1. Suppose $f(x)=\frac{3}{x+2}$. Use the definition of derivative to find $f^{\prime}(x)$.

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{3}{x+h+2}-\frac{3}{x+2}}{h} \\
=\lim _{h \rightarrow 0} \frac{3(x+2)-3(x+h+2)}{h(x+h+2)(x+2)}=\lim _{h \rightarrow 0} \frac{-3 h}{h(x+h+2)(x+2)} \\
=\lim _{h \rightarrow 0} \frac{-3}{(x+h+2)(x+2)}=\frac{-3}{(x+2)^{2}} .
\end{gathered}
$$

(9) 2. Find an equation for the line tangent to the graph of $y=\frac{4 x}{2+x^{2}}$ at the point where $x=1$.
When $x=1$, the value of y is $4 / 3$.

$$
\frac{d y}{d x}=\frac{\left(2+x^{2}\right) 4-(4 x)(2 x)}{\left(2+x^{2}\right)^{2}}=\frac{8-4 x^{2}}{\left(2+x^{2}\right)^{2}}
$$

When $x=1$, this is $4 / 9$. Thus an equation for the tangent is

$$
y-\frac{4}{3}=\frac{4}{9}(x-1)
$$

3. Assume that the functions $u(x)$ and $v(x)$ are defined and differentiable for all real numbers x. The following data is known about u, v, and their derivatives.

x	$u(x)$	$v(x)$	$u^{\prime}(x)$	$v^{\prime}(x)$
2	3	4	-1	2
3	2	1	3	-1
4	1	3	0	-2

Define $f(x)=u(x) v(x), g(x)=u(x) / v(x)$, and $h(x)=u(v(x))$. Give the values of the following with a brief indication of how they were obtained:
a) $f^{\prime}(2)$

$$
f^{\prime}(2)=u(2) v^{\prime}(2)+u^{\prime}(2) v(2)=3 \cdot 2+(-1) \cdot 4=2
$$

b) $g^{\prime}(3)$

$$
g^{\prime}(3)=\frac{v(3) u^{\prime}(3)-u(3) v^{\prime}(3)}{v(3)^{2}}=\frac{1 \cdot 3-2 \cdot(-1)}{1^{2}}=5
$$

c) $h^{\prime}(4)$

$$
\begin{equation*}
h^{\prime}(4)=u^{\prime}(v(4)) v^{\prime}(4)=u^{\prime}(3) v^{\prime}(4)=3 \cdot(-2)=-6 . \tag{14}
\end{equation*}
$$

4. Suppose that the function $f(x)$ is described by

$$
f(x)= \begin{cases}3-x^{2} & \text { if } x<0 \\ A x+B & \text { if } 0 \leq x \leq 1 \\ 2^{x} & \text { if } 1<x\end{cases}
$$

a) Find A and B so that $f(x)$ is continuous for all numbers. Briefly explain your answer. The value of $f(0)$ is B and

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 3-x^{2}=3
$$

If $f(x)$ is continuous at 0 , then $B=3$.
The value of $f(1)$ is $A+B=A+3$ and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2^{x}=2
$$

Therefore $A+3=2$ or $A=-1$.
b) Sketch $y=f(x)$ on the axes given for the values of A and B found in a) when x is in the interval $[-2,2]$.

5. Evaluate the indicated limits exactly. Give evidence to support your answers.
a) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}$

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+3)}{x-1}=\lim _{x \rightarrow 1} x+3=4 .
$$

b) $\lim _{x \rightarrow 2^{+}} \frac{|x-1|-1}{|x-2|}$

If $x>2$, then both $x-1$ and $x-2$ are positive and $|x-1|=x-1$ and $|x-2|=x-2$. Therefore

$$
\lim _{x \rightarrow 2^{+}} \frac{|x-1|-1}{|x-2|}=\lim _{x \rightarrow 2^{+}} \frac{x-2}{x-2}=\lim _{x \rightarrow 2^{+}} 1=1 .
$$

c) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x}$

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{\frac{\sin 3 x}{\cos 3 x}}=\lim _{x \rightarrow 0} \frac{\sin 2 x \cos 3 x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{2 \frac{\sin 2 x}{2 x} \cos 3 x}{3 \frac{\sin 3 x}{3 x}}=\frac{2}{3}
$$

d) $\lim _{x \rightarrow 4} \frac{3 x-2}{\cos (\pi x)}$

$$
\lim _{x \rightarrow 4} \frac{3 x-2}{\cos (\pi x)}=\frac{3 \cdot 4-2}{\cos (4 \pi)}=10
$$

(10) 6. Suppose that $f(x)$ is defined and continuous for all real numbers x and assume that $f(x)$ takes on the following values: $f(-2)=6, f(0)=-3, f(2)=4, f(3)=0, f(4)=-1$, $f(7)=-3$, and $f(10)=8$.
a) What can be said about the number of solutions to the equation $f(x)=0$?

There are at least four solutions to the equation $f(x)=0$.
b) Give a list of nonoverlapping intervals in which solutions to the equation $f(x)=0$ can be found.
By the Intermediate Value Theorem there is at least one solution of the equation $f(x)=0$ in each of the intervals $(-2,0),(0,2),[3,3]$, and $(7,10)$.
7. What is the domain of $f(x)=\frac{\ln x+\sqrt{4-x}}{\sin x}$? Give your answer as a list of intervals. Explain how you arrived at your answer.
$\ln x$ is defined only for $x>0$.
$\sqrt{4-x}$ is defined only for $x \leq 4$.
$\frac{1}{\sin x}$ is defined only when x is not of the form $n \pi$ for some integer n.
The numerator of $f(x)$ is defined for x in the interval $(0,4]$. However, that interval contains one integer multiple of π, namely π itself. Thus the domain of f consists of the two intervals $(0, \pi)$ and $(\pi, 4]$.
(8) 8. In this problem the function $f(x)$ has domain the open interval $(-4,4)$. A graph of $y=f(x)$ is displayed below. Answer the following questions as well as you can based on the information in the graph.

a) For which x is $f(x)$ not continuous?

$$
x=-1
$$

b) For which x is $f(x)$ not differentiable?

$$
x=-1 \text { and } x=2
$$

c) For which x is $f^{\prime}(x)=0$?

$$
x=-2
$$

d) For which x is $f^{\prime}(x)>0$?
(9) 9. a) If $f(x)=\frac{1-e^{x}}{x^{2}+1}$, what is $f^{\prime}(x)$?

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right)\left(-e^{x}\right)-\left(1-e^{x}\right)(2 x)}{\left(x^{2}+1\right)^{2}} .
$$

b) If $f(x)=(2 x+3 \cos x)\left(x^{4}-x^{2}\right)$, what is $f^{\prime}(x)$?

$$
f^{\prime}(x)=(2 x+3 \cos x)\left(4 x^{3}-2 x\right)+(2-3 \sin x)\left(x^{4}-x^{2}\right) .
$$

c) If $f(x)=\sec \left(x^{3}+2 x\right)$, what is $f^{\prime}(x)$?

$$
f^{\prime}(x)=\sec \left(x^{3}+2 x\right) \tan \left(x^{3}+2 x\right)\left(3 x^{2}+2\right)
$$

