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Old Business: Section 3.6 Some slides have been found that were not previously
transcribed.

Exercise 17 This asked fordy/dx by implicit differentiation withy defined as a function ofx by
x1/2+ y1/2 = 1. In the summary for lecture 9, this was easily found and simplified to
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.

Other exercises in Section 3.6 asked forsecond derivativesof functions defined implicitly. As with all
second derivatives, this should be found by differentiatingdy/dx, maintaining the assumption thaty is a
function ofx. This gives
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This result is sostrikingly simple that it demands an independent verification. This can be done by
finding anexplicit expression fory in terms ofx before doing any calculus. The algebra is

y1/2 = 1− x1/2

y = (1− x1/2)2 = 1− 2x1/2+ x
dy

dx
= −x−1/2+ 1

d2y
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2
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as obtained previously. Along the way, an explicit expression fordy/dx was found that is also easily seen
to be equivalent to the implicit expression obtained earlier.

We also note that the notation of differentials can be used to make the calculation of the derivative of
y/x appearsimpler. Instead of being forced to declarex as the independent variable, the quotient rule can
be written in terms of differentials as

d
( y

x

)
= x dy− y dx

x2
,

and the result of implicit differentiation used in the form

x1/2 dy+ y1/2 dx = 0.
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Exercise 41 The variablesx, representing theweekly demandin thousands for Super Titan radial
tires, andp, representing theunit price in dollars for the tires, are related by thedemand equation

p+ x2 = 144.

At a certain time,x = 9 and p = 63. (This is consistent with the given demand equation because
63+ 92 = 63+ 81= 144.) It is also given that the price per tire is increasing at $2 per week, which can be
written asdp/dt = 2, using the given scale forp and measuring time in weeks. The derivative of the given
demand equation is

dp

dt
+ 2x

dx

dt
= 0.

Substituting the given values forp, x, anddp/dt gives

2+ 2(9)
dx

dt
= 0.

Solving givesdx/dt = −1/9. That is, the demand isdecreasingat the rate of 1000/9 tires per weekper
week. (The first phrase represents the units ofx, re-expressed at individuals rather than thousands; the
second phrase represents the units oft . This may be interpreted as saying that in the week of the price
increase, demand drops from 9000 tires per week to 8889 tires per week.)

Section 4.1 Exercise 4 refers to a graph given in the textbook, with no expression for the function
being graphed. In the other exercises, an expression is given. If appropriate, graphs will be added to illustrate
our conclusions. General instructions are to find where the function is increasing and where it is decreasing.
Where appropriate, relative maxima and minima will be noted even if not requested in the statement of the
exercise. Three of the exercises deal with polynomials of degree 3. The discussion will seem repetitious,
since the qualitative aspects of these graphs are identical in the sense that they differ only in changes of scale
and origin on both axes. A minor variation is possible: if the coefficient ofx3 is negative, the curve will
resemble areflection of the graph shown for exercise 14. Another variation is possible, but somewhat dull:
f ′(x) could not factor into distinct real linear factors, but thenf (x) would have no critical points, so would
be either everywhere increasing or everywhere decreasing.

Exercise 4 A graph is given, and you are asked where it is increasing and where it is decreasing.
Since the function is unbounded nearx = 0, it should be undefined at zero. One sees that thef (−1) = −2
is greater than all other values off (x) with x < 0, with the function increasing forx < −1 and decreasing
for −1 < x < 0. Here, the function increases to a relative maximum atx = −1, and then decreases. For
positivex, f (x) is deceasing for 0< x < 1, reaching a relative minimum off (1) = 2, then increasing for
x > 1.

If one were to fail to mention thatx = 0 is excluded, the description would sound paradoxical:f (x)
decreases fromx = −1 to x = 1, yet f (−1) = −2 < 2 = f (1). A simpler function illustrating the same
paradox isg(x) = 1/x whose derivativeg′(x) = −1/x2 is negative wherever it is defined, so it is decreasing
on every interval in its domain, yet the value at any positivex is greater than the value at any negativex.

As long as you have a picture, there should be no confusion. However, calculus allows many properties
of functions to be determined without reference to a graph. When this is done, it is important to notice if
any points are excluded from the domain of the function.
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Exercise 14 Given f (x) = x3− 3x2, differentiation givesf ′(x) = 3x2− 6x = 3x(x − 2). From
the factored form off ′(x), it follows that f ′(x) = 0 for x = 0 andx = 2. If x > 2, both factors in the
expression forf ′(x) are positive, sof ′(x) > 0 and f (x) is increasing. As x moves to the left on the number
line, when it passes a point wheref ′(x) = 0, one of the factors inf ′(x) changes sign and the others retain
their sign. Thus, for0 < x < 2, f (x) is decreasing, and forx < 0, f (x) is increasing. This shows that
there is arelative maximum at x = 0 and f (0) = 0; and arelative minimum at x = 2 and f (2) = −4.
Although these values arerelative extrema, the function does take values outside this interval, as see in the
following graph.
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Exercise 16 Given f (x) = x3−3x+4, differentiation givesf ′(x) = 3x2−3= 3(x+1)(x−1).
Now the critical points arex = ±1. As in the previous exercise,f ′(x) is negative for−1< x < 1, so f (x)
is decreasingthere.Outside this interval, f (x) is increasing. The appearance of the graph is similar to the
previous example, so it will not be shown.

Exercise 18 Given

f (x) = 2

3
x3− 2x2− 6x − 2,

differentiation givesf ′(x) = 2x2−4x−6= 2(x−3)(x+1). As in the previous exercises,f ′(x) is negative
for −1 < x < 3, so f (x) is decreasingthere.Outside this interval, f (x) is increasing. The appearance of
the graph is similar to the previous example, so it will not be shown.

All of these examples of polynomials of degree 3 are similar. The remaining exercises involve a variety
of different functions
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Exercise 20 Giveng(x) = x4−2x2+4, differentiation givesg′(x) = 4x3−4x = 4x(x−1)(x+1).
There are now three critical points:x = −1, x = 0, andx = 1. The factor ofg′(x) giving each of these is
simple (i.e., appearing only to the first power), sog′(x) changes sign at each critical point, and nowhere
else. Sinceg′(x) has a positive leading coefficient, it is positive forx to the right of all of its roots. Thus:
g′(x) > 0 for 1< x; g′(x) < 0 for 0< x < 1; g′(x) > 0 for−1 < x < 0; g′(x) < 0 for x < −1. Hence,
g(x) changes from being decreasing to being increasing atx = −1 and atx = 1, giving relative minima
at (−1, 3) and(1, 3); while g(x) changes from being increasing to being decreasing atx = 0, so there is a
relative maximum at (0, 4). Here is the graph.

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

-1.5 -1 -0.5 0 0.5 1 1.5

x**4-2*x**2+4

Exercise 24 Given

g(t) = 2t

t2+ 1
,

differentiation gives

(t2+ 1)(2)− (2t)(2t)

(t2+ 1)2
= 2− 2t2

(t2+ 1)2
.

The denominator of this expression is always positive, so we examine the numerator to find the sign ofg′(t).
This numerator factors as−2(t − 1)(t + 1), so it is negative for larget , becomes positive for−1 < t < 1,
then negative again fort < −1. The functiong(t) is thusincreasingonly for−1 < t < 1, and otherwise
decreasing. Since the denominator ofg(t) has larger degree than the numerator,

lim
t→∞ g(t) = 0.

There is aminimumat(−1,−1) and a maximum at(1, 1). The graph below also shows the symmetry about
the origin characteristic of anodd function, i.e., a function that satisfiesg(−t) = −g(t).
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Exercise 74 The height (in feet) attained by a rockett seconds into flight is given by

h(t) = −1

3
t3+ 16t2+ 33t + 10

Where is the rocket rising? Where is it falling?
The words serve mainly to introduce the functionh(t) and give a reason for being interested in where

it is increasing. There is animplicit assumption that only thoset ≥ 0 for which f (t) ≥ 0 are relevant
(roughly 0≤ t ≤ 50), but the solution of the problem proceeds in the same way as problems stated more
directly. Differentiate to find

h′(t) = −t2+ 32t + 33= −(t + 1)(t − 33).

The expression definingh(t) is increasing for−1< t < 33 and decreasing otherwise. If only positive values
of t are relevant, one can answer the question in the language used in its statement by saying that the rocket
is rising for the first 33 second of its flight and falling after that. Some more details are thatf (33) = 6544,
so that the rocket reaches a maximum height of 6544 feet (a little less than a mile and a quarter), and hits the
ground after approximately 48.992 seconds at a speed of 866.48 feet per second (or 590.78 miles per hour).

Exercise 83 The amount of nitrogen dioxide present in the atmosphere on a certain day in the city
of Long Beach is approximated by

A(t) = 136

1+ 0.25(t − 4.5)2
+ 28

for 0 ≤ t ≤ 11, wheret is thetime in hours on that day witht = 0 corresponding to 7 AM. Thust = 11
corresponds to 6 PM. Find whereA(t) is increasing and interpret your results.

This can be answered by finding whereA′(t) > 0. Begin by writing

A(t) = 136
(
1+ 0.25(t − 4.5)2

)−1
+ 28

to allow use of a power rule instead of themore complicatedquotient rule. Then

A′(t) = 136(−1)
(
1+ 0.25(t − 4.5)2

)−2(
0.25(t − 4.5)(1)

)
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where the first part of the expression is the derivative of 136u−1 + 28 and the second part is the derivative
of u = 1+ 0.25(t − 4.5)2. Since the first part is a negative constant times a power of an expression that
is a sum of squares, it is always negative. The second part is positive fort > 4.5 and negative fort < 4.5.
Combining these two factors, we find thatA increases for 0< t < 4.5 and then decreases over the rest of
the domain. In the language of the model, this measure of pollution increases from 7 AM to 11:30 AM, and
decreases for the rest of the day.

Note that our interpretation of the chain rule gave thatA(t)was increasing where 1+0.25(t−4.5)2 was
decreasing because of the simple dependence ofA(t) on this quantity. The ability to calculate derivatives
easily allows us to notice thisafter calculating the derivative instead ofrequiring this observation as part
of the analysis of the problem. Here is a graph ofA(t)
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