(10) 1. Suppose $f(x)=2 x^{2}-3 x$. Use the definition of derivative to find $f^{\prime}(x)$.
2. Find an equation for the line tangent to the graph of $y=\sqrt{x}+2 x^{2}$ at the point where $x=1$.
3. Assume that the functions $u(x)$ and $v(x)$ are defined and differentiable for all real numbers x. The following data is known about u, v, and their derivatives.

x	$u(x)$	$v(x)$	$u^{\prime}(x)$	$v^{\prime}(x)$
2	3	4	-1	2
3	2	1	3	-1
4	1	3	0	-2

Define $f(x)=u(x)^{2}+2 v(x)$ and $g(x)=v(x) / u(x)$. Answer the following, giving a brief explanation of how the answers were obtained.
a) What is $f^{\prime}(2)$?
b) What is $g^{\prime}(3)$?
c) What can be said about the number and location of solutions to the equation $f(x)=6.5$ with x in $[2,4]$?
4. Suppose that the function $f(x)$ is described by

$$
f(x)= \begin{cases}x+B & \text { if } x<1 \\ A x+3 & \text { if } x \geq 1\end{cases}
$$

a) Find A and B so that $f(x)$ is continuous for all numbers and $f(-1)=0$. Briefly explain your answer.
b) Sketch $y=f(x)$ on the axes given for the values of A and B found in a) when x is in the interval $[-2,2]$.

(16) 5. Evaluate the indicated limits exactly. Give evidence to support your answers without appealing to calculator computations, to graphing, or to l'Hôpital's Rule.
a) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
b) $\lim _{x \rightarrow 2^{-}} \frac{|x-1|-1}{|x-2|}$
c) $\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{x^{2}}$
d) $\lim _{x \rightarrow 0} \frac{\cos 3 x-1}{x}$
(14) 6. In the following, distances are measured in feet and time in seconds. A particle is moving on the x-axis. Its position at time t is given by $s(t)=2 t^{3}-3 t^{2}-12 t+7$.
a) What is the net distance traveled by the particle from $t=1$ to $t=3$?
b) What is the total distance traveled by the particle from $t=1$ to $t=3$?
(10) 7. Solve the following two equations for x.
a) $4^{2 x-3}=8^{x+1}$
b) $\ln (x-2)+\ln (x+1)=\ln (3 x-2)$
(8) 8. (There is no single correct answer to this problem.) On the axes below, sketch the graph of a function $f(x)$ with all the following properties:
a) The domain of $f(x)$ is $[-4,4]$.
b) $f(x)$ is differentiable at all points of its domain except $x=-1$ and $x=2$.
c) $f(x)$ is not continuous at $x=-1$.
d) $f(x)$ is continuous but not differentiable at $x=2$.
e) $f(0)=1$ and $f^{\prime}(0)=-1$.

(9) 9. a) If $f(x)=2 x^{2} \sqrt{x}+\frac{3}{x^{3} \sqrt{x}}$, what is $f^{\prime}(x)$?
b) If $f(x)=\frac{2 \tan x-3 \sec x}{\ln x}$, what is $f^{\prime}(x)$?
c) If $f(x)=x e^{x} \sin x$, what is $f^{\prime}(x)$?

