(10) 1. Suppose $f(x)=\frac{3}{x+2}$. Use the definition of derivative to find $f^{\prime}(x)$.
2. Find an equation for the line tangent to the graph of $y=\frac{4 x}{2+x^{2}}$ at the point where $x=1$.
3. Assume that the functions $u(x)$ and $v(x)$ are defined and differentiable for all real numbers x. The following data is known about u, v, and their derivatives.

x	$u(x)$	$v(x)$	$u^{\prime}(x)$	$v^{\prime}(x)$
2	3	4	-1	2
3	2	1	3	-1
4	1	3	0	-2

Define $f(x)=u(x) v(x), g(x)=u(x) / v(x)$, and $h(x)=u(v(x))$. Give the values of the following with a brief indication of how they were obtained:
a) $f^{\prime}(2)$
b) $g^{\prime}(3)$
c) $h^{\prime}(4)$
4. Suppose that the function $f(x)$ is described by

$$
f(x)= \begin{cases}3-x^{2} & \text { if } x<0 \\ A x+B & \text { if } 0 \leq x \leq 1 \\ 2^{x} & \text { if } 1<x\end{cases}
$$

a) Find A and B so that $f(x)$ is continuous for all numbers. Briefly explain your answer.
b) Sketch $y=f(x)$ on the axes given for the values of A and B found in a) when x is in the interval $[-2,2]$.

(20) 5. Evaluate the indicated limits exactly. Give evidence to support your answers.
a) $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}$
b) $\lim _{x \rightarrow 2^{+}} \frac{|x-1|-1}{|x-2|}$
c) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 3 x}$
d) $\lim _{x \rightarrow 4} \frac{3 x-2}{\cos (\pi x)}$
(10) 6. Suppose that $f(x)$ is defined and continuous for all real numbers x and assume that $f(x)$ takes on the following values: $f(-2)=6, f(0)=-3, f(2)=4, f(3)=0, f(4)=-1$, $f(7)=-3$, and $f(10)=8$.
a) What can be said about the number of solutions to the equation $f(x)=0$?
b) Give a list of nonoverlapping intervals in which solutions to the equation $f(x)=0$ can be found.
(8) 7. What is the domain of $f(x)=\frac{\ln x+\sqrt{4-x}}{\sin x}$? Give your answer as a list of intervals. Explain how you arrived at your answer.
(8) 8. In this problem the function $f(x)$ has domain the open interval $(-4,4)$. A graph of $y=f(x)$ is displayed below. Answer the following questions as well as you can based on the information in the graph.

a) For which x is $f(x)$ not continuous?

ANSWER: \qquad
b) For which x is $f(x)$ not differentiable?

ANSWER: \qquad
c) For which x is $f^{\prime}(x)=0$?

ANSWER: \qquad
d) For which x is $f^{\prime}(x)>0$?

ANSWER: \qquad
9. a) If $f(x)=\frac{1-e^{x}}{x^{2}+1}$, what is $f^{\prime}(x)$?
b) If $f(x)=(2 x+3 \cos x)\left(x^{4}-x^{2}\right)$, what is $f^{\prime}(x)$?
c) If $f(x)=\sec \left(x^{3}+2 x\right)$, what is $f^{\prime}(x)$?

