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Section 6.3 This section deals with the definition of the integral as a limit of a sum. When the
terms of the sum are all positive, the sum is viewed as an approximation to the area under the graph of a
function. The exercises explore several aspects of this definition.

Exercise 1 A picture is given that shows the graph of a function (even though no formula is given,
we canseethat it is a function because vertical lines meet the graph in only one point) betweenx = 1 and
x = 3. The domain is divided into 6 subintervals and rectangles are drawn over each subinterval with height
equal to the value of the function at themidpoint of the interval. Each of these subintervals has width

1x = 3− 1

6
= 1

3
.

Forming atable of the information shown on the graph:
• on [3/3,4/3], use f (7/6) = 1.9;
• on [4/3,5/3], use f (9/6) = 1.5;
• on [5/3,6/3], use f (11/6) = 1.8;
• on [6/3,7/3], use f (13/6) = 2.4;
• on [7/3,8/3], use f (15/6) = 2.7;
• on [8/3,9/3], use f (17/6) = 2.5.

TheRiemann sumfor this choice of pointsxi is the product of1x and the sum of thef (xi ) tabulated
above. Thus,

Sum= (1.9+ 1.5+ 1.8+ 2.4+ 2.7+ 2.5)
1

3
= 4.27.

Since the only restriction on thexi is thatxi lie in the i th subinterval, Riemann sums for this partition can
takevisibly different values. In addition to being the only choice allowed by the limited explicitly given
data, the choice of themidpoint of each interval forxi has other benefits. The best that can be said about
the accuracy of a general Riemann sum (for nice enoughf ) is that the difference between a Riemann sum
with n intervals and the integral that is the limit of such sums is bounded by aconstant multiple of 1/n.
However, if f has acontinuous second derivative, the systematic use of the midpoint forxi gives sums for
which this difference is bounded by a constant multiple of 1/n2.

Better ways of approximating integrals are known. Your calculator claims to be able to compute
numerical values of definite integral. The method used isSimpson’s Rule, which uses aweighted average
of values of the function at points in each interval instead of a singlef (xi ). For functions withcontinuous
fourth derivatives, the difference is a bounded multiple of 1/n4. There are some special cases in which the
failure of thesmoothnesshypothesis (i.e. the assumption that certain derivatives exist and are continuous)
can be important. A simple example is ∫ 1

0
x1/2 dx.

Although it appearspossible to differentiate the functionf (x) = x1/2 as many times as you like,f ′(x) is
not defined atx = 0, and the bounds require that certain derivatives be continuous on theclosedinterval of
integration. Riemann sums still converge for this integral but more slowly.
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Exercise 3 The region under the graph ofy = 3x for 0 ≤ x ≤ 2 is a triangle, whose base has
length2 and whose height is6. Thus,

Area= 1

2
(2)(6) = 6.

A Riemann sum with4 subintervals with eachxi taken to be theleft endpoint of the subinterval has

1x = 2− 0

4
= 1

2

is based on the table:
• on [0/2,1/2], use f (0/2) = 0/2;
• on [1/2,2/2], use f (1/2) = 3/2;
• on [2/2,3/2], use f (2/2) = 6/2;
• on [3/2,4/2], use f (3/2) = 9/2;

Thus,

Sum=
(

0

2
+ 3

2
+ 6

2
+ 9

2

)
1

2
= 9

2
.

Since theexactArea is known, we see that this sum is3/2 too small.
Repeating this with8subintervals, again using a Riemann sum with eachxi taken to be theleft endpoint

of the subinterval gives

1x = 2− 0

8
= 1

4

is based on the table:
• on [0/4,1/4], use f (0/4) = 0/4;
• on [1/4,2/4], use f (1/4) = 3/4;
• on [2/4,3/4], use f (2/4) = 6/4;
• on [3/4,4/4], use f (3/4) = 9/4;
• on [4/4,4/4], use f (4/4) = 12/4;
• on [5/4,6/4], use f (5/4) = 15/4;
• on [6/4,7/4], use f (6/4) = 18/4;
• on [7/4,8/4], use f (7/4) = 21/4;

Thus,

Sum=
(

0

4
+ 3

4
+ 6

4
+ 9

4
+ 12

4
+ 15

4
+ 18

4
+ 21

4

)
1

4
= 21

4
.

Now, we see that this sum is3/4 too small.
It can be shown that doubling the number of points while continuing to take the left endpoint in this

Riemann sumalwaysdivides the difference from the true area in half. Also taking theright endpoint gives
a result that overestimates the area by exactly as much as the use of the left endpoint underestimates it.

Since the function is linear,averaging the values at the endpoints gives the same result asevaluating
at the midpoint. In this case, that gives the exact area for any partition of the interval.
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