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Comments on the exam will be collected here. This file may grow if there are more questions about
particular problems.

First Part

Problem 1 The derivative of a polynomial should be soautomatic that you can do itrepeatedly
without difficulty. Such functions allow your interpretation of the notation for second derivatives to be tested
without introducing difficulties of preparing your expression for the first derivative to be differentiated.

Problem 2 Several rules are combined here. Thechain rule gives a product of the derivatives of the
two functionscomposedhere. Since the expression is a power ofsomething, the first factor is the familiar
“exponent times one lower power” ofthe something. The second factor is the derivative of the something.
(This much is sometimes considered to be an extended power rule. It is useful if you are aiming to develop
the skill to write derivatives without leaving any clues about your analysis of the given function. Since your
exam papers will be graded by someone who doesnot assume that you know Calculus, it would be better to
givemore details.)

In this problem, the second factor is the derivative of a quotient (of linear expressions). The quotient
rule should be used. This derivative simplifies to a constant divide by the square of the original denominator.
Since this simplification iseasily doneand gives aclear improvement, it should probably be done, although
it is not necessary.

Problem 3 This is a example ofimplicit differentiation . You are given anequation defining y
as a function ofx, rather than an expression to be fed to the differentiation rules. As long as you believe
that everything depends onx and the given equation is anidentity , the chain rule will lead to a correct new
equation relatingdy/dx to x andy. You can then solve fordy/dx. (This will always be easy because the
equation islinear in dy/dx.)

Second Part

Problem 1
Grades on this were high, but that does not mean that a similar problem on the final exam will also

have high grades. The main things I was looking for were: (1) a correct expansion off (x + h); (2) a
simplification of thedifference quotient; (3) indication that the definition involves a limit.

Grading may be stricter on the final exam. This type of exercise requires you to show understanding of
the definition of the derivative. Since you need toconvince the graderthatyou understand the subject,
which is more than is required from anyone who has already been certified as knowing the subject, you
should aim for acompletedemonstration without being verbose. This is much easier to do if you write a
sequence ofcomplete mathematical sentences, such as equations that assert that two quantities really are
equal. It is difficult to do this in a convincing way if your work follows the pattern used to solve equations
in elementary algebra, since this often degenerates into a sequence of unnamed algebraic transformations,
with quantities connected by equal signs even if they aren’t equal.

It should also be noted that the difference quotient is only defined ifh 6= 0.

Problem 2 This is arelated ratesproblem, whichrequires Calculus. In this problem there are
three distances: the two distances along the roads and the distancebetweenthe vehicles. These are related
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by thePythagorean theorem. Theratesare the derivatives of these distanceswith respect to time. There
is no assumption that any rates are constant, but onlyinstantaneousrates appear when the identity given by
the Pythagorean theorem is differentiated. This reinforces the observation made several times so far in the
course that derivatives (or differentials) are to be considered asnew variablesthat should not be combined
with other quantities used in the same scenario.

In order to make your work readable, it is useful to begin by following the style of modern programming
languages bydeclaring your variables. That is, each symbol that you use should represent a number that
is identified as a particular measurement with respect toclearly identified units. All terms in an equation
relating these quantities should representconsistent measurements. The three distances in this problem
are related by the Pythagorean Theorem in which the terms are all measurements insquare feet.

Differentiating this with respect to time gives another equation relating measurements insquare feet
per second.

Problem 3 You were not given an analytic expression for the function, so the answers were to be
based on areasonable interpretationof the graph. It looks like it could be drawn without removing the
writing instrument from the paper. This is an informal way to say that there areno jumps. There are other
types of discontinuities, but they are even more visually disturbing. This function iscontinuous on the
whole domain.

A jump in the graph off ′(x) leads to acorner in the graph off (x). The given graph has corners at
(0, 0) and(1, 1). Thus, there is no derivative atx = 0 or x = 1. A derivative exists at other values ofx.

To estimate the derivative, draw a tangent line and use the given grid to determine the slope of the line
you drew.

Since the graph is a straight line of slope−1 between−1 and 0, the derivative is−1 there, and since
the function is constant forx > 1, its derivative is zero for suchx. You can determine the reliability of your
graphical technique forx between 0 and 1 by comparing your estimate with the value off ′(x) that you can
find after being told thatf (x) = x2 for 0< x < 1.

Problem 4 These two problems explore one aspect of limits. In both parts, the denominator isx
minus the point at which the limit is to be evaluated.

In one part, this denominator divides the numerator so the quotient is a polynomial. Except for this
special value, the function is given by a simpler expression. The language of limits calls the value of the
simpler expression at the special value thelimit of the original expression as oneapproachesthe special
value.

In the other part, attempting to divide the numerator by the denominator leaves a remainder. Thus,
except for the well-behaved quotient, the given fraction behaves like a constant divided by the difference
betweenx and the special value. Ifx is close to the special value, the denominator is small while the
numerator is bounded away from zero.Such quotients are large.This limit does not exist because values
near the special value will be far from any number.

Some answers were based on trying to factor the numerator rather than divide by the denominator.
This works, butonly because there is unique factorization of polynomials. Itdidn’t take forever because
everything was of very low degree. In general,factoring is difficult and should be avoided. In this problem,
it only gives indirect evidence for something that is easily studieddirectly .

Your calculator can help you with questions like this. If you graph the function near the special value,
you can see whether the functionseems to havea value there, which is a sign that a limit exists. If you
program the calculation of the function, you can easily evaluate it near the special value. You might even try
evaluating itat that value. (I have an HP48G and want to concentrate on learning its approach to advanced
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mathematics, so I have not tested the TI-8x family of calculators. For these exercises, both expressions give
errors at the special value, but the errors aredifferent . The numerator and denominator of the fraction are
also shown.)

When direct evaluation of the numerator and denominator of a fractionappears to give0/0, one expects
to find asimplecommon factor in both parts. Removing this factor from both parts leaves a fraction that is
equal to the original wherever the common factor isn’t zero.

Problem 5 The mystery of the misalignment of the graph in this problem has been solved. The
difficulty was noticed between the printing of the exam and its use, so I could warn you that asmall inaccuracy
could be expected. During the exam, a student noticed that the discrepancy was significant whenx0 = 1.
Armed with this information, it was possible to determine that the graph of a different function (that had
been considered for use on the exam, but rejected) was included. It was harder to track this down because
thekey giving the formulas used in the plot was disabled (graphs produced by this program have been used
in postings based on lectures, and those include a key) and no log was kept of the instructions leading to the
graph. The function actually graphed on the exam wasx− 1+ 2/x instead ofx− 1+ 1/x. Here is a graph
showingboth graphs, and including a key to identify the formulas used to draw them.
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Notice that the curves have the same general appearance and are close except near the points where
there are horizontal tangents, so there would be little difficulty at other points. The main difficulty in these
problems arises from using thegeneral expressionfor dy/dx instead of its value atx0 in the role of the
slope. The resulting expression willnot be the equation of a line. By asking for a sketch of the line, we
hoped to encourage you to interpret your answer to part (a) and assure that it described a line.

Problem 6 . This model wasquoted from one of the early exercises in the textbook, using the same
numbers and referring to the same product (digital TV), with the same scale for the variables. The intent
was to survey all topics touched on in the course. There was no calculus in the problem.

Several features of models are illustrated here.
In order to be able to usesmall numbers in the computation,t = 0 was made to describe the start of

time interval being studied instead of reading a number off the calendar. The use of small numbers has more
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than simply cosmetic value: evaluation of polynomials becomes inaccurate if the terms of the polynomial
can be large while the total is not.

The time interval also has an upper limit. Simple formulas constructed to match observations over a
small interval do not oftenextrapolate much beyond the smallest interval containing those observations.
Here, the model appears to have been constructed topredict a market. Once it was determined that a cubic
polynomial would give a reasonable prediction, the coefficients were found by measuring someconsequences
of the prediction that could be measured in the initial months of the interval.

Calculus does play a role in studying these consequences, since a formula for one measurable quantity
automatically leads to formulas for the derivative (and second derivative, etc.) of that quantity. Information
about the derivative can then be used to help describe the original function.

In this case, the formula is simple enough to be evaluated at any value oft , and that was all that was
intended. There are also ways toapproximate the value at one point using information at nearby points.
For example, the idea ofdifferentials is to use the derivative to relatesmall changes in two quantities. This
is equivalent to following a tangent line att = t0, using the value on the line whent is a nearby valuet1 to
approximatef (t1). Alternatively, if some kind soul has given you the values off (t) for all integer values
of x in the domain off , you can uselinear interpolation to approximatef (t) at other values oft . This is
equivalent to locating the point on the line segment connecting given values, which is a chord of the given
graph. For this particular model, the tangent lines will all be below the graph and the chords will be above
the curve. (We will explore this later as an application of the second derivative. Here is a graph showing the
given function betweent = 3 andt = 4 with the tangent lines at both ends of this interval and the chord
joining those points. Other intervals would be similar.
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Although these approximations were used by some students, they give no advantage in such a simple
model because the givenf is so easy to evaluate — perhaps even easier than the approximations.)

Problem 7 . The formula sheet contained the statement thatR= xp. To get a formula in terms of a
single independent variable, you can use either the given expression forx in terms ofp to getR in terms
of p, or you can solve the given equation to getp in terms ofx andmultiply this by x to getR in terms of
x. (Failure to multiply byx was a common error in spite of having the formula forR available.)



640:135, extra notes for lecture X1, p. 5

Since the formula sheet mentioned makingR a function ofx alone, more solutions used this approach
although the expression forR in terms ofp is simpler. Thus, for

x = 1

5
(225− p2),

the expressions forR are

R= p

5
(225− p2) = 1

5
(225p− p3)

R= x
√

225− 5x =
√

225x2− 5x3

The word “marginal” in economics meansderivative, but we have two different choices of independent
variable. In order to have aprecisedefinition, we need to know which one is theintended independent
variable. To decide this, we need to recall the initial discussion of this term. The idea was that often
economic analysis is concerned with the effect on such quantities ascost, revenue, andprofit of making
one more item. The difference in the dependent variable whenx changes by 1 is a difference quotient that is
approximated by the derivative with respect tox. In particular, the custom of writing quantities as functions
of x aims at obtaining marginal quantities as explicit derivatives.

Once you know that you are looking ford R/dx, the technique of implicit differentiation allows it to
be found as(d R/dp)

/
(dx/dp). Thus

d R

dx
=

1
5(225− 3p2)

1
5(−2p)

= 3p2− 225

2p
.

If you expressR in terms ofx, you can differentiate directly. I used the intermediate expression and the
product rule, but one student used the final expression given above, which leads immediately to a simplified
form of the derivative. Thus,

d R

dx
= 1

2
(225x2− 5x3)−1/2(450x − 15x2) = 450x − 15x2

2x
√

225− 5x
= 450− 15x

2p
.

You should be able to check that this agrees with the previous answer.
None of the work or results of the first two parts is used in the rest of the problem, although correct

results in one part can be used to check correct results in another. Statements on the formula sheet may be
interpreted as saying theelastic demandcorresponds tod R/dp< 0. Sincedp/dx < 0, this is equivalent
to d R/dx > 0.

A formula for E is given, so it should betranscribed accurately as the first step of the solution. In
far too many cases, the sign was lost. This sign has a peculiar role: although it is visibly a minus sign, its
role is to negate the negative quantityf ′(p) to get a positive value forE. In particular, a negative value
for E only shows that a mistake was made. It cannot be used to conclude that demand is inelastic. Since
f (p) is identified in the description of the formula forE as the function givingx in terms ofp, we have
f (p) = (225− p2)/5 and f ′(p) = −2p/5. ThusE = 2p2/(225− p2). Since values ofp are given in (d),
this is the most useful expression forE. Note that it is nonnegative since we have required that 0≤ p ≤ 15.
Solving the inequalityE > 1 gives elastic demand if and only if 2p2 > 225− p2, if and only if 3p2 > 225,
if and only if p2 > 45, if and only if p >

√
45≈ 6.7.
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