus depends upon the strength
of the interaction terms. If a is very high relative to B, species y will affect the
growth of x more than x affects y, and species x will eventually be eliminated from
the competition.

The principle of competitive exclusion, the concept that two species in competi-
tion for the same resource cannot coexist, has become one of the foundations of
theoretical ecology. It has given the concept of ecological niche a sharper focus,
since the coexistence of any two species, no matter how similar they might seem,
implies that the species are not in true competition, and that differences removing
them from direct competition should be present in their life histories. Such differ-
ences can always be found; whether they are enough to remove species from direct
competition, however, has always been difficult to prove. The consideration of more
and more components of the environment leads naturally to the description of the
niche of a population as a volume in a hyperspace, each dimension of which is a
gradient in one attribute of the habitat (95), and of the evolution of a population
as the trajectory of a niche through time, following an optimal pathway (229).

While such speculations and extrapolations have been fruitful, and, in fact, have
shaped modern ecology, we must remember that the solutions found for the mathe-
matical statements in no way test or prove the truth of the principle of competitive
exclusion. The results are inherent in the equations used; once the equations are
written and the constants evaluated, the solutions are determined. If the growth and
interaction terms could be evaluated from first principles, some predictive capacity
might be claimed for the equations. Often, the values of 7 can be determined from
single species growth experiments, but the interaction terms must almost always be
determined from actual experimental interactions. As it is most often used, the
principle of competitive exclusion is a tautology. The place of this principle in
ecological theory has been disputed for many years (4, 5, 30, 78, 165, 176); perhaps
the best discussions have been those of Hardin (78) and Peters (168). Whatever our
personal belief on the reality of the phenomenon of competitive exclusion, the
concepts derived from it have become so firmly embedded in modern ecological
theory that even were the principle to be proven false, it is unlikely that any attempt
would be made to rebuild theoretical ecology from scratch.

The evidence for competitive exclusion in natural populations is spotty and often
almost anecdotal, based largely on the mutual exclusiveness of closely related spe-
cies and on speculations about possible mechanisms of separation (19, 23, 42, 82,
84, 98, 188). Occasionally it has been possible to conduct experiments in field
situations; thus, Wilbur (240) investigated the nonlinear, nonadditive terms in the
competition interaction functions in a field enclosure study of a salamander—tadpole
community; Brown (19), Heller (82), and Sheppard (188), examining chipmunk
communities, considered aggressiveness as the main mechanism of competition; and
Istock (96), determining o and S in experimental populations of water-boatmen,
found he could explain seasonal variations in natural populations on the basis of
simple competition.

The possible mechanisms of competition have been studied much more closely
in experimental populations. As might be expected, the laboratory studies have been
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conducted with insects, zooplankton, and other organisms small enough to be grown
in quantity in aquaria and small cages. The actual data are thus largely restricted
to organisms with short life spans and generation times, and usually to species that
reproduce continuously. Experimental organisms are chosen to fit the convenience
of the experimenter, and neither the graduate student nor the granting agency can
be expected to become involved in the population dynamics of elephants. We are
thus continually experimenting with organisms of one type, the short-lived continu-
ous breeders, and extrapolating to all others, including those with definite, restricted
breeding periods and long life spans. We are examining ants and commenting on
the habits of water buffalo.

The best-studied competition is probably that between the flour beetles Tribolium
castaneum and T. confusum (39, 40, 110, 156-163). Park and his co-workers were
able to correlate environmental conditions with success or failure in two-species
competitions, and demonstrated a region of indeterminacy of outcome, where
changes in population inoculum size could alter the normal course of competition.
Later workers have shown (39, 40, 110) that such results may be specific not to the
particular species involved, but to the genetic strains used; thus, competition coeffi-
cients determined in laboratory experiments can be applied to natural populations
only with considerable reservation, especially when experimental populations are
started with a small inoculum.

Opposing conclusions have been reached on the utility of competition models in
explaining experimental results in Paramecium populations. Vandermeer (221) felt
that the logistic and simple competition equations could explain his results satisfac-
torily, while Gill (63) thought the presence of endosymbionts might be responsible
for the outcome of competition in his populations. The situation with Drosophila
seems somewhat simpler, with most workers agreeing that the outcome of competi-
tion could be predicted from population growth rate measurements, with competi-
tion being limited strictly to the acquisition of food (8, 59, 97, 142, 143, 173).
Richmond et al (173), predicting the outcome of three-species competitions by linear
superposition of two-species competition coefficients, felt that the simple Lotka-
Volterra theory was incomplete.

Utida (214) summed up many years of study of bean weevil population dynamics
in a paper on competition between two species in the presence and absence of
parasites. Under the conditions of these experiments, competition in the absence of
parasitism always resulted in the extinction of one species. Coexistence was possible
when the parasite was present in both species. Yoshida (245) found that the order
in which the species were put into the arena and the size of the population inoculum
were more important than the competition coefficients in determining the outcomes.

Frank demonstrated in laboratory experiments that two cladoceran species,
Daphnia pulicaria and Simocephalus vetulus, could not coexist (55), and that in
cultures of two species of Daphnia (D. pulicaria and D. magna) although these
species seemed more likely to coexist, D. magna was always eliminated under the
conditions of the experiment (56). Allan (2), working with D. parvula and
Holopedium gibberum, measured competition coefficients from laboratory experi-
ments. The measured coefficients suggested that under natural conditions the species
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should coexist, with Holopedium having the larger population, although it is the
poorer competitor. In nature, Daphnia was rare and declining throughout the study,
presumably because of selective predation. We can safely say, from evidence derived
from both natural and laboratory populations, that the situation is almost always
more complicated than is evident from the models.

There is a considerable literature on somewhat more complex models, largely
derived from the Lotka-Volterra competition models. The commonest form of
complication is the shift from linear to nonlinear terms (16, 35, 64, 67, 217). These
nonlinearities can take the form of nonlinear growth rates, interaction terms, or
both. The case of the linear model in a fluctuating environment has also been studied
(74).

Schoener (185-187) has been a prolific and interesting theorist in this area of
research. He has looked at the differences between linear and nonlinear models, both
for models of competition involving interference between species and for those
involving exploitation of a common resource (185); he has calculated competition
coefficients for species feeding on the same resource (186); and he has proposed a
model of some complexity, incorporating mechanisms of competition, as an alterna-
tive to the standard Lotka-Volterra models.

A number of workers have constructed competition models to fit specific situa-
tions or specific experiments. These models often deviate considerably from the
original Lotka-Volterra model. For example, Taylor (203) and Niven (153) devised
models of Tribolium species in competition. De Wit et al (45) proposed a number
of models of competition for space in mixed crops, one of the few cases of the
application of competition theory to terrestrial plants. Andersen (3) examined the
special case of competition between populations all of one age group. This kind of
competition would be restricted to organisms without overlapping generations.
Stewart & Levin (193) were interested in species whose growth was seasonally
restricted, and found that this mode of existence permitted the coexistence of
competitors. This is a result that could not normally be predicted from experimental
competitions carried out in the unvarying conditions of the laboratory. Many differ-
ent models were constructed by Ayala, Gilpin & Ehrenfeld (9) in an attempt to fit
experimental data from competition between species of Drosophila. Several of the
models fit the experimental data considerably better than did the simple Lotka-
Volterra formulation. Wiegert (239) and Vandermeer (224) used equations that
allowed different forms of competition and of population growth. Hubbell (92) used
signal-flow graph notation in his models, in place of the usual differential equations,
and Riebesell (174) examined the effects of enrichmert of the systems, leading to
a situation of great density, and finally to instability in a system that was stable at
lower densities. One of the most interesting of these variations on a theme is the
paper by Wuenscher (243), in which he attempts to examine competition models in
the context of overlapping of hyperspace niches.

All of these models, simple and complex, can have only one general form of
solution; one or both populations may rise in the early part of the competition, while
total populations are low, but one of the two reaches a peak and then declines to
extinction. Once one of the populations has started to decline, as long as environ-
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mental conditions remain constant there is no possibility of reversal of the direction
of competition. Experimental populations, particularly when run in replicate, often
display one or several reversals before extinction occurs. Such reversals would
certainly be expected if one or both populations normally followed a damped oscilla-
tion or limit cycle growth form. If equations incorporating time lags were to be
written, the lagged terms would be, as usual, the damping factors, and the equations
would take the form

dx/de = rxx[(Kx - X - ay)/Kx](t - Tx)

dy/dt = ryl(K, - y - Bx)/K))i - 1)

Equations of this form have been studied by Wangersky & Cunningham (232).
These equations are variations on the standard Lotka-Volterra equations, and are
therefore subject to the same constraints. If the two species are in complete competi-
tion, the ultimate result must be the elimination of one of the populations. However,
the addition of the lag terms adds to the number of variables that together determine
the direction of competition. Given two species in complete competition, the end
result of the competition can depend upon the relative growth rates, the interaction
coefficients, the relative numbers at the start of the competition, and the sizes of the
lags. If we consider that in such a competition a saddle point exists, dividing the
probable outcomes, and that the ultimate direction of the competition depends upon
the side of the saddle point where the populations finally stay on (Figure 4), then
the choice of starting conditions is as important as the choice of the various coeffi-
cients in determining the outcome. The incorporation of lags into the equations
allows the populations to fluctuate considerably, and also allows reversals of the
apparent direction of competition; such a reversal cannot occur with the non-lag
formulations.

The effects of lags on competition have not been explored to any great extent.
Hassell & Comins (79) have formulated their competition models as discrete time
equations, thereby making lags of a fixed length implicit in the structure of the
systems. They find oscillatory solutions resembling some of the Wangersky & Cun-
ningham (232) results. Gomatam & MacDonald (71) use a mathematical formula-
tion of much greater complexity, but find much the same results as we found with
the simpler formulation; in general, longer lags result in greater instability in the
system.

All of the models discussed in this paper assume genetic constancy, at least on
the average, in the populations modelled. Thus, the various coefficients are consid-
ered as constants over the length of the experiment. Population growth forms that
involve oscillation, either as damped oscillations or limit cycles, are efficient mecha-
nisms for selection, since the populations involved undergo booms and crashes, with
a relatively small number of survivors at the bottom of a crash supplying the genetic
material for the next boom. In the unchanging environment of the laboratory, an
initial population containing enough genetic variability should display an increas-
ingly better adaptation to the laboratory environment, and higher K values, with
time. Such a series of damped oscillations about progressively higher equilibrium
levels was displayed by a prey-parasite pair studied by Utida (216).

15.



LOTKA-VOLTERRA POPULATION MODELS 207

Modelling this kind of genetic change, or more correctly the change in distribu-
tion of genotypes, might be attempted, but it is far too complex for most purposes.
In still unpublished work I have attempted to approximate the effects of selection
on the outcome of competition by means of constraints placed upon the competition.
Each of the coefficients, r,, r,, K, K,, 7,, 7,, a and 3, was represented not by a sin-
gle value but by a distribution of values. The choice of starting coefficients was de-
termined with the use of a random-number generator. Once the competition had
started, the population was held to its starting coefficients as long as it increased in
number. When it began to decrease, it was issued a new batch of coefficients (again
chosen from the distributions by means of a random-number generator). The fre-
quency with which new choices were made was a function of population size; the
smaller the population, the more frequent the choices. If the population began to
increase, it was held to the coefficients associated with the increase. Under these
rules, populations were sometimes eliminated very rapidly by a bad choice of start-
ing coefficients. Occasionally, both populations would be maintained, with frequent
changes in the direction of competition, for the duration of my computer run. While

X

Figure 4 Competition between two species, with the outcome determined by the size of the
time delays. Curve 1: 7, = 2; 7, = 5. Curve 2: 7, = 2; 7, = 6 [After Wangersky and
Cunningham (232)]. :
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the ultimate direction of competition could be decided by an especially fortunate
choice of starting conditions, often the result was undetermined until late in the
competition. In a sense, these models mimic the behavior of the indeterminate
competitions between Tribolium species discussed by Park (159).

MULTI-SPECIES POPULATION MODELS

Extension of the Lotka-Volterra models to multi-species communities has long been
a goal of ecological modellers. Both Lotka and Volterra explored this area of
modelling to some extent. As in the other areas of research mentioned in this paper,
the multi-species problem has been approached both experimentally and theoreti-
cally. The papers by Addiscott (1) and Maly (130) are typical of the experimental
approaches. Both are concerned with the interactions of multiple prey species with
a single predator species, a topic of considerable interest to the theoreticians. Addis-
cott (1) found that the presence of predators did not permit greater diversity in the
protozoan community in pitcher plants, as would have been predicted by theory.
He felt that the departure from theory occurred because the prey organisms were
not competing for the same resource, and thus-competition was not regulating
population numbers. Maly (130), working with a rotifer predator and two prey
species, a Paramecium and a Euglena, also found a contradiction between theory
and experiment: The addition of a second prey species did not result in increased
stability for the system. He felt that this contradiction occurred because the predator
could not exist entirely on Euglena, and therefore the two prey species were not
completely equivalent. In most cases where experiment and theory are compared,
it is found that the experimental situation is much more complicated than the model.

There have been many purely theoretical studies of multi-species interactions.
The one-predator-two-prey or two-predator—one-prey systems have been investi-
gated by several workers (31, 32, 105, 164). In general, these systems show an
increase in stability over either the simple competition or the simple prey-predator
systems. The three-trophic-level systems have also been investigated (58, 69, 80,
241), usually with a finding of increasing stability as more components are added
to the system. Gilpin (65) has examined competition among three species, finding
stable limit cycles as the population growth forms. De Wit (44) and Garfinkel (61)
éxamined the increase in stability resulting from the introduction of density depen-
dence into the model, with De Wit using competition for space as the limiting
condition.

More complex situations have been considered by Garfinkel & Sack (62), who
modelled a six-species, three-trophic-level system involving three plants, two her-
bivores, and one carnivore. Their general conclusions were largely those implied by
the mathematical form of their model. Kilmer (103) applied boundary conditions
determined by biological constraints to his multi-species model. Very complex
mathematical analyses were applied to multi-species systems by Huang & Morowitz
(90), Kerner (102), and Trubatch & Franco (209)—techniques I feel to be far more
sophisticated than the initial assumptions warrant. Neill (147) and Patten (166) take
opposite sides of the argument on linearization of the equations used in their models;
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Neill argues that the competition coefficients should all be nonlinear, and demon-
strates nonadditivity effects by eliminating one or two species from a four species
competition model; Patten argues that since the nonlinear models constructed by
the investigators in the International Biological Program were unstable, perhaps
evolution aims at the linearization of all systems.

The sensitivity of ecological systems to sudden changes in the environment has
been investigated experimentally by Storer & Gaudy (196) and theoretically by Goh
(68). Storer & Gaudy grew sewage organisms to equilibrium in a chemostat, then
dumped in three times the normal nutrient load. This produced damped oscillations
in the population growth rates. Goh attempted to set some stability limitations on
complex systems in the face of disturbances, using the Lyapunov number as a
criterion of stability.

These models, like most of the simpler models, assume an essentially Markovian
universe; only the present state of the system is important, and the history of the
system, the route by which the system arrived at that state, can be disregarded in
any prediction of future states. Yet if any of the populations involved exhibits either
damped oscillations or limit cycles as its population growth form, this assumption
is obviously untrue. In order to predict the state of that population in the next time
interval it is necessary to know both population size and direction. When the growth
form of population is a limit cycle, it is important to know where in that cycle the
population is; the distribution of probable futures for a growing population is
different from that for one that is crashing. Even with a population that apparently
follows a logistic growth form, the necessary delay between cause and effect must
be taken into account in prediction. In a system composed of several interacting
populations with delays of varying lengths, predictions cannot be made simply by
inspection, and intuition can be wrong as often as it is right.

Multi-species models incorporating delays have been constructed by several inves-
tigators (11, 108, 112, 134). In general, their results suggest that delays lead to
increased instability in the strongly linked systems. Ladde (108), using a Lyapunov-
function approach, found that stability could be increased by building density
dependence into the several species. Much more work must be done with multi-
species models that incorporate delays. We need to determine whether the instabili-
ties seen in the models are common in natural communities; if they are not, we must
discover how natural communities differ from the models. Our experiences with
natural communities suggest that both stability and instability are to be expected,
sometimes in the same community. Some species, particularly those following an
r-strategy, fluctuate violently, while other, closely related species seem stable. It may
be that interaction coefficients between these two types of populations must be low
if a stable community is to result. Limits to the degree of interaction might be set
by investigations into the properties of such models. It has been suggested (131) that
communities evolve from species with many offspring and great dispersal power,
following an r-strategy, to tight breeding communities with little dispersal and
complex structure. I feel some species with high reproductive potential invariably
exist to take advantage of the good years and occasional especially favorable circum-
stances.
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CONCLUSIONS

Complex and closely fitted growth curves for populations of a single species can
certainly be devised, based on mechanisms of density-dependent control of popula-
tion size. They may even be useful in predicting the outcome of specific experiments,
in a manner impossible with the more general equations. For most purposes, there
is little reason to use models more complicated than the time-lag version of the
logistic equation; however, the simple logistic, without time lag, is too restricted in
the range of populations it will describe. Models incorporating some degree of
genetic change should be investigated.

The presence of population oscillations cannot be taken as proof of the existence
of prey-predator interactions, since there is both experimental evidence and theoreti-
cal justification for damped oscillations and limit cycles in populations without
predation. Conversely, the presence of a prey-predator pair does not ensure that any
fluctuations are due to the Lotka-Volterra type of prey-predator cycling. Prey-
predator interaction models incorporating time lags can produce noncyclical popu-
lation growth forms when growth rates or delay terms are small. Cyclical growth
patterns in the predator may be simply responses to naturally fluctuating food
supplies.

Competition models exhibiting most of the features found in laboratory competi-
tions, including a certain degree of indeterminacy of outcome, can be constructed
if delays are incorporated into the models. The restriction of these models to two
species is probably excessively artificial. Multi-species models incorporating delays
would seem to be the most profitable direction for future research. The small amount
of work of this type done so far has produced results that are not always intuitively
obvious; further work may permit the general outlines of a theory for multi-species
interactions to emerge.

The mathematical apparatus brought to bear on the problems of growth and
interaction has often been unjustifiably complex, given the unreality of many of the
underlying assumptions. The most complex mathematics usually requires that there
be no historical effects in the populations modelled, a circumstance that can never
occur in nature. It is worth getting complicated in the analysis if we can also get
more realistic in our assumptions; if we simply extend the original models beyond
their sensible limits, our results may be mathematically sound and biologically
irrelevant.
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