
Trigonometric Integrals . In lecture 18, we devel-
oped the differential calculus of trigonometric func-
tions. The special limit

lim
x→0

sinx

x
= 1,

which requires that angles be measured inradians,
was used to find that

d

dx

(
sinx

) = cosx.

Then, the prefix “co” was found to mean “comple-
ment”, so that

cosx = sin
(
π
2 − x

)
,

which led to

d

dx

(
cosx

) = − sinx.
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The quotient rule then gave

d

dx
(tanx) = sec2 x

d

dx
(secx) = secx tanx

A similar analysis, or another use of the “co” trick
gives the rarely used derivatives ofcotx and cscx.

Armed with this information, the textbook pretends
to give you some integration rules by inverting these
differentiation formulas. This is only useful for deal-
ing with integrals that are given to you in one of these
unlikely forms.

Substitution. Integrals involving trigonometric func-
tions evaluated at expressions other than the variable
of integration can sometimes be found by a substitu-
tion that chooses a new variable equal to that expres-
sion. If the expression islinear, the substitutionwill
work. For example,∫

sin 2x dx= −1

2
cos 2x + C.
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It is also possible to use a substitution in which the new
variable contains a trigonometric function. Example 3
is ∫

sinx dx

1+ cosx
= − ln

∣∣1+ cosx
∣∣+ C.

This was done by making the substitutionu = 1+
cosx.

Applying the same method to∫
tanx dx=

∫
sinx dx

cosx

leads to ∫
tanx dx= − ln

∣∣ cosx
∣∣+ C.

Something that arises often enough that it should get
special mention is that the integral of any function
of cosx timessinx cries out for the substitutionu =
cosx. In particular,∫

cosn x sinx dx= − 1

n+ 1
cosn+1 x. (n 6= −1)
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Although some of these may be useful enough to be
treated as integration formulas, the skill of recogniz-
ing them asexamples of substitutionis more useful.

A lucky discovery. It was possible to find
∫

tanx dx
by a fairly natural substitution, but

∫
secx dx does

not lend itself to such a method. Other integrals of
powers of sinx times powers of cosx can be found by
a something resembling amethod, but this one was
originally found by a very indirect method until it was
noticed that the result could be written as

ln
∣∣ secx + tanx

∣∣ .
Compound interest. We also fill in a topic skipped
on our first treatment of the exponential function. The
basic concept ofinterest is that if A allows B to use
his money, B has gotten something of value even if
he returns all the money that he borrowed. If we try
to put a value on thisuseof money, it is reasonable
that the value should be proportional to the amount of
money involved (theprincipal ), and at first, itseems
reasonable that it should also be proportional to the
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time of the loan. This works well if the rules of the
game demand that payment for the use of borrowed
money (calledinterest) be paid on a fixed schedule.
However, if a payment is missed, the borrower may
agree to add the interest to the amount of the loan.
Then, he may be led to the following analysis.

If I had declared the term of my loan to be half of the
standard period, and charged half the rate for a half
term, but failed to collect the payment when it was
due, then the loan would have been increased by that
amount for the second half of the term, so the total
interest would be larger.

This is good! I could then cut that half-term in half
and increase the payment even more; then cut that in
half; and again. . .

This leads to a different way of looking at interest: in-
stead of considering it to be a different kind of money
than the principal of the loan, it should be the same
kind of money, and it should be combined with the
principal at the end of the term to get anaccumu-
lated amount. Then the formulaI = Pr for the
interest at the end of one standard term changes to

lec24ch.12s.4ch.5s.3.5

A = P(1+ r ) for the amount at the end of that term.
Dividing the term in half as described above changes
the amount at the end of one full term to

P
(
1+ r

2

)2
.

If the term were to be divided inton parts, with the
rate divided byn on each part, then the amount at the
end of a full term would be

P
(
1+ r

n

)n
.

As the number of partsn goes to infinity, the rate
x = r/n on each part is going to zero. Expressing the
amount for a full term in terms ofx gives(

1+ r

n

)n = (1+ x)r/x = ( (1+ x)1/x
)r
.

However,
lim
x→0

(1+ x)1/x = e,
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so the effect of dividing the term into a very large
number of intervals (calledcontinuous compound-
ing) is to cause the amount to be multiplied byer in
one standard term.

Now, we have a formula that is easy enough to be used
with arbitrary periods of time: with anannual rate of
r and a time oft years, the amount is multiplied by
ert .

This is a striking example of modeling. We set out
only to interpret the effect of changing the term of
loans atsimple interest, but were led tonew formulas
that forced a particular type of formula to be used to
describe all forms of interest. Note that the mathe-
matical formula becomes simplest when expressed in
terms of theinstantaneousrate of interest, but the law
(as described in the textbook) created aneffective an-
nual rate that is the annual rate of the simple interest
model with a term of one year. Fortunately, as long as
one accepts to exponential nature of compound inter-
est, there are easy ways to convert between different
ways of expressing the rate.
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