138 FINAL EXAM FORMULA SHEET

The future value of the income over the time period T is given by $F V=\int_{0}^{T} f(t) e^{r(T-t)} d t$.
The present value is given by: $P V=\int_{0}^{T} f(t) e^{-r t} d t$

$$
p_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

is the $\mathbf{n t h}$ Taylor Polynomial of the function \mathbf{f} at a.
The remainder Formula: If $\left|f^{n+1}(x)\right| \leq M$ to all number between x and a, then:

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} .
$$

Differential Equations

Euler's Method: approximates the values of the solutions for the $\mathrm{DE} d y / d x=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$ at specific points:

$$
y_{0}=y\left(x_{0}\right), \quad y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right), \quad \ldots \quad y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

First order DE: The general solution of a DE of the form $\frac{d y}{d x}+p(x) y=q(x)$ is $\frac{1}{I(x)}\left[\int I(x) q(x) d x+C\right]$ where $I(x)=e^{\int p(x) d x}$

Second Order Homogeneous Linear DE; ay" $+\mathbf{b y}^{\prime}+\mathbf{c y}=\mathbf{0} \quad \mathbf{a} \neq \mathbf{0}$
The characteristic equation of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $a r^{2}+b r+c=0$.
When the CE has 2 distinct real roots, r_{1}, r_{2}, the solution is $y=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}$.
When the CE has 2 equal real roots, $r_{1}=r_{2}=r$, the solution is $y=\left(C_{1}+C_{2} x\right) e^{r x}$.
When the CE has 2 distinct none real (complex) roots, $r_{1}=\alpha+\beta i$ and $r_{2}=\alpha-\beta i$, the solution is $y=e^{\alpha x}\left(C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right)$.

Variation Of Parameters: Let $y_{h}=C_{1} y_{1}+C_{2} y_{2}$ be the solution for the homogeneous DE $a y^{\prime}+b y^{\prime}+c y=0$. Then the particular solution for the nonhomogeneous $\mathrm{DE} a y^{\prime \prime}+b y^{\prime}+c y=F(x)$ is $\mathbf{y}_{\mathbf{p}}=\mathbf{u} \mathbf{y}_{\mathbf{1}}+\mathbf{v} \mathbf{y}_{\mathbf{2}}$ where
$u(x)=\int \frac{-y_{2} F(x)}{\mathbf{y}_{1} \mathbf{y}_{2}^{\prime}-\mathrm{y}_{2} \mathbf{y}_{1}^{\prime}} d x \quad$ and $\quad \mathrm{v}(\mathrm{x})=\int \frac{\mathrm{y}_{1} \mathbf{F}(\mathrm{x})}{\mathrm{y}_{1} \mathrm{y}_{2}^{\prime}-\mathrm{y}_{2} \mathbf{y}_{1}^{\prime}} \mathrm{dx}$
Note that the solution is $y_{h}+y_{p}=C_{1} y_{1}+C_{2} y_{2}+u y_{1}+v y_{2}$

Exponential growth and decay: $\frac{d Q}{d t}=k Q(t)$.

The Logistics Equation with $\mathbf{Q}_{0}<\mathbf{L}$:

$$
\frac{d Q}{d t}=a Q-k Q^{2} \quad \text { or } \quad \text { if } \quad \text { let } \quad L=a / k \quad \frac{d Q}{d t}=k Q(L-Q)
$$

The solution of the equation is $\quad Q(t)=\frac{L}{1+A e^{-a t}} \quad$ and $\quad A=\frac{L}{Q_{0}}-1$
Let $Q_{0}=Q(0), Q_{1}=Q(T)$ and $Q_{2}=Q(2 T)$, then:

$$
\frac{\frac{1}{Q_{1}}-\frac{1}{Q_{2}}}{\frac{1}{Q_{0}}-\frac{1}{Q_{1}}}=e^{-a T}, \quad \frac{A}{L}=\frac{\frac{1}{Q_{0}}-\frac{1}{Q_{1}}}{1-e^{-a T}} \quad \text { and } \quad \frac{1}{L}=\frac{1}{Q_{0}}-\frac{A}{L}
$$

Numerical Integration

Trapezoidal Rule: $\int_{a}^{b} f(x) d x \approx T_{n}=\frac{1}{2}\left(\frac{b-a}{n}\right)\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
Simpson's Rule, n even: $\int_{a}^{b} f(x) d x \approx S_{n}=\frac{1}{3}\left(\frac{b-a}{n}\right)\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+\right.$ $\left.2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
Trapezoidal Rule Error Bound $\left|E_{n}\right| \leq \frac{(b-a)^{3}}{12 n^{2}} M$ when $\left|f^{\prime \prime}(x)\right| \leq M$ for all $a \leq x \leq b$.
Simpson's Rule Error Bound $\left|E_{n}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$ when $\left|f^{(4)}(x)\right| \leq K$ for all $a \leq x \leq b$

Linear Algebra

Matrix A is invertible only if A is a square matrix with nonzero determinant. If A^{-1} exists then $A A^{-1}=A^{-1} A=I . \quad$ The (i, j) entry of A^{-1} is $\frac{A_{j i}}{\operatorname{det} A}$, where $A_{j i}=(-1)^{j+i} M_{j i}$.

Cramer's Rule: Let $A \cdot x=b$. Then $x_{i}=\frac{\operatorname{det} B_{i}}{\operatorname{det} A}$, where B_{i} is the matrix formed from A by replacing in the $i t h$ column of A with the vector b.

Eigenvalues: If λ is an eigenvalue of A then
the characteristic polynomial of the matrix $A=\operatorname{det}(A-\lambda I)=0$.
x is an eigenvector of A for the eigenvalue λ if $A \cdot x=\lambda x$.
The eigenvectors of A are also the eigenvectors of A^{k} and the eigenvalues of A^{k} are λ^{k}
$\int \sin x d x=-\cos x+C \quad \int \cos x d x=\sin x+C \quad \int e^{x}=e^{x}+C$
$\int \frac{1}{x} d x=\ln |x|+C \quad \int x^{n}=\frac{x^{n+1}}{n+1}+C$
Integration by parts: $\int u d v=u v-\int v d u$ and $\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u$

