The Quadratic Formula
If $a \neq 0$, then the solutions to the equation $a x^{2}+b x+c=0$ are given by the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Exact Trigonometric Values

Function $\backslash \theta$	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
$\sin \theta$	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1
$\cos \theta$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0
$\tan \theta$	0	$\sqrt{3} / 3$	1	$\sqrt{3}$	undefined

Sum and Difference Formulas

$$
\begin{array}{ll}
\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta), & \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta), & \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)
\end{array}
$$

Obscure Trigonometric Functions

$$
\begin{aligned}
& \cot \theta=\cos \theta / \sin \theta, \quad(\cot x)^{\prime}=-\csc ^{2} x \\
& \csc \theta=1 / \sin \theta, \quad(\csc x)^{\prime}=-\csc x \cot x
\end{aligned}
$$

Exponential Growth and Compounding
A quantity is said to undergo exponential growth if the amount $P(t)$ at time t is given by a function of the form $P_{0} e^{k t}$ for some constants P_{0} and k. (If $k<0$, the term exponential decay is used.)

An amount of money P_{0} invested at an annual interest rate of r compounded n times a year will have grown to

$$
P_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

after t years. If the compounding is continuous, the amount is $P_{0} e^{r t}$.
Areas, Volumes, Etc
Circumference of a circle, $2 \pi r$.
Area of a rectangle, $l w$.
Area of a circle, πr^{2}.
Area of a triangle, $b h / 2$.
Area of a sphere, $4 \pi r^{2}$.
Volume of rectangular box, lwh.
Volume of a sphere, $4 \pi r^{3} / 3$.
Volume of a cylinder with circular base, $\pi r^{2} h$.
Volume of a cone with circular base, $\pi r^{2} h / 3$.
Summation Formulas

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

