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Section 5.6 A fundamental property of the exponential function it that the change in the value
of the function over a fixed interval is given by amultiplier thatdepends only on the length of the interval
and not on its starting value. In most models, theindependent variableis time, so that multiplier depends
on the interval of time and not how the clock was set. The significant feature of the model is that the change
be given by amultiplier and not some other type of growth (or decay).

The derivation of this feature of the exponential function is simple. Start fromP(t) = P0ect, where
P0 is a convenient name for one of the parameters in the model sinceP(0) = P0. The other parameterc,
called thegrowth constant in the text, defines the relation between theunit of time used by the clock and
themultiplier in the process being modeled. This is the form that is easiest to use in calculus — other forms
appear when one wants to give an elementary description between the process and familiar units of time.
Here is the proof of this property.

P(t + h) = P0ec(t+h)

= P0ect+ch

= P0ect · ech

= P(t) · ech

In particular, the multiplier is identified asech, soccan be obtained by dividing the logarithm of the multiplier
by h.

Exercise 1 Here
Q(t) = 400e0.05t ,

wheret representstime in minutes (from an undisclosed starting time). The first part of the exercise asks
to identify thegrowth constant 0.05 andinitial quantity 400by looking at the formula. Then, you are
to use a calculator to tabulate the function at given values. Here are the results (rounded to a convenient
accuracy).

Q(0) = 400

Q(10) = 659.5

Q(20) = 1087.3

Q(100) = 59, 365.3

Q(1000) = 2.07× 1024

This illustrates thatvalues of the exponential function easily get beyond the ability to count. Your
calculator usesscientific notation to represent numbers whose decimal point does not fit on the same
display with the most significant part of the number. We write this with a factor of a power of 10 to tell us
how far to shift the decimal place from where it is shown; the calculator separates this exponent from the
main part of the number by an “E”, which should catch your eye in the middle of a decimal number. How
would wesay the value ofQ(1000)? The names of large numbers in American English (British usage is
different) uses “million” for 106, and then counts in Latin for each new factor of 103: 109 is a “billion”, 1012

a “trillion”, etc. Since we four more steps in this sequence to reach 1024, the name of that number would be
derived from the Latin name for 7. Thus, we can say thatQ(1000) is a little more thantwo septillion.

Exercise 5a We are told that the World Population (of humans) is growing at 2% per year. One
interpretation of this is that when time is measured in years, thegrowth constant in the exponential model.
That is,P(t) = P0e0.02t . This interpretation is justified by the fact that this function has the property

P′(t) = 0.02P0e0.02t = 0.02P(t).
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In other words, theinstantaneousrate of growth per year is 2% of the current population. A competing
interpretation would be that in one year, the population grows by 2%, so that ismultiplied by 1.02. This
would give a growth constant ofln 1.02≈ 0.0198. The difference is small, so either can be used in informal
work. (If money were involved, the definition would need to be more precise, so banks will use a numberc
to calculatecontinuous compound interestwhile reporting a larger rate ofec − 1 as aneffective annual
yield.)

This part of the problem asks for the time required for population totriple at this rate. Note that only
an interval of time is mentioned, since the starting time is irrelevant. This requires only findingh so that

e0.02h = 3.

Since 0.02= 1/50, dividing by 0.02 is the same as multiplying by 50, givingh = 50 ln 3≈ 55.
Part b asks for the effect of reducing the growth constant to 1.8%. A similar computation givesh ≈ 61,

and a look behind the calculation shows that multiplying the growth constant by 0.9 will cause the time to
achieve a particular result to be divided by 0.9.

Exercise 11 This exercise encourages you to see how easy it is to calculate with an idea whose
formulation won a Nobel Prize. The idea was that while Carbon-14 in isolation is radioactive and decays
with a half-life of 5770 years, the ratio of the amount of Carbon-14 to the amount of normal Carbon in a
living being exchanging Carbon with the larger environment should be anequilibrium ratio that has been
essentially constant for 50000 years. This allows us to determine how much Carbon-14 was in a fossil at
the time it died and became isolated from the larger environment.

In this exercise, we are told that a sample of wood has20% of what has been determined to be the
original amount, and asked to determine how long the tree that was the source of the wood has been dead.
First, we find that timex in units of the C-14 half life. The definition of half-life, and the conversion
20%= 1/5 gives the equation

(
1

2

)x

=
(

1

5

)

log

(
1

2

)
· x = log

(
1

5

)

− log 2 · x = − log 5

x = log 5

log 2
≈ 2.3219

Any base of logarithms may be used in this calculation since a ratio of logarithms is independent of the base.
(On my calculator, the log key gives log10 and the ln key gives natural logarithm. The results from different
choices of logarithm differ by in the last decimal place, which happened to be the eleventh decimal place,
but this is a symptom of work with functions that can only be approximated and numbers that needed to be
rounded off between uses. Normally calculators keep extra accuracy that is not shown, so it is rare to see
even this much difference in a simple calculation.)

Now, the text book says that eachC-14 half-life is 5770 years, so our answer converts to

2.3219× 5770= 13397.5

years.
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Note that using the figure of0.00012for thedecay constantof C-14 leads to a time of13412 years.
This shows the effect of preserving onlytwo significant figures in this result (actually, the value is correct
to three significant figures, and this could be indicated by writing it as0.000120or 1.20× 10−4).

Exercise 13 Since this is an assigned homework problem, only a brief comment will be made here.
The given function

Q(t) = 120(1− e−0.05t )+ 60

could also be written, by collecting the terms differently,

Q(t) = 180− 120e−0.05t .

This shows that 180− Q(t) is an example ofexponential decay, so that using this to model alearning
curve is making the optimistic claim thatignorance decays exponentially.

The model is only claimed to be valid for0 ≤ t ≤ 20, and it was written in a way that reflects
measurements that would have been made over that time interval. To discover more, you should answer the
specific questions that are part of this exercise.

Exercise 17 Here we have an example of thelogistic model used to describe the spread of an
epidemic. The formula produced by the model is

Q(t) = 1000

1+ 199e−0.8t

with t beingtime in days into the epidemic. Some values of this function are

Q(0) = 1000

1+ 199
= 5

Q(1) = 1000

1+ 199e−0.8
≈ 11

Q(10) = 1000

1+ 199e−8
≈ 937

lim
t→∞ Q(t) = 1000

1
= 1000

Here, the interpretation of these values is:Q(0) represents the number of casesjust before the outbreak was
noticed;Q(1) is the number of cases at the end of the first day as requested in(a); Q(10) is the number of
cases after ten days as requested in(b); the limit approximates the value after alarge number of days. The
words use to describe the model may not be precise enough to lead everyone to choose the same values oft in
attempting to answer the questions, but once there is agreement on the value oft , there should be agreement
on the value ofQ(t). Notice also thatt = 10 is already large enough to give a value that resembles the limit.

Logistic generalities Thelogistic modelwasn’t justdreamed up. It was derived as the solution
of adifferential equation. While that derivation is beyond the scope of this course,discovering the equation
that was the basis of the model is a useful illustration of the calculus we have already developed. That is,
we can compute the derivative of a general logistic function and rewrite it in a form that reveals the property
that makes it suitable as a model.
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Start with

y = A

1+ Be−kt

with A, B andk all positive. Then, ast →−∞, the exponential term becomes very large, causing the whole
denominator to become large andy→ 0. Also, ast →+∞, the exponential term approaches 0, soy→ A.
Each model will have a fixed value ofA that represents an eventual value ofy that is part of the model (even
if it must be discovered by observation of the process being modeled). The value ofB only serves to set the
clock, i.e., it interprets the timet = 0. If one were to writeB = ekt0, theny would beA/(1+ ek(t−t0)).
Now, differentiate.

dy

dt
= A(−1)

(
1+ Be−kt )−2

B(−k)e−kt

= k ABe−kt

(
1+ Be−kt

)−2

= k · A

1+ Be−kt
· Be−kt

1+ Be−kt

In the last line, one factor ofy has been identified. The remaining factor can also be expressed in terms of
y. A little algebra reveals that it is(A− y)/y. Thus,

dy

dt
= ky(A− y)

A

This shows that the change iny for this function is proportional to bothy andA− y, and that the change in
y resemblesky wheny is small and it resemblesh(A− y) wheny is close toA.
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