
Section 2.6 The Derivative. We have prepared the
ground by defining limits. Now we sow the seed of
Calculus itself by defining the derivative. This defi-
nition is both more important and less important than
it seems to be.

It is less important because it isnever used when
finding derivatives.

It is more important because it assures us that Calculus
is relevant to the topics we claim as applications.

The definition will be motivated by two examples:
(1) finding tangent linesto graphs of functions; (2)
interpretingrates of change. Both of these topics
are familiar, but prior exposure at the wrong level of
generality may have left a false impression.

Tangents. If you fix a pointP on a circle and consider
all lines throughP, all but one line meets the circle at
another point. The exceptional line is the tangent line
at P. However, this idea of counting points of inter-
section isnot the property that is interesting. Consider
the graph ofy = x3.

The property that we seek to describe is that the tan-
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gent should seem totouch the curve rather thancut it.
However, we will see that it is possible for the tangent
line at a point tocrossthe curve. Again,y = x3 at
the origin gives an example.

On approach is to attempt to describe anangle be-
tween curves. Then curves are tangent if they meet at
angle of zero. Actually, this is backwards: the defini-
tion of the tangent line will lead to defining the angle
between curves as the angle between their tangent
lines.

If a line is required to pass through a given pointP,
then knowing the line is equivalent to knowing its
slope. In those cases that behave like the circle in
the sense that there is a line that seems to touch the
curve, a larger slope gives a line that meets the curve
again on one side ofP, and a smaller slope gives a
line meeting the curve again on the other side ofP. If
the slope is close to, but not equal to, the slope of the
tangent line, then the line will meet the curve again
at a point near toP. The tangent line is special: it
is as if it meets the curvetwice at the pointP. The
definition of the derivative uses the language of limits
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to express this phenomenon.

First, considery = x3 atx = 1. The pointP is (1,1)
and the slope of the line joiningP to another point
(x, x3) on the curve is

x3− 1

x − 1
.

As long asx 6= 1, this simplifies tox2 + x + 1.
Nearx = 1, this is close to the value of the simpler
expressionat x = 1, which is 3. Indeed, forx > 0,
this expression is increasing, so it takes the value 3
only at x = 1: any true secant line has a different
slope. The limit corresponds to amissing point on
the graph of the difference quotient.

Next, considery = x3 at x = 0, so thatP is (0,0).
Now, the slope to(x, x3) is

x3

x
,

which simplifies tox2 if x 6= 0. In this case, the slope
is always positive, but it is close to zero if(x, x3) is
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close toP. Indeed, for nearby points, this slopemust
beclose to zero.

The algebraic behavior of the slope is different in these
two examples, but the concept of limit provides a sin-
gle approach that unifies all examples.

Corners. Limits may not exist, so the definition of
tangent line must allow for the possibility that there
not be a tangent line at some points. The function|x|
at x = 0 provides a simple example. Ifx < 0, the
line joining (x, |x|) to the origin has slope−1, but
if x > 0, the slope is+1. Since slopes are close to
two different values, there is no single number that all
slopes defined by points withx close to zero approx-
imate.

One-sided limits of the slope exist in this case, but
they are not equal. Instead of a single clear slope to a
nearby point, there are two different slopes depending
on whether the second point of intersection is to the
right or to the left of P. Such a point is called a
corner.

There are more elaborate ways in which a limit can
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fail to exist, but this issimply drawn andeasily rec-
ognized. You will see this in exercises and exams.

Rate of change. The unit of speedmiles per hour
suggests that it is obtained by taking distance trav-
eled, in miles, and dividing by the time, in hours,
required to travel that distance. Thisobservedrate,
often calledaverage speedis easily found if you have
a reliable way to measure distance and time. If there
are mileposts along the right-of-way, the distance is
available, and a personal timepiece can be used for
time. While fairly crude, errors in measurement are
not large.

The definition of speed used in practice is different. It
is measured by an instrument that appears to givein-
stantaneousvalues that can fluctuate. Although you
arevery familiar with such instruments, you may not
have connected them with the determination of a limit.
The method of measuring instantaneous speed may
involve physically observable quantities that are pro-
portional to speed, but the physics is used to assure us
that the instrument gives a value that is approximated
by the average speed over a short interval of time.
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If you were to examine a graph of position along the
right-of-way as a function of time, average speed is the
slope of a secant line and instantaneous speed is the
slope of a tangent line. When the verbal description
is translated into a formula, the formula is adiffer-
ence quotient, and the limit of the difference quotient
over small intervals represents the instantaneous phe-
nomenon we seek to interpret.

Why it is less important. Maybe one-third of the first
midterm will be devoted to what we have done so far,
and maybe one-third of that will ask for a derivative
to be calculated as the limit of a difference quotient.
It is a cumbersome process, not particularly difficult
to do, but hard to explain. By the time you are asked
to do this on an exam, you will know how to reach the
last line of the derivation without any of the steps in
this derivation. If you view mathematics as a means
to get answers, this seems like a pedantic exercise. Of
course, it is, but bear with us. The real difficulty is that
there are no good exercises in the use of this method.
In fact, any difficulty in the use of the method has
already been met when finding limits of expressions
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that fail to be defined at a point because the expression
looks like theindeterminate form 0/0 at the point.

Why is it more important . Calculus deals with the
relationship between a quantity and its instantaneous
rate of change. These are quantities that are easily
recognized in applications. Knowing that the rela-
tionship is given by a derivative means that the ability
to calculate derivatives gives us a tool for working
with this relationship.

Most of the time, derivatives will be found by the
formal methods of Calculus, but the novelty of these
methods requires that there be a fundamental descrip-
tion of what is being found. This will assure us that
there is an answer to each question that is independent
of the way that question is analyzed. In applications,
this establishes the relevance of the calculation to the
question being studied.

Differentiability and continuity . Continuity is es-
sential for the existence of a derivative, but the ease
with which a graph with a corner can be drawn shows
that differentiability is a stronger property. The proofs
of the differentiation formulas include a proof that
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the function has a derivative, and this implies that the
function is continuous. Thus, it is not necessary to be
concerned with proving continuity since the differen-
tiation formulas automatically certify continuity.

The lack of good exercises on these topics does not
signify that they can be ignored. The formal aspects
of Calculus make sense only because they rest on this
foundation, and these properties assure the consis-
tency of the formal methods. Although the notation
of Calculus is a big help in learning to apply its meth-
ods, it is the formal definition thatexplainsthe rules.
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