(25) 1. Calculate the following limits. Give a brief justification of your answers without reference to calculator computations or graphing.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$

First solution:

$$
\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)}=\lim _{x \rightarrow 3} x+3=6
$$

Second solution using L'Hôpital's Rule:

$$
\lim _{x \rightarrow 3} \frac{2 x}{1}=6
$$

(b) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\tan 2 x}$

First solution:

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{\frac{\sin 2 x}{\cos 2 x}}=\lim _{x \rightarrow 0} \cos 2 x\left(\frac{3}{2}\right) \frac{\frac{\sin 3 x}{3 x}}{\frac{3 x}{2 x}}=1\left(\frac{3}{2}\right)\left(\frac{1}{1}\right)=\frac{3}{2}
$$

Second solution:

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{\frac{\sin 2 x}{\cos 3 x}}=\lim _{x \rightarrow 0} \cos 2 x \frac{\sin 3 x}{\sin 2 x}=\frac{3}{2}
$$

Third solution using L'Hôpital's Rule:

$$
\lim _{x \rightarrow 0} \frac{3 \cos 3 x}{2 \sec ^{2} 2 x}=\frac{3}{2}
$$

(c) $\lim _{x \rightarrow \infty} \frac{5 x^{4}+7 x^{3}+2 x^{2}+10}{7 x^{4}+5 x^{3}+2 x+1}$

$$
\lim _{x \rightarrow \infty} \frac{5+\frac{7}{x}+\frac{2}{x^{2}}+\frac{10}{x^{4}}}{7+\frac{5}{x}+\frac{2}{x^{3}}+\frac{1}{x^{4}}}=\frac{5}{7}
$$

(d) $\lim _{x \rightarrow \infty} \frac{e^{x / 2}}{x^{2}}$

Applying L'Hôpital's Rule once, we get

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{2} e^{x / 2}}{2 x}
$$

which is still indeterminate. Applying the rule again, we get

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{4} e^{x / 2}}{2}=\infty
$$

Thus the original limit is ∞.
(e) $\lim _{x \rightarrow 3} \frac{x^{2}}{\ln x}$

$$
\frac{3^{2}}{\ln 3}
$$

(10) 2. Compute the derivative of $\sqrt{x+3}$ directly from the definition.

$$
\begin{gathered}
(\sqrt{x+3})^{\prime}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x+3}}{h} \\
=\lim _{h \rightarrow 0} \frac{(\sqrt{x+h+3}-\sqrt{x+3})(\sqrt{x+h+3}+\sqrt{x+3})}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
=\lim _{h \rightarrow 0} \frac{x+h+3-(x+3)}{h(\sqrt{x+h+3}+\sqrt{x+3})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+3}+\sqrt{x+3})} \\
=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+3}+\sqrt{x+3}}=\frac{1}{2 \sqrt{x+3}}
\end{gathered}
$$

(25) 3. Compute the derivatives with respect to x of the following functions. Algebraic simplification of the answers need not be performed.
(a) $\ln (x) \cos (2 x)$

$$
\frac{\cos (2 x)}{x}-2 \ln (x) \sin (2 x)
$$

(b) $\frac{e^{x}}{2 x^{3}+x}$

$$
\frac{\left(2 x^{3}+x\right) e^{x}-e^{x}\left(6 x^{2}+1\right)}{\left(2 x^{3}+x\right)^{2}}=\frac{e^{x}\left(2 x^{3}-6 x^{2}+x-1\right)}{\left(2 x^{3}+x\right)^{2}}
$$

(c) $\int_{0}^{x} \sec t d t$

By the Fundamental Theorem of Calculus, the derivative is

$$
\sec x
$$

(d) $\int_{0}^{x^{3}} e^{t^{2}} d t$

By the the Fundamental Theorem of Calculus plus the chain rule, the derivative is

$$
e^{\left(x^{3}\right)^{2}} 3 x^{2}=e^{x^{6}} 3 x^{2}
$$

(e) $\sqrt{x^{4}+3}$

$$
\frac{1}{2}\left(x^{4}+3\right)^{-1 / 2} 4 x^{3}=\frac{2 x^{3}}{\sqrt{x^{4}+3}}
$$

(10) 4. Suppose that f is a function with first and second derivatives. Suppose in addition that the following values are known: $f^{\prime}(0)=2, f^{\prime}(1)=3, f^{\prime \prime}(0)=4$, and $f^{\prime \prime}(1)=5$. If $g(x)=f(\ln (x))$, what are $g^{\prime}(1)$ and $g^{\prime \prime}(1) ?$

$$
\begin{gather*}
g^{\prime}(x)=f^{\prime}(\ln x) / x \quad \text { so } g^{\prime}(1)=f^{\prime}(\ln 1) / 1=f^{\prime}(0)=2 \\
g^{\prime \prime}(x)=\frac{x f^{\prime \prime}(\ln x) / x-f^{\prime}(\ln x)}{x^{2}}=\frac{f^{\prime \prime}(\ln x)-f^{\prime}(\ln x)}{x^{2}} \quad \text { so } \quad g^{\prime \prime}(1)=\frac{4-2}{1}=2 \tag{15}
\end{gather*}
$$

5. Find the following indefinite integrals:
(a) $\int\left(x^{3}+\frac{3}{x}+\cos x\right) d x$

$$
\frac{x^{4}}{4}+3 \ln |x|+\sin x+C
$$

(b) $\int(2 x+1) \sec ^{2}\left(x^{2}+x\right) d x$

Making the substitution $u=x^{2}+x$ and $d u=(2 x+1) d x$, we get

$$
\int \sec ^{2} u d u=\tan u+C=\tan \left(x^{2}+x\right)+C
$$

(c) $\int \frac{6 x^{2}-4}{\left(x^{3}-2 x+1\right)^{3}} d x$

Making the substitution $u=x^{3}-2 x+1$ and $d u=\left(3 x^{2}-2\right) d x$, we get

$$
2 \int u^{-3} d u=\frac{2 u^{-2}}{-2}+C=-\frac{1}{\left(x^{3}-2 x+1\right)^{2}}+C
$$

6. Compute the following:
(a) $\int_{1}^{2} \frac{\sqrt{x}+8}{x} d x$

$$
\int_{1}^{2}\left(x^{-1 / 2}+8 x^{-1}\right) d x=\frac{x^{1 / 2}}{1 / 2}+\left.8 \ln (x)\right|_{1} ^{2}=2 \sqrt{2}+8 \ln 2-2
$$

(b) The area under the graph of $y=2+x^{2}+\sin x$ on the interval $[0, \pi]$.

$$
\int_{0}^{\pi}\left(2+x^{2}+\sin x\right) d x=2 x+\frac{x^{3}}{3}-\left.\cos x\right|_{0} ^{\pi}=2 \pi+\frac{\pi^{3}}{3}-(-1)-(-1)=2+2 \pi+\frac{\pi^{3}}{3}
$$

(c) $\int_{0}^{\pi} x^{2} \sin \left(x^{3}\right) d x$

If we make the substitution $u=x^{3}$ in this integral, we have $d u=3 x^{2} d x$ or $x^{2} d x=d u / 3$. The integral becomes

$$
\frac{1}{3} \int_{0}^{\pi^{3}} \sin (u) d u=-\left.\frac{1}{3} \cos (u)\right|_{0} ^{\pi^{3}}=-\frac{1}{3} \cos \left(\pi^{3}\right)-\left(-\frac{1}{3}\right)=\frac{1}{3}\left(1-\cos \left(\pi^{3}\right)\right)
$$

7. In the following, A and B are constants. Let f be the function defined by

$$
f(x)=\left\{\begin{array}{ll}
x^{3}+A x & \text { if } x \leq 1 \tag{10}\\
B x^{2}+2 & \text { if } x>1
\end{array} .\right.
$$

(a) What is $\lim _{x \rightarrow 1^{-}} f(x)$?

$$
A+1
$$

(b) What is $\lim _{x \rightarrow 1^{+}} f(x)$?

$$
B+2
$$

(c) How must A and B be related if $f(x)$ is continuous at $x=1$?

$$
A+1=B+2 \quad \text { or } \quad A=B+1
$$

(d) What must the values of A and B be if $f(x)$ is differentiable at $x=1$?

The derivative of $x^{3}+A x$ is $3 x^{2}+A$, which has the value $A+3$ if $x=1$. The derivative of $B x^{2}+2$ is $2 B x$, which has the value $2 B$ at $x=1$. If $f(x)$ is differentiable at $x=1$, these two values must agree. That is, we must have $A+3=2 B$. By (c), $A=B+1$, so $B+4=2 B$ or $B=4$. From this, we get $A=5$.
8. Use the linearization of $\tan x$ at $x=\pi / 4$ to estimate the value of $\tan (\pi / 4+0.13)$.

The value of $\tan x$ at $x=\pi / 4$ is 1 . The derivative of $\tan x$ is $\sec ^{2} x$, which has value 2 at $x=\pi / 4$. Thus the linearization of $\tan x$ at $\pi / 4$ is

$$
L(x)=1+2\left(x-\frac{\pi}{4}\right) \quad \text { and } \quad L\left(\frac{\pi}{4}+0.13\right)=1+2(0.13)=1.26
$$

9. Find an equation for the tangent line to the graph of $2 x^{3} y^{2}+x^{2} y^{3}=16$ at the point $(1,2)$.

Differentiating both sides of the given equation with respect to x, we get

$$
2 x^{3}(2 y) y^{\prime}+6 x^{2} y^{2}+x^{2}\left(3 y^{2}\right) y^{\prime}+2 x y^{3}=0 \quad \text { or } \quad y^{\prime}=-\frac{6 x^{2} y^{2}+2 x y^{3}}{4 x^{3} y+3 x^{2} y^{2}}
$$

At the point $(1,2)$, we have

$$
y^{\prime}=-\frac{24+16}{8+12}=-2
$$

and the tangent is $y-2=-2(x-1)$.
(10) 10. In this problem, assume that coordinates are given in feet. A point is moving along the x-axis in such a way that its acceleration at time t is $t+\cos 2 t \mathrm{ft} / \mathrm{sec}^{2}$.
(a) Suppose the velocity of the point at $t=0$ is $3 \mathrm{ft} / \mathrm{sec}$. Describe the velocity of the point as a function of t.

Let $a(t)$ denote the acceleration. Then the velocity $v(t)$ is an antiderivative of $a(t)$. Thus

$$
v(t)=\int(t+\cos (2 t)) d t=\frac{t^{2}}{2}+\frac{\sin (2 t)}{2}+C
$$

But $3=v(0)=C$, so

$$
v(t)=\frac{t^{2}}{2}+\frac{\sin (2 t)}{2}+3
$$

(b) Suppose the coordinate of the point at $t=0$ is 10 . Describe the position of the point at time t.
The position $s(t)$ is an antiderivative of $v(t)$. Hence

$$
s(t)=\int\left(\frac{t^{2}}{2}+\frac{\sin (2 t)}{2}+3\right) d t=\frac{t^{3}}{6}-\frac{\cos (2 t)}{4}+3 t+C
$$

Since $10=s(0)=-1 / 4+C$, we have $C=41 / 4$ and

$$
s(t)=\frac{t^{3}}{6}-\frac{\cos (2 t)}{4}+3 t+\frac{41}{4}
$$

11. Compute the value of the Riemann sum for the function 2^{x} on the interval $[-1,2]$ using the partition $-1,0,1,2$ and taking as the representative points the right endpoint of each subinterval.

The Riemann sum is $2^{0} \cdot 1+2^{1} \cdot 1+2^{2} \cdot 1=7$.
(10) 12. What point on the graph of $y=\sqrt{x}$ is closest to the point $(3,0)$?

A typical point on the graph is $P=(x, \sqrt{x})$, where $x \geq 0$. Let $f(x)$ denote the square of the distance from P to $(3,0)$. (To minimize the distance, it is enough to minimize the square of the distance.) Then

$$
f(x)=(x-3)^{2}+(\sqrt{x})^{2}=(x-3)^{2}+x=x^{2}-5 x+9
$$

Thus $f^{\prime}(x)=2 x-5$, which is 0 when $x=5 / 2$. The first derivative test tells us that $f(x)$ as a relative minimum at $x=5 / 2$. There is one endpoint, namely $x=0$, but $f(0)=9>2.75=f(5 / 2)$. Thus $(5 / 2, \sqrt{5 / 2})$ is the closest point on the graph to $(3,0)$.
13. Find equations for all horizontal and vertical asymptotes of the function $\frac{4 e^{-x}+3}{7 e^{-x}-2}$.

If $f(x)$ is the given function, then

$$
\lim _{x \rightarrow \infty} f(x)=\frac{4 \cdot 0+3}{7 \cdot 0-2}=-\frac{3}{2} \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{4+3 e^{x}}{7-2 e^{x}}=\frac{4+3 \cdot 0}{7-2 \cdot 0}=\frac{4}{7}
$$

Thus there are two horizontal asymptotes, $y=-3 / 2$ and $y=4 / 7$. The numerator of $f(x)$ is always defined, so a vertical asymptote can only occur when the deminator is 0 . If $7 e^{-x}-2=0$, then

$$
7 e^{-x}=2, \quad e^{-x}=2 / 7, \quad-x=\ln (2 / 7), \text { or } x=-\ln (2 / 7)=\ln (7 / 2)
$$

The numerator is not 0 for this value of x, so the single vertical asymptote is $x=\ln (7 / 2)$. Here is a graph of f.

(10) 14. Here is the graph of a function f.

On the axes below, sketch the graph of the derivative of f.

(The original graph is actually $x+\sin 2 x$ and the derivative is $1+2 \cos 2 x$.)
(10) 15. You may find it hard, but imagine you are watching a balloon in the shape of a cube being inflated. At a certain moment the volume of the balloon is 8 cubic feet and the volume is increasing at the rate of 0.3 cubic feet per minute. How fast is the surface area of the balloon increasing at that moment?

Let x be the length of an edge of the cube. Then the volume of the cube is $V=x^{3}$. The cube has six faces, each of which is a square with edge x. Thus the surface area of the cube is $A=6 x^{2}$. At the moment, $V(x)=8$, that is, $x^{3}=8$ or $x=2$ feet. In general,

$$
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \quad \text { and } \quad \frac{d A}{d t}=12 x \frac{d x}{d t}
$$

At the moment,

$$
0.3=3 \cdot 4 \frac{d x}{d t} \quad \text { so } \quad \frac{d x}{d t}=0.025 \mathrm{ft} / \mathrm{min}
$$

Thus

$$
\frac{d A}{d t}=12 \cdot 2(0.025)=0.6 \mathrm{ft}^{2} / \mathrm{min}
$$

(10) 16. In the space below, sketch the graph of a function f with the following properties: $f(x)$ is defined and differentiable for all real numbers x except $x=-3$ and $x=2$. The graph of f has vertical asymptotes at $x=-3$ and $x=2$.

$$
\lim _{x \rightarrow \infty} f(x)=-1 \quad \text { and } \quad \lim _{x \rightarrow-\infty} f(x)=2
$$

The graph of f is concave down on the intervals $(-\infty,-3)$ and $(2, \infty)$ and the graph is concave up on the interval $(-3,2)$.

