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In this lecture, we will finish the proof that Approximate Majority has polynomial-size AC0 circuits.
Then we will show that majority is hard for AC0 even with parity gates. Lastly, we will see that
parity is hard-on-average for AC0, and that this can be used to give us pseudorandom generators
against AC0.

1 Approximate Majority and AC0

Previously we saw how PARITY requires AC0 circuits of size ≥ 2Ω(n1/(d−1)), where d is the circuit
depth. The key to the proof was the switching lemma, which intuitively says that random restric-
tions drastically simplify AC0 circuits. This immediately gives us that MAJORITY requires AC0

circuits of size 2Ω(n1/d), since we can produce a parity circuit out of a majority circuit.

At the end of the last lecture, we were attempting to show that randomized AC0 circuits were no
more powerful than deterministic. Recall that for general circuits and formulas, we were able to
do so by means of probability amplification. However, this required a circuit computing Majority,
which we don’t have for polynomial-size AC0. Ajtai and Ben-Or showed that instead, we can use
Approximate majority, which does have polynomial AC0 circuits, to get the same result.

Now we will wrap up the proof that Approximate Majority has polynomial-size AC0 circuits. Let’s
recall the definition of Approximate majority:

Definition 1. For x ∈ {0, 1}n, let wt(x) be the number of ones in x. Then

AM(x) =


0 if wt(x) ≤ n/4
1 if wt(x) ≥ 3n/4

don’t care otherwise

Theorem 2. There exist polynomial-size AC0 circuits computing AM .

Proof. Note that Approximate Majority as we have defined it is not a single function; its definition
may be satisfied by many circuits computing different functions. To show that the desired circuits
exist, we construct a probability distribution C over small AC0 circuits.

We want our distribution to satisfy the following, for all x:

if wt(x) < n/4, Pr
C

[C(x) 6= 0]� 2−n
2

if wt(x) > 3n/4, Pr
C

[C(x) 6= 1]� 2−n
2
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Then for a fixed x, with high probability a C chosen from this distribution will compute AM :

Pr
C

[∃x wt(x) < n/4, C(x) 6= 0 ∨

∃x wt(x) > 3n/4, C(x) 6= 1]� 2n · 2−n2 ∼ 2−Ω(n2)

It follows that there exists a single circuit that computes AM exactly, i.e.

∀x wt(x) < n/4, C(x) = 0 ∧ ∀x wt(x) > 3n/4, C(x) = 1

To obtain the desired probabilities, we define a sequence of distributions. Let p = wt(x)/n, which
is the probability that a random bit in x is 1. The following table describes the distributions and
gives bounds on PrC [C(x) = 1] for the two weight conditions:

Distribution p < 1/4 p > 3/4

C0(x) = uniformly chosen circuit to select one bit of x p p
C1(x) =

∧
(10 log n independent random ckts from C0(x)) < 1/n20 > 1/n10

C2(x) =
∨

(n15 independent ckts from C1(x)) < 1/n5 > 1− e−n5

C3(x) =
∧

(n2 independent ckts from C2(x)) � 2−n
2 � 1− e−n4

The C0 circuits are clearly in AC0. The number of gates in Ci+1 is polynomial in the size of Ci,
and each new level adds 1 to the depth.

The probabilities for C1 come from p10 logn. For the p < 1/4 probability of C2, the union bound
is good enough. The more accurate bound for 3/4 is from 1− (1− 1

n10 )n
15

. For C3, the bound on

p > 3/4 comes from the expansion of (1 − e−n5
)n

2
. Since we have the desired probabilities, the

proof is complete.

Remark: This proof method is interesting because it uses the probabilistic method not over inputs,
but over computations.

2 MAJORITY /∈ AC0(⊕)

The result given in the section title implies that majority is strictly harder than parity for AC0,
since there is no polynomial-size AC0 circuit to compute majority even if we are given parity gates.
The result is Razborov’s, and the proof technique uses ideas due to both Razborov and Smolensky.

Consider the class of circuits AC0(⊕) with ∧, ∨, ¬, and ⊕ gates of unbounded fan-in. The parity
gate ⊕ outputs 1 if an odd number of its inputs are 1.

We first state and prove a lemma showing that every AC0 circuit can be approximated by a low-
degree polynomial.

Lemma 3. (Razborov’s Lemma) For all AC0 circuits C of size s, depth d, there exists a distribution
P of polynomials p(x1, ..., xn) ∈ F2[X1, ..., Xn] such that, for all x,

Pr
p∈P

[p(x) 6= C(x)] ≤ ε,

and deg(p) ≤ (log( sε ))
d always.
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A corollary to this lemma is that there exists a single low-degree polynomial which computes C on
all but an ε fraction of the x ∈ {0, 1}n. This corollary suffices for our lower bound on Majority;
but it is the form stated in the lemma that is the easier one to prove, because it is strong enough
to lend itself to a proof by induction.

Before proving the lemma, let’s try to develop some intuition about representing AC0(⊕) circuits
with low-degree polynomials. Is it possible to encode all AC0(⊕) circuits exactly with low-degree
polynomials?

The single-gate circuit taking the parity of all inputs has the exact degree-1 representation
∑n

i=1 xi,
since parity corresponds to addition in F2. So far so good. But the single-gate circuit computing
the AND of all inputs is equivalent to the polynomial

∏n
i=1 xi, whose degree cannot be reduced.

We need to find a polynomial approximating AND of degree ≤ (log(1
ε ))

d. We can’t approximate
AND by always outputting zero, since the desired correctness probability must hold for all inputs
x. Multiplying a random constant-size subset of the bits of x will not work either, for the same
reason. However, we can find desirable properties by summing random subsets.

Take a uniform random subset s of [n] and consider the polynomial
∑

i∈s xi. Observe that

Pr
s

[
∑
i∈s

xi = 1] = 0, if x = (0, ..., 0)

Pr
s

[
∑
i∈s

xi = 1] =
1

2
, if x 6= (0, ..., 0).

This is an approximation of OR with a constant error probability, of degree 1. Of course, if we
have OR and negation, we can also produce AND. So we have the idea for the proof.

Proof. Choose subsets s1, s2, ..., sk ⊆ [n] uniformly at random. We define the following degree-k
polynomial to approximate an OR gate:

p∨(x1, ..., xn) = 1−
k∏
j=1

(1−
∑
i∈sj

xi)

Since we use k subsets, we have:

if x = (0, ..., 0), Pr
p

[p∨(x) = 0] = 1

x 6= (0, ..., 0), Pr
p

[p∨(x) = 0] =
1

2k

To obtain error probability ε, let k = log(1
ε ). This shows there exists a random p(x1, ..., xn) of

degree (log(1
ε )) that randomly computes

∨
. We obtain the same bound for AND with p∧(x) =∏k

j=1(1−
∑

i∈sj (1− xi)).

To construct an approximating polynomial for any circuit, replace each AND and OR gate with
p∧(x) and p∨(x), respectively, and each ⊕ gate with the deterministic sum. The total polynomial is
constructed using composition of functions in the natural way, with each gate’s sj ’s sampled from
its input wires.
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Take each p∧ or p∨ gate to have error probability ε/s (s is the size of the circuit.) This makes the
degree of the gate O(log( sε )). By the use of constant-size subsets, fan-in cannot increase the degree;
only depth causes products to be nested. So the “tree of polynomials” has degree ≤ (O(log( sε )))

d.

We bound the circuit’s probability of error by the probability that any gate produces a wrong
output. A union bound is sufficient:

Pr[any gate polynomial outputs a different answer from circuit] ≤ ε

s
· s ≤ ε.

The next piece of the puzzle is to show that MAJORITY does not have approximating polynomials—
that no low-degree polynomial can agree with MAJORITY on greater than a (1 − ε) fraction of
inputs.

Claim 4. For all polynomials p(x1, ..., xn), deg(p) = t,

Pr
x∈{0,1}n

[p(x) = Maj(x)] ≤ 1

2
+O(t/

√
n).

First we show how this claim and the lemma give the main result. Suppose circuit C has size s,
depth d. Then by the above lemma, there is a distribution P of polynomials of degree (O(log( sε )))

d

with error probability ≤ ε. This implies that there exists a fixed polynomial p such that Prx[p(x) =
Maj(x)] ≥ 1− ε. Plugging in the value from the claim, we have:

1

2
+O

(
log( sε )

d

√
n

)
≥ 1− ε

To get a concrete bound, we can set 1− ε = 0.9, and

(log(10s))d ≥
√
n

⇒ s ≥ 2Ω(n1/2d).

To prove the claim, we first make the observation that every polynomial can be made multilinear
without changing its evaluation on {0, 1}n, and without increasing its degree. A multilinear polyno-
mial is one in which no single variable appears with degree > 1. To make a polynomial multilinear,
simply replace each xki with xi. Clearly this gives exactly the same values on {0, 1}n.

Now we want to show that if Maj had an approximating polynomial of low degree then every
f : {0, 1}n → {0, 1} has an approximating polynomial of low degree.

Lemma 5 (Versatility). ∀ f : {0, 1}n → {0, 1}, ∃ g, h ∈ F2[x1, . . . , xn] such that

∀x, f(x) = g(x) ·Maj(x) + h(x), where deg(g),deg(h) ≤ n/2.

Proof. Let S0 = Maj−1(0) and S1 = Maj−1(1). We want to show that these are interpolating sets
for polynomials of degree at most n/2, that is, for i = 0, 1:

∀ f : {0, 1}n → {0, 1}, ∃ fi such that fi|Si = f |Si and deg(fi) ≤ n/2.
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We’ll show the argument for i = 0; the other case is similar. Consider a square matrix M with
rows and columns both indexed by subsets I ⊂ [n] where |I| ≤ n/2. Order them so that the sizes
are nondecreasing and use this same ordering for both the rows and columns. Associate a row
indexed by I with the incidence vector xI , and for a column indexed by J the monomial

∏
j∈J xj .

For I, J ⊂ [n], let

M(I, J) =
∏
j∈J

xIj (where xIj denotes the jth component of the incidence vector xI).

The key observation to make is that

M(I, J) =

{
1 if I = J

0 if |J | > |I| or |I| = |J |, I 6= J
.

Thus M is a lower triangular matrix with 1’s along the diagonal. This implies that the collection
of monomials

J = {
∏
j∈J

xj : J ⊆ [n], |J | ≤ n/2}

is linearly independent over FS0
2 . (See the “independence criterion” in Jukna, p. 188.) Also note

that if F0 denotes the vector space of all functions f : S0 → {0, 1}, then |J | = |S0| = dim(F0).
The elements of |J | thus form a linear basis over F0.

Now for i = 0, 1, take fi of degree at most n/2 with fi|Si = f |Si . Then

f = f1 ·Maj + f0 · (1−Maj)

= Maj · (f1 − f0) + f0.

This proves our lemma.

Let p(x1, . . . , xn) be a polynomial of degree t and let S = {x : p(x) = Maj(x)}.

Letting F be the vector space of all functions f : S → {0, 1} and P be the vector space of all
polynomials (in F2[x1, . . . , xn]) of degree at most n/2 + t, the above lemma gives F ⊆ P (For
f ∈ F , f = g ·Maj + h = g · p + h). Since P is generated by multilinear monomials of degree up
to n/2 + t,

dim(P) =

(
n

0

)
+

(
n

1

)
+ . . .

(
n

n/2 + t

)
≤ (1/2 + o(t/

√
(n))) · 2n.

Combining this with
|S| = dim(F) ≤ dim(P)

proves Claim 4.

3 Average case hardness

We have actually shown that an AC0(⊕) circuit C of size poly(n) cannot have

Pr
x∈{0,1}n

[C(x) = Maj(x)] >
1

2
+
poly(log n)√

n
.
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This is an “average case” lower bound.

In a similar vein, H̊astad showed that PARITY cannot be approximated by a polynomial-sized AC0

circuit, giving a much stronger bound for this case.

Theorem 6 (H̊astad). ∀ circuits C with AC0 size s = 2O(n1/d) and depth d,

Pr
x∈{0,1}n

[C(x) = PARITY (x)] ≤ 1

2
+ 2−Ω(n1/d).

Proof. (SKETCH) We know by the switching lemma that a random restriction ρ makes C|ρ a
t-DNF w.p. ≥ 1− δ, where ρ sets some Z variables to z.

Pr
x

[C(x) = PARITY (x)] = Pr
y,ρ

[C|ρ(y) = PARITY (z, y)]

≤ (1− δ) Pr
y

[some t-DNF (y) = PARITY (y)] + δ.

In the homework you will show that t-DNFs have very small correlation with PARITY.

4 Pseudo-random Generators

We can use the hardness of PARITY to construct a pseudorandom generator against AC0.

We want a S ⊂ {0, 1}n of small size such that ∀C, |C| ≤ nc,

| Pr
x∈S

[C(x) = 1]− Pr
x∈{0,1}n

[C(x) = 1]| ≤ ε. (1)

Note that we’ve shown by the probabilistic method the existence of such an S (with carefully chosen
parameters) but now we’ll do one better by providing an explicit one. This was done by Nisan and
Wigderson.

First we’ll take n subsets S1, . . . , Sn ⊆ [k] such that |Si| = a ∀i and ∀i 6= j, |Si ∩ Sj | ≤ b, with
a and b to be determined. Define G : {0, 1}k → {0, 1}n as G(y) = (G1(y), . . . , Gn(y)), where
Gi(y) =

⊕
j∈Si

yj . Let S = Im(G) (so |S| ≤ 2k).

Claim 7. If ∃C such that

| Pr
y∈{0,1}k

[C(G(y)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]| > ε,

then there exists a circuit of size at most |C| + n ∗ 2b for computing PARITY (z) for a random z
w.p. ≥ 1/2 + ε/2n.

Proof. (By a “hybrid argument”)

LetD0 = (x1, . . . , xn), Dn = (G1(y), . . . , Gn(y)) and for 1 ≤ k < n, Dk = (G1(y), . . . , Gk(y), xk+1, . . . , xn).
By the hypothesis, there must be an i such that

|Pr[C(Di) = 1]− Pr[C(Di−1) = 1]| > ε/n.
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Without loss of generality, we can assume we have

Pr
y,xi+1,...,xn

[C(G1(y), . . . , Gi(y), xi+1, . . . , xn) = 1]

− Pr
y,xi,...,xn

[C(G1(y), . . . , Gi−1(y), xi, xi+1, . . . , xn) = 1] > ε/n.

So there exists a fixing of the variables xi+1, . . . , xn that makes this hold. Now

Pr
y

[C(G1(y), G2(y), . . . , Gi(y)) = 1]

− Pr
y,xi

[C(G1(y), . . . , Gi−1(y), xi) = 1] > ε/n.

Let y = (w, z) where w are the bits outside Si and z the bits inside. Then

Pr
w,z

[C(G1(w, z|S1), G2(w, z|S2), . . . , Gi(z) = 1]

− Pr
w,z,xi

[C(G1(w, z|S1), . . . , xi) = 1] > ε/n

means there exists a w that makes this hold. Fix this w and integrate it into C. Let fi = Gi|w.

Now

Pr
z

[C(f1(z|S1), f2(z|S2), . . . , fi−1(z|Si−1), Gi(z)) = 1]

−Pr
z

[C(f1(z|S1), f2(z|S2), . . . , fi−1(z|Si−1), xi) = 1] > ε/n.

Define C∗(z, r) = C(f1(z|S1), f2(z|S2), . . . , fi−1(z|Si−1), r).

This says that
Pr
z

[C∗(z, PARITY (z)) = 1]− Pr
z,xi

[C∗(z, xi) = 1] > ε/n.

Since we’ve replaced inputs of C with circuits computing PARITY on at most b variables, |C∗| ≤
|C|+ n ∗ 2b.

By a theorem of Yao (which we’ll see later), Distinguishability ⇒ Predictability. This implies that

∃ C∗∗ such that |C∗∗| = |C∗| and

Pr
z

[C∗∗(z) = PARITY (z)] ≥ 1

2
+

ε

2n
.

Lemma 8 (Yao: distinguishability ⇒ predictability). Suppose C : {0, 1}n × {0, 1} → {0, 1} is a
circuit such that:

Pr
x∈{0,1}n

[C(x, f(x)) = 1]− Pr
x∈{0,1}n,b∈{0,1}

[C(x, b) = 1] > δ.

Then there exists another circuit C ′ : {0, 1}n → {0, 1} such that

Pr
x∈{0,1}n

[C ′(x) = f(x)] >
1

2
+ δ.
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Proof. This is a tricky statement, and it is a great exercise to try to prove this.

Here is a non-magical (but slightly longer than necessary) way of arriving at the proof.

We are trying to understand exactly what the hypothesis says. Define the following 3 subsets of
{0, 1}n.

S = {x ∈ {0, 1}n | f(x) = 0}.

T0 = {x ∈ {0, 1}n | C(x, 0) = 1}.

T1 = {x ∈ {0, 1}n | C(x, 1) = 1}.

Now draw a Venn diagram of these sets in {0, 1}n (they are in general position).

We have:

Pr[C(x, b) = 1] =
1

2
· Pr[T0] +

1

2
· Pr[T1].

Pr[C(x, f(x)) = 1] = Pr[T0 ∩ S] + Pr[T1 ∩ Sc].

Thus if Pr[C(x, f(x)) = 1]−Pr[C(x, b) = 1] > δ, then we must have that one of the two possibilities
occurs:

• Case 1: Pr[T0 ∩ S] > 1
2 Pr[T0] + δ

2 . In this case, we see that for a random x ∈ {0, 1}n, the
event x ∈ T0 occurring indicates that f(x) = 0 is slightly more likely than f(x) = 1.

So our circuit C ′(x) does the following: If C(x, 0) = 1 (this means x ∈ T0), output 0, otherwise
output a random bit.

• Case 2: Pr[T1 ∩ Sc] > 1
2 Pr[T1] + δ

2 . In this case, we see that for a random x ∈ {0, 1}n, the
event x ∈ T1 occurring indicates that f(x) = 1 is slightly more likely than f(x) = 0.

So our circuit C ′(x) does the following: If C(x, 1) = 1 (this means x ∈ T1), output 1, otherwise
output a random bit.

If we let b = log(n), a = log2d(n), and k = log4d(n), then we can produce n sets with these param-
eters (Exercise. Hint: probabilistic method. Later we will construct such sets deterministically).
Then a circuit of size |C| + n ∗ 2b = |C| + n2 approximates PARITY on log2d(n) bits. H̊astad’s

theorem implies that the size is at least 2log2(n) if ε/2n > 2− log2(n), so take ε > n∗2− log2(n)+1. Thus
we’ve shown that a circuit of polynomial size must satisfy inequality (1) above for our constructed
S.
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