1. Suppose $f(x)=2 x^{2}-3 x$. Use the definition of derivative to find $f^{\prime}(x)$.

$$
\begin{gather*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}-3(x+h)-\left(2 x^{2}-3 x\right)}{h} \tag{10}\\
=\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}-3 x-3 h-2 x^{2}+3 x}{h} \\
=\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}-3 h}{h}=\lim _{h \rightarrow 0} 4 x+2 h-3=4 x-3
\end{gather*}
$$

2. Find an equation for the line tangent to the graph of $y=\sqrt{x}+2 x^{2}$ at the point where $x=1$.
$y=x^{1 / 2}+2 x^{2}$, so $y^{\prime}=\frac{1}{2} x^{-1 / 2}+4 x$. At $x=1$, the value y is 3 and the value of y^{\prime} is $9 / 2$. Thus an equation for the tangent is

$$
y-3=\frac{9}{2}(x-1)
$$

(12) 3. Assume that the functions $u(x)$ and $v(x)$ are defined and differentiable for all real numbers x. The following data is known about u, v, and their derivatives.

x	$u(x)$	$v(x)$	$u^{\prime}(x)$	$v^{\prime}(x)$
2	3	4	-1	2
3	2	1	3	-1
4	1	3	0	-2

Define $f(x)=u(x)^{2}+2 v(x)$ and $g(x)=v(x) / u(x)$. Answer the following, giving a brief explanation of how the answers were obtained.
a) What is $f^{\prime}(2)$?

Since the chain rule had not been covered when the test was given, to differentiate $u(x)^{2}$ we have to write it as $u(x) u(x)$ and use the product rule.

$$
f^{\prime}(x)=u(x) u^{\prime}(x)+u^{\prime}(x) u(x)+2 v^{\prime}(x)=2 u(x) u^{\prime}(x)+2 v^{\prime}(x) .
$$

Thus

$$
f^{\prime}(2)=2(3)(-1)+2(2)=-2
$$

b) What is $g^{\prime}(3)$?

$$
g^{\prime}(x)=\frac{u(x) v^{\prime}(x)-v(x) u^{\prime}(x)}{u^{2}(x)}
$$

Thus

$$
g^{\prime}(3)=\frac{2(-1)-1(3)}{2^{2}}=-\frac{5}{4}
$$

c) What can be said about the number and location of solutions to the equation $f(x)=6.5$ with x in $[2,4]$?
From the table, we have $f(2)=17, f(3)=6$, and $f(4)=7$. By the Intermediate Value Theorem, there is at least one solution to the equation $f(x)=6.5$ in the interval [2,3] and at least one in the interval $[3,4]$. Thus the total number of solutions is at least 2.
4. Suppose that the function $f(x)$ is described by

$$
f(x)= \begin{cases}x+B & \text { if } x<1 \tag{12}\\ A x+3 & \text { if } x \geq 1\end{cases}
$$

a) Find A and B so that $f(x)$ is continuous for all numbers and $f(-1)=0$. Briefly explain your answer.

The only place that f might not be continuous is at $x=1$, where the definition changes. Now $f(1)=A+3$ while $\lim _{x \rightarrow 1^{-}} f(x)=1+B$. If f is to be continuous at $x=1$, we must have $A+3=1+B$.
The value of $f(-1)$ is $-1+B$, which must be 0 . This gives $B=1$. Substituting this value in the previous equation, we get $A=-1$.
b) Sketch $y=f(x)$ on the axes given for the values of A and B found in a) when x is in the interval $[-2,2]$.

(16)
5. Evaluate the indicated limits exactly. Give evidence to support your answers without appealing to calculator computations, to graphing, or to l'Hôpital's Rule.
a) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$

This limit is

$$
\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{4}
$$

b) $\lim _{x \rightarrow 2^{-}} \frac{|x-1|-1}{|x-2|}$

If x is a real number less than 2 but very close to 2 , then $x-2$ will be negative and $x-1$ will be positive. Thus $|x-2|=2-x$ and $|x-1|=x-1$. Thus this limit is

$$
\lim _{x \rightarrow 2^{-}} \frac{x-1-1}{2-x}=\lim _{x \rightarrow 2^{-}}-1=-1
$$

c) $\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{x^{2}}$

This limit is

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{2}=\lim _{x \rightarrow 0}\left(2 \frac{\sin 2 x}{2 x}\right)^{2}=4\left(\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}\right)^{2}=4\left(1^{2}\right)=4
$$

d) $\lim _{x \rightarrow 0} \frac{\cos 3 x-1}{x}$

This limit is

$$
\begin{equation*}
\lim _{x \rightarrow 0} 3 \frac{\cos 3 x-1}{3 x}=3 \lim _{x \rightarrow 0} \frac{\cos 3 x-1}{3 x}=3(0)=0 \tag{14}
\end{equation*}
$$

6. In the following, distances are measured in feet and time in seconds. A particle is moving on the x-axis. Its position at time t is given by $s(t)=2 t^{3}-3 t^{2}-12 t+7$.
a) What is the net distance traveled by the particle from $t=1$ to $t=3$?

The net distance for this trip is $|s(3)-s(1)|=|-2-(-6)|=4$.
b) What is the total distance traveled by the particle from $t=1$ to $t=3$?

If the particle does not reverse direction, then the total distance is the same as the net distance. Thus we need to see if the particle reverses direction. At a reversal, the velocity is momentarily 0 . The velocity is

$$
v(t)=s^{\prime}(t)=6 t^{2}-6 t-12=6\left(t^{2}-t-2\right)=6(t+1)(t-2)
$$

Setting $v(t)=0$, we get $t=-1$ or $t=2$. The value $t=-1$ is not relevant for our question, since it is not between 1 and 3 . However, $t=2$ is relevant. We find that $s(2)=-13$. The total distance traveled is

$$
|s(2)-s(1)|+|s(3)-s(2)|=|-13-(-6)|+|-2-(-13)|=7+11=18
$$

7. Solve the following two equations for x.
a) $4^{2 x-3}=8^{x+1}$

Taking the logarithm to the base 2 of both sides, we get

$$
(2 x-3) \log _{2} 4=(x+1) \log _{2} 8
$$

Since $\log _{2} 4=2$ and $\log _{2} 8=3$, this gives

$$
2(2 x-3)=3(x+1)
$$

The single solution of this equation is $x=9$.
b) $\ln (x-2)+\ln (x+1)=\ln (3 x-2)$

The left side is $\ln [(x-2)(x+1)]$, so raising e to both sides gives

$$
(x-2)(x+1)=3 x-2,
$$

or $x^{2}-4 x=0$. The solutions to this quadratic equation are $x=0$ and $x=4$. The value $x=0$ is not legal for the original equation, since $\ln -2$ is not defined. The value $x=4$ is the only solution to the original equation.
(8) 8. (There is no single correct answer to this problem.) On the axes below, sketch the graph of a function $f(x)$ with all the following properties:
a) The domain of $f(x)$ is $[-4,4]$.
b) $f(x)$ is differentiable at all points of its domain except $x=-1$ and $x=2$.
c) $f(x)$ is not continuous at $x=-1$.
d) $f(x)$ is continuous but not differentiable at $x=2$.
e) $f(0)=1$ and $f^{\prime}(0)=-1$.

9. a) If $f(x)=2 x^{2} \sqrt{x}+\frac{3}{x^{3} \sqrt{x}}$, what is $f^{\prime}(x)$?

$$
f(x)=2 x^{5 / 2}+3 x^{-7 / 2}
$$

Thus

$$
f^{\prime}(x)=2\left(\frac{5}{2}\right) x^{3 / 2}+3\left(\frac{-7}{2}\right) x^{-9 / 2}
$$

b) If $f(x)=\frac{2 \tan x-3 \sec x}{\ln x}$, what is $f^{\prime}(x)$?

$$
f^{\prime}(x)=\frac{(\ln x)\left(2 \sec ^{2} x-3 \sec x \tan x\right)-(2 \tan x-3 \sec x)\left(\frac{1}{x}\right)}{\ln ^{2} x}
$$

c) If $f(x)=x e^{x} \sin x$, what is $f^{\prime}(x)$?

Since $f(x)$ is a product of three factors, we have to use the product rule twice. Here is one way to do the problem:

$$
f^{\prime}(x)=\left(x e^{x}\right) \cos x+\left(x e^{x}\right)^{\prime} \sin x=\left(x e^{x}\right) \cos x+\left(x e^{x}+e^{x}\right) \sin x .
$$

