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Section 4.5
Here are the solutions of the problems given in the prepared slides.

Exercise 4 We repeat the statement of the problem: “By cutting away identical squares from each
corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If
the cardboard is 15 in. long and 8 in. wide, find the dimensions of the box that will yield the maximum
volume.”

The discussion in the prepared slides useds, the side of the removed square in inches, as the independent
variable and gave the volume of the box in cubic inches by the formula

V = (15− 2s)(8− 2s)s= 120s− 46s2+ 4s3

We note thatV = 0 at the endpointss = 0 ands = 4, and thatV > 0 inside the interval. This assures us
that the maximum will be assumed at an interior critical point. The critical point was found from

dV

ds
= 120− 92s+ 12s2 = 4(6− s)(5− 3s)

The only critical point in theinterior of the interval iss= 5/3. At this point,

V = (15− 10/3)(8− 10/3)(5/3) = (35/3)(14/3)(5/3) = 2450/27≈ 90.74.

The values of the auxiliary variables arel = 35/3,w = 14/3 andd = 5/3, and these are the size in inches
of the length, width and depth, respectively of the largest box.

Exercise 9 Here is the statement: “Postal regulations specify that a parcel sent by parcel post may
have a combined length and girth of no more than 108 in. Find the dimensions of a rectangular package that
has a square cross section and the largest volume that may be sent through the mail.”

Variables are:
l : length in inches
w: width in inches
d: depth in inches
g: girth in inches
V : volume in cubic inches

The colors are meant to suggest thatl will be taken as the independent variable,V is the objective, and
all other variables are for convenience only. The definition ofgirth gives

g = 2d + 2w,

and the information that the cross-section is a square gives

d = w.

Combining these,g = 4d = 4w, or

d = w = g

4
.

The objective functionV = lwd from general principles concerning volume. The restriction thatl+g ≤ 108
needs to be replaced by an equation. Ifw andd arefixed and l is increasedfrom any allowed value to
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108− g, thenV also increases, so the maximum volume cannot havel + g < 108. Thus, we may take
l + g = 108, or.

g = 108− l .

Finally, V = lwd, and all factors can be expressed in terms ofl to give

V = l

(
108− l

4

)2

= 1

16
(11664l − 216l 2+ l 3)

The feasible values ofl are 0≤ l ≤ 108, andV = 0 at both endpoints of this interval, while it is positive
inside the interval. This requires that the maximum be taken at an interior critical point. To find the critical
points, differentiate to obtain

dV

dl
= 1

16
(11664− 432l + 3l 2) = 3

16
(3888− 144l + l 2) = 3

16
(36− l )(108− l )

The onlyinterior critical point isl = 36. The values of the other quantities areg = 72 andw = d = 18,
giving V = 11664. This is the volume of the largest such mailable package in cubic inches.

Remark: It would have been easier to factordV/dl if we had used the product rule to differentiate the
factored form ofV . The steps of that are

dV

dl
= l · 2

(
108− l

4

)(−1

4

)
+
(

108− l

4

)2

· 1

= 108− l

4

(
− l

2
+ 108− l

4

)

= 108− l

4

108− 3l

4

Exercise 11 This is the same as Exercise 9 except that the cross-section is a circle instead of a square.
It seems more natural in this case to use theradius of the circular cross-section as the independent variable,
and to call itr . Then, thegirth , g = 2πr , and we can restrict, as in Exercise 9 tol = 108− g = 108−2πr .
Theobjective to be maximized is the volume,

V = πr 2l = πr 2(108− 2πr ) = 108πr 2− 2π2r 3.

The feasible regionis 0 ≤ r ≤ 54/π , andV = 0 at the endpoints while being positive inside the interval.
The maximum will be attained at aninterior critical point . To find that point, differentiate to obtain

dV

dr
= 216πr − 6π2r 2,

which is zero at the endpointr = 0, and the interior pointr = 36/π ≈ 11.459. The latter must give
the maximum volume since there are no other critical points. At this point,g = 72, so l = 36 and
V = 46656/π ≈ 14851. This is the volume in cubic inches of the largest mailable cylinder — more than
27% larger than the largest mailable rectangular box.
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Remark: One cannot help but notice that the value ofl is the same for both problems. Calculus provides
an easy explanation of this, provided we are willing to usel as the independent variable in Exercise 11 as
well as in Exercise 9. The volume of the cylinder is

V = 1

4π
l (108− l )2,

which is aconstant multiple of the expression in Exercise 9. Thus, for each length, the ratio of the volume
of the cylinder to that of the box is 4/π , and the largest value occurs for the same value ofl .

Exercise 10 The statement, “A production editor decided that the pages of a book should 1 in.
margins at top and bottom and1/2 in. margins on the sides. She further stipulated that each page should have
an area of 50 square inches. Find the page dimensions that will result in the largest printed area.”, suggests
four variables:

u: width of page in inches
v: length of page in inches
x: width of printed area in inches
y: length of printed area in inches

Here, x was elected independent variable by the class. Since there are margins onall sides, the
dimensions of the page exceed that of the printed area by twice the width of the margin. Thus,u = x + 1
andv = y + 2. The constraint on area of the page saysuv = 50. Theobjective to be maximized is the
printed areaA = xy. Expressions for all variables in terms ofx are

u = x + 1

v = 50

u
= 50

x + 1

y = v − 2= 50

x + 1
− 2= 48− 2x

x + 1

A = xy= x(48− 2x)

x + 1
= 48x − 2x2

x + 1
.

Thefeasible regionis the interval of values ofx for which all dimensions are positive, so

0 ≤ x ≤ 24.

Note thatA is zero at the endpoints of this interval and positive in the interior, so the maximum will occur
at a critical point. Differentiating the expression forA,

d A

dx
= (x + 1)(48− 4x)− (48x − 2x2)(1)

(x + 1)2

= 48− 4x − 2x2

(x + 1)2

To find where this is zero,factor the numerator to get2(6+ x)(4− x). The only critical point in the
feasible region isx = 4, and the expressions for the other variables yieldu = 5, v = 10, y = 8, A = 32.
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Remark: The quotient rule can be avoided by usingu as independent variable. This leads to

A = (u− 1)(50− 2u)

u
= −50+ 52u− 2u2

u
.

Dividing the denominator intoeach termgive A = −50u−1+ 52− 2u, sod A/du= 50u−2− 2. This is a
slightly simpler way to find thatu = 5, from which the values of the other quantities maximizing the printed
area can be found.

Exercise 16 The problem statement was: “An apple orchard has an average yield of 36 bushels of
apples per tree if tree density is 22 trees per acre. For each unit increase in tree density, the yield decreases
by 2 bushels. How many trees should be planted to maximize the yield?”

This needs some clarification since the wordyield is used in two senses in the statement. The yield that
decreases by 2 bushels is theyield per tree. The first part of the problem statement then gives the constraint

yield− 36= −2(density− 22),

or yield= 80− 2 · density.

The use of the word at the very end of the statement defines anobjective to be maximized that istotal yield
per acre, the product ofyield per tree with thedensity in trees per acre. This objective is80(density)−
2(density)2. Differentiation with respect todensitygives80− 4(density), so the greatest yield corresponds
to a density of20 trees per acre.

We were not given enough information to know whether we should accept this answer. Since we were
only told about the behavior of the yield when density isincreasedfrom a base of 22 trees per acre, the
model may not be valid forfewer trees. In this interpretation, every increase in density decreases the total
yield, so we should plant the fewest trees allowed, which is 22 trees per acre. We will then need to be content
with a total yield of 792 bushels instead of 800 allowed in the extended model.

Exercise 12 This was not included in the prepared slides, but there was some time available to
discuss another problem and one was improvised that resembled this one. Here is the statement: “For its
beef stew, the Betty Moore Company uses tin containers that have the form of right circular cylinders. Find
the radius and height of a container if it has a capacity of 36 in.3 and is constructed using the least amount
of metal.”

This asks for theleast surface areafor a given volume. There is a related problem that asks for the
largest volume for a given surface area. If one uses a method based on implicit differentiation (whose
general form is known as the method ofLagrange multipliers), a single relation can be found that expresses
the property that one of these quantities has a critical point when the the other is constrained to be constant.
This works because differentiating a constraint gives an equation for the derivative of one variable with
respect to the other that is always valid while treating the quantity as an objective and seeking a critical gives
the sameequation in which the derivative is to be obtained from using the other relation as a constraint.
These expressions frequently lead tonatural characterizations of the optimum. It will still be necessary
to solve this together with the constraint to obtain a numerical optimum.

For a cylinder, theequationsandtheir derivatives with respect tor , followed by theconsequences of
setting derivatives ofV andA to zeroare

V = πr 2h
dV

dr
= πr 2 dh

dr
+ 2πrh
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A = 2πr 2+ 2πrh
d A

dr
= 4πr + 2πh+ 2πr

dh

dr
dh

dr
= −2h

r
= −h+ 2r

r

The optimum requires2h = h + 2r , which simplifies toh = 2r . Substituting this expression forh gives
V = 2πr 3 andA = 6πr 2.

For this exercise,V = 36, so r = (18/π)1/3 ≈ 1.7894, h = 2(18/π)1/3 ≈ 3.5788, and A =
6π(18/π)2/3 ≈ 60.3554.

Remark: It is not clear why this problem was not given thecalculator icon that was awarded to several
easier problems. Here is a direct solution of the given exercise. SolvingV = 36for h givesh = (36/π)r−2,
so thatA = 2πr 2+ 72/r . The critical point is given by

0= d A

dr
= 4πr − 72r−2

which givesr = (18/π)1/3 as before.
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