More Practice for Exam 2

1. If $g(x)=\ln \left(3 x^{4}+5 x\right)$, find $g^{\prime}(x)$.
2. Find the slope of the tangent line to the curve $x^{3}+y^{3}-\frac{9}{2} x y=0$ at $(2,1)$.
3. Find the intervals where the function $f(x)=\frac{x-1}{x^{2}+3}$ is increasing and decreasing. Find all horizontal and vertical asymptotes of this function.
4. Find $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sec x}$.
5. Let $f(x)=\sqrt{2+7 x^{3}}$.
a. Compute $f(1)$.
b. Compute $f^{\prime}(1)$.
c. Using the differential or tangent line approximation, find an approximate value for $f(1.08)$.
6. Find $\lim _{x \rightarrow 0^{+}} \sin x \ln x$.
7. Find the absolute extrema of $f(x)=x^{2 / 3}(5-2 x)$ on the interval $[-1,2]$.
8. A farmer wishes to fence in a rectangular field containing an area of 600 square meters. If the field has a fence down the middle parallel to one side, what is the smallest amount of fencing that he can use?

See next page.
9. A person 6 ft tall stands 10 ft from point P directly beneath a lantern hanging 30 ft above the ground, as shown in the figure below. The lantern starts to fall, causing the person's shadow to lengthen. Given that the lantern falls $16 t^{2} \mathrm{ft}$ in t seconds, how fast will the shadow be lengthening when $t=1$?

