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Preface

This is a preliminary version of an unpublished book on the automorphism

tower problem, which was intended to be intelligible to beginning graduate students

in both logic and algebra.

Simon Thomas
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Introduction

If G is a centreless group, then there is a natural embedding of G into its

automorphism group Aut(G), obtained by sending each g ∈ G to the corresponding

inner automorphism ig ∈ Aut(G). It is easily shown that the group Inn(G) of inner

automorphisms is a normal subgroup of Aut(G) and that CAut(G)(Inn(G)) = 1.

In particular, Aut(G) is also a centreless group. This enables us to define the

automorphism tower of G to be the ascending chain of centreless groups

G = G0 E G1 E G2 E . . . Gα E Gα+1 E . . .

such that for each ordinal α

(a) Gα+1 = Aut(Gα); and

(b) if α is a limit ordinal, then Gα =
⋃
β<α

Gβ .

(At each successor step, we identify Gα with Inn(Gα) via the natural embedding.)

The automorphism tower is said to terminate if there exists an ordinal α such

that Gα+1 = Gα. Of course, this occurs if and only if there exists an ordinal α such

that Aut(Gα) = Inn(Gα). In this case, the height τ(G) of the automorphism tower

is defined to be the least ordinal α such that Gα+1 = Gα. In 1939, Wielandt proved

that if G is a finite centreless group, then its automorphism tower terminates after

finitely many steps. However, there exist natural examples of infinite centreless

groups whose automorphism towers do not terminate in finitely many steps. For

example, it can be shown that the automorphism tower of the infinite dihedral group

D∞ terminates after exactly ω+1 steps. The classical version of the automorphism

tower problem asks whether the automorphism tower of an arbitrary centreless

group G eventually terminates, perhaps after a transfinite number of steps.

In the 1970s, a number of special cases of the automorphism tower problem were

solved. For example, Rae and Roseblade proved that the automorphism tower of a

centreless Černikov group terminates after finitely many steps and Hulse proved

ix



x INTRODUCTION

that the automorphism tower of a centreless polycyclic group terminates after

countably many steps. In each of these special cases, the proof depended upon

a detailed understanding of the groups Gα occurring in the automorphism towers

of the relevant groups G. But the problem was not solved in full generality until

1984, when I proved that the automorphism tower of an arbitrary centreless group

G terminates after at most
(
2|G|

)+
steps. The proof is extremely simple and uses

only the most basic results on automorphism towers, together with some elemen-

tary properties of the infinite cardinal numbers. Of course, this still leaves open the

problem of determining the best possible upper bound for the height τ(G) of the

automorphism tower of an infinite centreless group G. For example, it is natural

to ask whether there exists a fixed cardinal κ such that τ(G) ≤ κ for every infinite

centreless group G. This question turns out to be relatively straightforward. For

each ordinal α, it is possible to construct an infinite centreless group G such that

τ(G) = α. However, if we ask whether it is true that τ(G) ≤ 2|G| for every infinite

centreless group G, then matters become much more interesting. For example, it

is independent of the classical ZFC axioms of set theory whether τ(G) ≤ 2ℵ1 for

every centreless group G of cardinality ℵ1; i.e. this statement can neither be proved

nor disproved using ZFC.

This book presents a self-contained account of the automorphism tower prob-

lem, which is intended to be intelligible to beginning graduate students in both

logic and algebra. There are essentially no set-theoretic prerequisites. The only

requirement is a basic familiarity with some of the fundamental notions of algebra.

The first half of the book presents those results which can be proved using ZFC;

and also includes an account of the necessary set-theoretic background, such as the

notions of a regular cardinal and a stationary set. This is followed by a short intro-

duction to set-theoretic forcing, which is aimed primarily at algebraists. The final

three chapters explain why a number of natural problems concerning automorphism

towers are independent of ZFC.

In more detail, the book is organised as follows. In Chapter 1, we introduce the

notion of the automorphism tower of a centreless group and illustrate this notion

by computing the automorphism towers of a number of groups. In Chapter 2, we

present a proof of Wielandt’s theorem that the automorphism tower of a finite
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centreless group terminates after finitely many steps. In Chapter 3, we prove that

the automorphism tower of an infinite centreless group G terminates after strictly

less than
(
2|G|

)+
steps. This chapter also contains an account of the basic theory

of regular cardinals and stationary sets. Much of the remainder of this book is

concerned with the problem of constructing centreless groups with extremely long

automorphism towers. Unfortunately it is usually very difficult to compute the

successive groups in the automorphism tower of a centreless group. In Chapter 4,

we introduce the normaliser tower technique, which enables us to almost entirely

bypass this problem. Instead, throughout most of this book, we only have to

deal with the much easier problem of computing the successive normalisers of a

subgroup H of a group G. As a first application of this technique, we prove that

if κ is an infinite cardinal, then for each ordinal α < κ+, there exists a centreless

group G of cardinality κ such that the automorphism tower of G terminates after

exactly α steps. In Chapter 5, we present an account of Hamkins’ work on the

automorphism towers of arbitrary (not necessarily centreless) groups. Chapter 6

contains an introduction to set-theoretic forcing, which is intended to be intelligible

to beginning graduate students. In Chapter 7, we show that it is impossible to find

a better bound in ZFC than
(
2|G|

)+
for the height of the automorphism tower

of an infinite centreless group G. For example, it is consistent that there exists a

centreless group G of cardinality ℵ1 such that the automorphism tower of G has

height strictly greater than 2ℵ1 . On the other hand, in Chapter 9, we show that it is

consistent that the height of the automorphism tower of every centreless group G of

cardinality ℵ1 is strictly less than 2ℵ1 . In Chapter 8, we consider the relationship

between the heights of the automorphism towers of a single centreless group G

computed in two different models M ⊂ N of ZFC.

I am very grateful to David Nacin and Steve Warner for carefully reading

the manuscript of this book and for supplying me with a substantial number of

corrections.

Thanks are due to the many friends and colleagues with whom I have discussed

the material in this book, especially Greg Cherlin, Warren Dicks, Ulrich Felgner, Ed

Formanek, Ken Hickin, Wilfrid Hodges, Otto Kegel, Felix Leinen, Peter Neumann,

Dick Phillips and John Wilson. Particular thanks are due to my coauthors Joel
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Hamkins and Winfried Just. Of course, like so many logicians, my greatest debt of

gratitude is owed to Saharon Shelah, who I would like to thank for all that he has

taught me over the last twenty years.

Finally it is a pleasure to acknowledge the generous financial support of the

Alexander von Humboldt Foundation, Rutgers University and the National Science

Foundation.



CHAPTER 1

The Automorphism Tower Problem

In this chapter, we shall introduce the notion of the automorphism tower of a

centreless group, and we shall illustrate this notion by computing the automorphism

towers of a number of groups. In particular, we shall prove that for any integer

n ∈ ω, there exists a finite centreless group F such that the automorphism tower

of F terminates after exactly n steps; and we shall show that the automorphism

tower of the infinite dihedral group D∞ terminates after exactly ω + 1 steps. Sec-

tion 1.2 contains some fundamental algebraic results which will be used repeatedly

throughout this book. As we shall see later, Theorem 1.1.10 is the algebraic heart

of the proof of the automorphism tower theorem; and Theorem 1.2.8 is the key to

the construction of centreless groups with extremely long automorphism towers.

1.1. Automorphism towers

If G is a group, then the automorphism group of G is denoted by Aut(G). In

this book, we shall always work with the left action of Aut(G) on G. Thus if ϕ,

ψ ∈ Aut(G), then the product ϕψ is the automorphism defined by

ϕψ(x) = ϕ(ψ(x))

for each x ∈ G. If g ∈ G, then the corresponding inner automorphism ig ∈ Aut(G)

is defined by

ig(x) = gxg−1

for each x ∈ G. Notice that if g, h ∈ G, then

igih(x) = ghxh−1g−1 = (gh)x(gh)−1 = igh(x)

for all x ∈ G. Thus there is a natural homomorphism from G to Aut(G), obtained

by sending each g ∈ G to the corresponding inner automorphism ig ∈ Aut(G). The

image of this homomorphism is the group Inn(G) of inner automorphisms of G and

the kernel is the centre Z(G) of G.

1
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Lemma 1.1.1. Let G be an arbitrary group.

(a) If g ∈ G and π ∈ Aut(G), then πigπ
−1 = iπ(g).

(b) InnG is a normal subgroup of Aut(G).

Proof. (a) For each x ∈ G, we have that

(πigπ
−1)(x) = π(gπ−1(x)g−1)

= π(g)xπ(g)−1

= iπ(g)(x).

(b) This is an immediate consequence of (a). �

Inn(G) may be regarded as the group of “obvious” automorphisms of the group

G. An automorphism π ∈ Aut(G) r Inn(G) is called an outer automorphism and

the quotient group

Out(G) = Aut(G)/ Inn(G)

is called the outer automorphism group of G. In most of this book, we shall be

interested in the case when G is a centreless group. In this case, the natural

homomorphism g 7→ ig is an embedding and G ' Inn(G).

Lemma 1.1.2. If G is a centreless group, then CAut(G)(Inn(G)) = 1. In partic-

ular, Aut(G) is also a centreless group.

Proof. If π ∈ CAut(G)(Inn(G)), then for each g ∈ G, we have that

iπ(g) = πigπ
−1 = ig

and hence π(g) = g. Thus π = 1. �

Example 1.1.3. Let n be an integer such that n > 2 and n 6= 6. Let Sym(n)

be the group of all permutations of the set {0, 1, 2, . . . , n − 1} and let Alt(n) be

the subgroup of even permutations. Then Alt(n) is a normal subgroup of Sym(n).

Hence each π ∈ Sym(n) yields a corresponding automorphism cπ of Alt(n), defined

by cπ(ϕ) = πϕπ−1 for each ϕ ∈ Alt(n). In fact, every automorphism of Alt(n)

arises in this manner. (See Suzuki [48, Section 3.2].) Thus Aut(Alt(n)) ' Sym(n)

and Out(Alt(n)) is the cyclic group of order 2.
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It is well-known that if n > 2 and n 6= 6, then every automorphism of Sym(n)

is inner. (Once again, this result can be found in Suzuki [48, Section 3.2].) Thus we

have found a natural embedding of Alt(n) into a complete group, i.e. a centreless

group with no “nonobvious” automorphisms.

Definition 1.1.4. A centreless group H is complete if Aut(H) = Inn(H).

We obtain a similar situation if G is an arbitrary centreless group. Identify G

with Inn(G) via the natural embedding, g 7→ ig, so that G E G1 = Aut(G). By

Lemma 1.1.2, G1 is a centreless group; and by Lemma 1.1.1(a), every automorphism

of G is induced by an inner automorphism of G1. Of course, it is possible that G1

might possess outer automorphisms. In this case, we can continue on to the larger

centreless groups G2 = Aut(G1), G3 = Aut(G2), . . . , etc. And by making suitable

identifications, we obtain an ascending chain of groups

G = G0 E G1 E G2 E · · · E Gn E Gn+1 E · · ·

such that Gn+1 = Aut(Gn) for each n ∈ ω. This chain is the beginning of the

automorphism tower of G. A classical result of Wielandt [52] says that if G is

finite, then there exists an integer n such that Gn is a complete group. In other

words, the automorphism tower of a finite centreless group G terminates after

finitely many steps. (We shall present a proof of Wielandt’s theorem in Section

2.1.) However, there are natural examples of infinite centreless groups G such that

the automorphism tower of G does not terminate after finitely many steps.

Example 1.1.5. A group D is said to be a dihedral group if D is generated by

two involutions a and b. (An involution is an element of order 2.) A dihedral group

D is determined up to isomorphism by the order of the element c = ab. If c has

finite order n > 1, then D is the dihedral group D2n of order 2n. If c has infinite

order, then D is the infinite dihedral group D∞.

Let D∞ = 〈a, b〉 be the infinite dihedral group. Then D∞ = 〈a〉 ∗ 〈b〉 is the free

product of its cyclic subgroups 〈a〉 and 〈b〉. It follows easily that D∞ is a centreless

group and that D∞ has an outer automorphism π of order 2 which interchanges

the elements a and b. In Section 1.4, we will prove that Aut(D∞) = 〈π, ia〉. Thus
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Aut(D∞) is also an infinite dihedral group and so

Inn(D∞) < Aut(D∞) ' D∞.

It follows that for each n ∈ ω, the nth group in the automorphism tower of D∞ is

isomorphic to D∞; and hence the automorphism tower of D∞ does not terminate

after finitely many steps.

The above example suggests that we should extend the notion of the automor-

phism tower past the finite stages and on into the transfinite.

Definition 1.1.6. Let G be a centreless group. Then the automorphism tower

of G is the ascending chain of groups

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

such that for each ordinal α

(a) Gα+1 = Aut(Gα); and

(b) if α is a limit ordinal, then Gα =
⋃
β<αGβ .

(At each successor step, we identify Gα with InnGα via the natural embedding.)

The automorphism tower of G is said to terminate if there exists an ordinal α

such that Gα = Gα+1. Of course, this occurs iff there exists an ordinal α such that

Gα is a complete group.

Example 1.1.7. Let n be an integer such that n > 3 and n 6= 6. Then

our earlier remarks show that the automorphism tower of Alt(n) terminates after

exactly 1 step.

Example 1.1.8. In Section 1.4, we shall prove that the automorphism tower

of the infinite dihedral group D∞ terminates after exactly ω + 1 steps.

The original version of the automorphism tower problem simply asked whether

the automorphism tower of an arbitrary centreless group G eventually terminates.

This question will be answered positively by the automorphism tower theorem,

which we shall prove in Section 3.1. The proof is extremely simple and uses only

the most basic results on automorphism towers, together with some elementary

properties of the infinite cardinal numbers. To some extent, this is to be expected.
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It is inconceivable that the proof could make use of a detailed understanding of the

structure of the automorphism tower of an arbitrary centreless group, since no such

understanding exists, nor is it ever likely to exist. However, the automorphism

tower theorem is not merely a set-theoretic triviality. To see this, consider the

following superficially similar problem. (I am grateful to Warren Dicks for pointing

this out to me.)

Let R be a ring and let EndZ(R) be the ring of endomorphisms ϕ : R → R

of the additive group of R. Then there is a natural ring homomorphism of R into

EndZ(R), obtained by sending each r ∈ R to the corresponding left multiplication

map λr ∈ EndZ(R), defined by λr(x) = rx for each x ∈ R. Since λr(1) = r,

this homomorphism is an embedding; and so we can identify R with the subring

{λr | r ∈ R} of EndZ(R). Continuing in this fashion, we obtain an ascending chain

of rings

R = R0 6 R1 6 R2 6 · · · 6 Rα 6 Rα+1 6 · · ·

such that for each ordinal α,

(a) Rα+1 = EndZ(Rα); and

(b) if α is a limit ordinal, then Rα =
⋃
β<αRβ .

This chain is called the endomorphism tower of R. The endomorphism tower

problem asks whether the endomorphism tower of an arbitrary ring eventually ter-

minates. The following result shows that most endomorphism rings never terminate.

Theorem 1.1.9. If R is a noncommutative ring, then Rα is a proper subring

of Rα+1 for all ordinals α.

Proof. If R is a noncommutative ring, then Rα is also noncommutative for

each ordinal α. Hence it is enough to prove that if S is a noncommutative ring,

then {λs | s ∈ S} is a proper subring of EndZ(S). To see this, let s ∈ S be a

noncentral element and let ρs ∈ EndZ(S) be the corresponding right multiplication

map, defined by ρs(x) = xs for all x ∈ S. Suppose that there exists t ∈ S such that

ρs = λt. Then s = ρs(1) = λt(1) = t. This means that xs = ρs(x) = λs(x) = sx

for all x ∈ S, which contradicts the assumption that s is a noncentral element. �

So what is the essential algebraic difference between automorphism towers of

centreless groups and endomorphism towers of rings? Recall that Lemma 1.1.2
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says that if G is a centreless group, then CAut(G)(Inn(G)) = 1; i.e. CG1(G0) = 1.

In Section 3.1, we shall see that the automorphism tower theorem is an easy set-

theoretic consequence of the following generalisation of Lemma 1.1.2.

Theorem 1.1.10. Let G be a centreless group, and let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

be the automorphism tower of G. Then CGα(G0) = 1 for all ordinals α.

We shall prove Theorem 1.1.10 in the next section. Notice that, by taking

α = 2, it follows that ifG is a centreless group, then each element π ∈ G2 = Aut(G1)

is uniquely determined by its restriction π � G. The analogous statement is false

for every noncommutative ring.

Proposition 1.1.11. If R is a noncommutative ring, then there exist elements

ϕ 6= ψ in R2 = EndZ(R1) such that ϕ � R = ψ � R.

Proof. Once again, if S is a ring and s ∈ S, then λs, ρs ∈ EndZ(S) will

denote the corresponding left multiplication and right multiplication maps. Let R

be a noncommutative ring and let r ∈ R be a noncentral element. Consider the

endomorphisms ϕ = λρr and ψ = ρρr of R1 = EndZ(R). Since ρr is a noncentral

element of R1, it follows that ϕ 6= ψ. On the other hand, in passing from R to R1,

each element s ∈ R becomes identified with the endomorphism λs; and so

ϕ(s) = λρr (λs) = ρr ◦ λs = λs ◦ ρr = ρρr (λs) = ψ(s).

Consequently ϕ � R = ψ � R. �

1.2. Some fundamental results

In this section, we shall prove a number of fundamental group-theoretic results,

which will be used repeatedly throughout this book. In particular, we shall prove

Theorem 1.1.10, which forms the algebraic heart of the proof of the automorphism

tower theorem.

During the proof of Theorem 1.1.10, we shall make use of some basic properties

of commutators and commutator subgroups.

Definition 1.2.1. Let G be a group.
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(a) If a, b ∈ G, then the commutator of a and b is defined to be

[a, b] = a−1b−1ab.

(b) If A, B are nonempty subsets of G, then the commutator subgroup of A

and B is defined to be

[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉.

Lemma 1.2.2. If G is a group and a, b, c ∈ G, then

(a) [a, b]−1 = [b, a],

(b) [ab, c] = [a, c]b[b, c],

(c) [c, ab] = [c, b][c, a]b.

Proof. Each of these identities is easily checked using the definition of the

commutator. For example,

[ab, c] = (ab)−1c−1abc

= b−1a−1c−1abc

= b−1(a−1c−1ac)b(b−1c−1bc)

= b−1[a, c]b[b, c]

= [a, c]b[b, c].

�

Lemma 1.2.3. Let A and B be subgroups of the group G.

(a) [A,B] = [B,A].

(b) [A,B] 6 A iff B 6 NG(A).

Proof. Clearly (a) is an immediate consequence of Lemma 1.2.2(a). Thus it

is enough to prove (b). First suppose that [A,B] 6 A. Then for any a ∈ A and

b ∈ B, we have that a−1b−1ab = [a, b] ∈ A and so b−1ab ∈ A. It follows that

b−1Ab = A for all b ∈ B and so B 6 NG(A). Conversely, suppose that B 6 NG(A).

Then for each a ∈ A and b ∈ B, [a, b] = a−1(b−1ab) ∈ A and so [A,B] 6 A. �
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Suppose that G is a centreless group and that

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

is the automorphism tower of G. Then for each ordinal α,

CGα+1
(Gα) = CAut(Gα)(Inn(Gα)) = 1.

Thus Theorem 1.1.10 is an immediate consequence of the following slightly more

general result.

Lemma 1.2.4. Let G be a centreless group and let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

be an ascending chain of groups such that

(a) CGα+1(Gα) = 1 for all α; and

(b) if α is a limit ordinal, then Gα =
⋃
β<αGβ.

Then CGα(G0) = 1 for all ordinals α.

Proof. Suppose that the result fails and let α be the least ordinal such that

C = CGα(G0) 6= 1. Since G is centreless, it follows that α > 0. Also it is clear that

α is not a limit ordinal. Hence there exists an ordinal β such that α = β + 1.

Claim 1.2.5. [Gγ , C] = 1 for all γ ≤ β.

Proof of Claim 1.2.5. Once again, suppose that the result fails and let γ

be the least ordinal such that [Gγ , C] 6= 1. Since [G0, CGα(G0)] = 1, it follows that

γ > 0; and it is clear that γ is not a limit ordinal. Hence there exists an ordinal δ

such that γ = δ + 1. By the minimality of γ, we have that [Gδ, C] = 1 and so

CGα(G0) = C 6 CGα(Gδ).

Since G0 6 Gδ, we also have that

CGα(Gδ) 6 CGα(G0) = C.

Hence C = CGα(Gδ).

Next we shall show that Gγ normalises C = CGα(Gδ). Suppose that g ∈ Gγ .

Since Gδ E Gδ+1 = Gγ , it follows that gGδg
−1 = Gδ. Because γ < α, we have
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that g ∈ Gα and so gGαg
−1 = Gα. Consequently, gCGα(Gδ)g

−1 = CGα(Gδ), as

required.

Since Gγ normalises C, Lemma 1.2.3 yields that [Gγ , C] = [C,Gγ ] 6 C. Now

notice that Gγ 6 Gβ and that C = CGα(Gδ) 6 Gα = Gβ+1. Since Gβ+1 normalises

Gβ , it follows that [Gγ , C] 6 [Gβ , Gβ+1] 6 Gβ . Thus we have established that

[Gγ , C] 6 C ∩Gβ = CGα(G0) ∩Gβ = CGβ (G0).

By the minimality of α, we have that CGβ (G0) = 1 and so [Gγ , C] = 1, which is a

contradiction. �

By Claim 1.2.5, C 6 CGα(Gβ) = CGβ+1
(Gβ) = 1, which is the final contradic-

tion. This completes the proof of Lemma 1.2.4. �

In the next two sections, we shall compute the automorphism towers of some

well-known groups. The following result provides a useful criterion for recognising

when an automorphism tower has reached a complete group.

Definition 1.2.6. Let H be a subgroup of the group G. Then H is said

to be a characteristic subgroup of G, written H char G, if π [H] = H for every

automorphism π ∈ Aut(G).

If H is a characteristic subgroup of the group G, then gHg−1 = ig[H] = H for

every g ∈ G and so H is a normal subgroup of G. However, the converse need not

be true. For example, let G = 〈u〉 × 〈v〉 be an elementary abelian p-group of order

p2. Then H = 〈u〉 is a normal subgroup which is not characteristic in G. Of course,

if G is a complete group and H 6 G, then H E G iff H char G.

Theorem 1.2.7 (Burnside). If G is a centreless group, then the following state-

ments are equivalent.

(a) Aut(G) is a complete group.

(b) Inn(G) is a characteristic subgroup of Aut(G).

Proof. If Aut(G) is a complete group, then the normal subgroup Inn(G) is

clearly a characteristic subgroup of Aut(G). Conversely, suppose that Inn(G) is a

characteristic subgroup of Aut(G). Let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·
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be the automorphism tower of G. Notice that Aut(G) is a complete group iff

G1 = G2. Let g ∈ G2. Then g induces an automorphism of G1 via conjugation;

and since G0 char G1, it follows that gG0g
−1 = G0. Hence there exists an element

h ∈ G1 = Aut(G0) such that hxh−1 = gxg−1 for all x ∈ G0. This implies that

g−1h ∈ CG2(G0) = 1 and so g = h ∈ G1. Hence G1 = G2. �

Using Theorem 1.2.7, we can now easily prove that the automorphism tower of

any simple nonabelian group terminates after at most 1 step.

Theorem 1.2.8 (Burnside). Let S be a simple nonabelian group, and let G be

a group such that Inn(S) 6 G 6 Aut(S).

(a) Inn(S) is the unique minimal nontrivial normal subgroup of G.

(b) Aut(S) is a complete group.

Proof. (a) It is clear that Inn(S) is a minimal nontrivial normal subgroup

of G. Suppose that there exists a second minimal nontrivial normal subgroup

N . Applying Lemma 1.2.3, we find that [Inn(S), N ] 6 Inn(S) ∩ N . As Inn(S)

and N are distinct minimal nontrivial normal subgroups, Inn(S) ∩ N = 1 and so

N 6 CAut(S)(Inn(S)) = 1, which is a contradiction.

(b) Since Inn(S) is the unique minimal nontrivial normal subgroup of Aut(S),

it follows that Inn(S) is a characteristic subgroup of Aut(S). By Theorem 1.2.7,

Aut(S) is a complete group. �

1.3. Some examples of automorphism towers

In this section, we shall present some examples of automorphism towers. First

we shall show that for each integer n ∈ ω, there exists a finite centreless group F

such that the automorphism tower of F terminates after exactly n steps. Then we

shall compute the automorphism towers of some well-known infinite permutation

groups: the alternating group Alt(κ) for κ ≥ ω and the automorphism group

Aut(Q) of the linearly ordered set Q of rational numbers. We shall also introduce

some important notions and notation from the theory of permutation groups.

Example 1.3.1. For each n ∈ ω, we shall construct an example of a finite

centreless group F (n) such that the automorphism tower of F (n) terminates after
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exactly n steps. First we define an auxiliary sequence of groups Tn inductively as

follows.

(a) T0 = Sym(5).

(b) Tn+1 = [Tn × Tn] o 〈σn〉, where σn is an involution which interchanges

the factors Tn × 1 and 1× Tn of the direct product Tn × Tn; i.e.

σn(t, 1)σ−1
n = (1, t)

for all t ∈ Tn.

We shall show that F (n) = T0 ×
∏
`<n T` satisfies our requirements.

Before becoming involved in the details of the proof, we shall explain the idea

behind this construction. Consider F (3) = T0 × T0 × T1 × T2. Then F (3) has an

obvious outer automorphism σ of order 2, which interchanges the first two factors

of the product T0×T0×T1×T2. We shall see that Aut(F (3)) = 〈Inn(F (3)), σ〉, so

that F (3)1 = Aut(F (3)) ' T1×T1×T2. Similarly we shall find that F (3)2 ' T2×T2

and that the automorphism tower of F (3) terminates with the group F (3)3 ' T3.

Our argument is based upon the uniqueness of the Remak decomposition of

F (n), together with a result of Peter Neumann on the structure of wreath products

of groups. First we shall recall some of the basic theory of Remak decompositions

of finite groups.

Definition 1.3.2. A nontrivial group G is said to be decomposable if there

exist nontrivial normal subgroups H1, H2 of G such that G = H1×H2. Otherwise,

G is said to be indecomposable.

Clearly if G is a nontrivial finite group, then G can be expressed as the direct

product of finitely many indecomposable subgroups. Such a direct product decom-

position, G = H1×· · ·×Hr, is called a Remak decomposition of G. The set of factors

{H1, . . . ,Hr} is generally not uniquely determined. For example, if G = 〈u, v〉 is

an elementary abelian p-group of order p2, then 〈u〉×〈v〉 and 〈u〉×〈uv〉 are Remak

decompositions of G with distinct sets of factors. However, if G is a nontrivial finite

centreless group, then there is essentially a unique Remak decomposition of G.

Theorem 1.3.3. Suppose that G is a nontrivial finite centreless group. If

G = H1 × · · · ×Hr = K1 × · · · ×Ks
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are Remak decompositions of G, then r = s and there exists a permutation π of

{1, . . . , r} such that Hi = Kπ(i) for all 1 ≤ i ≤ r.

Proof. See Suzuki [48, Section 2.4]. �

Next we shall introduce the notion of the (standard) wreath product A Wr G

of the groups A and G. First we define the base group B to be the group of all

functions b : G → A. If b1, b2 ∈ B, then their product b1b2 ∈ B is the function

such that b1b2(x) = b1(x)b2(x) for all x ∈ G. Thus B =
∏
x∈GAx, where each

Ax = {b ∈ B | b(y) = 1 for all y 6= x} ' A. The wreath product A Wr G is defined

to be the semidirect product B o G, where (gbg−1)(x) = b(g−1x) for each b ∈ B

and g, x ∈ G. Thus gAxg
−1 = Agx for each g, x ∈ G.

Notice that T0 = Sym(5) is a complete indecomposable group and that Tn+1

is isomorphic to Tn Wr C2. Hence the following result of Peter Neumann implies

that Tn is a complete group for each n ∈ ω.

Lemma 1.3.4. Let A be a complete indecomposable group such that A 6= D6,

the dihedral group of order 6. Then A Wr C2 is also a complete indecomposable

group.

Proof. See the end of Section 10 of Neumann [34]. (Neumann does not men-

tion explicitly that A Wr C2 is indecomposable. However, this is an immediate

consequence of Theorem 6.1 [34], which says that if a wreath product A Wr G

decomposes nontrivially into a direct product P ×Q, then one of the factors P , Q

must be central in A Wr G.) �

It is now easy to prove the following result.

Theorem 1.3.5. For each 0 ≤ m ≤ n, the mth group in the automorphism

tower of F (n) is given by

F (n)m = Tm ×
∏

m≤`<n

T`.

Hence the automorphism tower of F (n) terminates after exactly n steps.



1.3. SOME EXAMPLES OF AUTOMORPHISM TOWERS 13

Proof. Fix some integer n. We shall argue by induction on m ≤ n. Suppose

that m < n and that

F (n)m = Tm ×
∏

m≤`<n

T` = Tm × Tm ×
∏

m+1≤`<n

T`.

By Lemma 1.3.4, each of the groups T` is indecomposable. Thus we have just dis-

played a Remak decomposition of F (n)m. Furthermore, since F (n)m is centreless,

this is the unique Remak decomposition of F (n)m, up to the order of the factors.

Let σ ∈ Aut(F (n)m) be the obvious outer automorphism of order 2 such that

(a) σ interchanges the first two factors of the above Remak decomposition,

and

(b) σ acts as the identity automorphism on the remaining factors.

Then

〈Inn(F (n)m), σ〉 ' Tm+1 ×
∏

m+1≤`<n

T`

and so we must show that Aut(F (n)m) = 〈InnF (n)m, σ〉. Let ϕ ∈ Aut(F (n)m)

be an arbitrary automorphism. Then ϕ must permute the factors of the Remak

decomposition of F (n)m. After replacing ϕ by σϕ if necessary, we can suppose

that ϕ[T ] = T for each factor T . Since each factor T is a complete group, there

exist elements gT ∈ T such that ϕ � T = igT � T . Let g =
∏
T gT ∈ F (n)m. Then

ϕ = ig ∈ InnF (n)m.

Finally note that F (n)n = Tn is a complete group. Thus the automorphism

tower of F (n) terminates after exactly n steps. �

Next we need to introduce some notions and notation from the theory of per-

mutation groups. Let Ω be a nonempty set. Then Sym(Ω) denotes the group of

all permutations of Ω. A group G is said to be a permutation group on Ω if G

is a subgroup of Sym(Ω). Suppose that G is a permutation group on Ω and that

∆ ⊆ Ω. Then

G{∆} = {g ∈ G | g[∆] = ∆}

and

G(∆) = {g ∈ G | g(x) = x for all x ∈ ∆}
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are the setwise and pointwise stabilisers of ∆ in G. When ∆ = {x} is a singleton,

then we usually write Gx for the stabiliser of ∆ in G. If x ∈ Ω, then

OrbG(x) = {g(x) | g ∈ G}

is the G-orbit containing x. In this book, we shall make repeated use of the fact

that

[G : Gx] = |OrbG(x)|

for all x ∈ Ω. (For example, see Suzuki [48, Section 1.7].)

Example 1.3.6. Let κ be an infinite cardinal. Remember that κ is the set

of ordinals α such that α < κ and so κ is itself a canonical example of a set of

cardinality κ. If ϕ ∈ Sym(κ), then the fixed point set of ϕ is

fix(ϕ) = {α ∈ κ | ϕ(α) = α}

and the support of ϕ is

supp(ϕ) = {α ∈ κ | ϕ(α) 6= α}.

If λ is an infinite cardinal such that λ ≤ κ, then we define

Symλ(κ) = {π ∈ Sym(κ) | | supp(π)| < λ}.

Clearly Symλ(κ) is a normal subgroup of Sym(κ). If λ = ω, then we also write

Fin(κ) for the group Symω(κ) of finite permutations of κ. The alternating group

Alt(κ) on κ is the subgroup of finite even permutations of κ.

We shall compute the automorphism tower of A = Alt(κ). Since A is a simple

group, Theorem 1.2.8 says that Aut(A) is a complete group and so we need only

determine Aut(A). Since Alt(κ) C Sym(κ), each ϕ ∈ Sym(κ) yields a corresponding

automorphism cϕ of Alt(κ), defined by cϕ(x) = ϕxϕ−1 for each x ∈ Alt(κ). We

shall eventually show that every automorphism of Alt(κ) arises in this manner.

Thus Aut(A) = Sym(κ).

To begin our analysis, we shall define a natural action of Aut(A) on an associ-

ated graph Γ = 〈Ω, E〉. Let

Ω = {〈σ〉 | σ ∈ Alt(κ) is a 3-cycle }.

Notice that the elements of Ω are exactly those subgroups T of Alt(κ) such that
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(a) T ' C3, the cyclic group of order 3, and

(b) CAlt(κ)(T ) ' C3 ×Alt(κ).

Hence if ϕ ∈ Aut(A), then ϕ induces a permutation ϕ of Ω, defined by ϕ(T ) = ϕ[T ].

For each T = 〈σ〉 ∈ Ω, let ∆T = supp(σ). Note that if T1, T2 are distinct elements

of Ω, then the subgroup 〈T1, T2〉 is isomorphic to

(i) Alt(4), if |∆T1 ∩∆T2 | = 2;

(ii) Alt(5), if |∆T1
∩∆T2

| = 1;

(iii) C3 × C3, if |∆T1
∩∆T2

| = 0.

We define a graph structure on Ω by specifying that

{T1, T2} ∈ E iff 〈T1, T2〉 ' Alt(4).

Clearly if ϕ ∈ Aut(A), then the corresponding permutation ϕ of Ω is an automor-

phism of Γ = (Ω;E). Let π : Aut(A) → Aut(Γ) be the homomorphism defined by

π(ϕ) = ϕ.

Lemma 1.3.7. π is an embedding.

Proof. Let ψ ∈ Ar1. Let α ∈ supp(ψ) and let σ = (αβ γ ) be a 3-cycle such

that supp(ψ) ∩ supp(σ) = {α}. Then

iψ(σ) = ψσψ−1 = (ψ(α)ψ(β)ψ(γ) ) /∈ 〈σ〉.

Thus iψ(〈σ〉) 6= 〈σ〉 and so iψ /∈ kerπ. Hence kerπ is a normal subgroup of Aut(A)

such that kerπ ∩ Inn(A) = 1. So Lemma 1.3.7 is an immediate consequence of

Lemma 1.3.8. �

Lemma 1.3.8. Let G be a centreless group and let N be a normal subgroup of

Aut(G). If N ∩ Inn(G) = 1, then N = 1.

Proof. By Lemma 1.2.3, we have that [N, Inn(G)] 6 N ∩ Inn(G) = 1 and

hence N 6 CAut(G)(Inn(G)) = 1. �

In order to make the argument as transparent as possible, we will identify Γ

with the isomorphic graph 〈V,∼〉, where

(1) V is the set of 3-subsets of κ; and

(2) ∆1 ∼ ∆2 iff |∆1 ∩∆2| = 2.
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Of course, this corresponds to identifying each subgroup T = 〈σ〉 ∈ Ω with its

support ∆T ∈ V . Notice that if ϕ ∈ Sym(κ) and T = 〈(αβ γ )〉, then

cϕ[T ] = ϕTϕ−1 = 〈(ϕ(α)ϕ(β)ϕ(γ) )〉.

Hence the associated action of Sym(κ) on 〈V,∼〉 is the natural one, defined by

∆
ϕ7→ ϕ[∆]

for each ϕ ∈ Sym(κ) and ∆ ∈ V . We shall show that every automorphism of

Γ = 〈V,∼〉 is induced by an element of Sym(κ) in this manner; and thus complete

the proof that Aut(A) = Sym(κ).

Definition 1.3.9. (a) If α < β < κ, then C{α,β} = {∆ ∈ V | α, β ∈ ∆}.

(b) If α < κ, then D{α} = {∆ ∈ V | α ∈ ∆}.

We shall show that each ψ ∈ Aut(Γ) induces permutations of the collections

C = {C{α,β} | α < β < κ} and D = {D{α} | α < κ}. The next lemma shows that C

is invariant under the action of Aut(Γ).

Lemma 1.3.10. If C is an infinite maximal complete subgraph of Γ, then there

exist α < β < κ such that C = C{α,β}.

Proof. Let C be an infinite maximal complete subgraph of Γ. Fix some

∆0 ∈ C. If ∆ ∈ C r {∆0}, then |∆0 ∩∆| = 2. Hence there is an infinite subset

{∆n | 1 ≤ n < ω} of C and a pair of ordinals α < β < κ such that ∆0∩∆n = {α, β}

for all 1 ≤ n < ω. It is easily checked that if ∆ ∼ ∆n for all n < ω, then {α, β} ⊂ ∆.

Thus C ⊆ C{α,β}. By the maximality of C, we must have that C = C{α,β}. �

Notice that C{α,β} ∩ C{γ,δ} 6= ∅ iff {α, β} ∩ {γ, δ} 6= ∅. Using this observation,

we can easily give an Aut(Γ)-invariant characterisation of the elements of D.

Lemma 1.3.11. Suppose that D is a subgraph of Γ which is maximal subject to

the following conditions.

(a) There exists an infinite subset {Ci | i ∈ I} of C such that D =
⋃
i∈I Ci;

and

(b) if i, j ∈ I, then Ci ∩ Cj 6= ∅.

Then D = D{α} for some α < κ.
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Proof. Suppose that D satisfies the hypotheses of Lemma 1.3.11. For each

i ∈ I, let Ci = C{αi,βi}. Then {{αi, βi} | i ∈ I} is an infinite collection of 2-subsets

of κ, which is maximal subject to the condition that {αi, βi} ∩ {αj , βj} 6= ∅ for all

i, j ∈ I. Arguing as in the proof of Lemma 1.3.10, we see that there exists α < κ

such that {{αi, βi} | i ∈ I} = {{α, β} | α 6= β < κ}. Hence D = D{α}. �

If ∆ = {α, β, γ} ∈ V , then {∆} = D{α} ∩D{β} ∩D{γ}. Thus each ψ ∈ Aut(Γ)

is uniquely determined by its action on D. Moreover, for each ψ ∈ Aut(Γ), there

is a corresponding permutation ϕ ∈ Sym(κ) such that ψ
[
D{α}

]
= D{ϕ(α)} for each

α < κ. But we clearly have that ϕ
[
D{α}

]
= D{ϕ(α)} for each α < κ. Consequently,

ψ = ϕ ∈ Sym(κ). This completes the proof of the following result.

Theorem 1.3.12. If κ ≥ ω, then Aut(A) = Sym(κ).

�

Theorem 1.3.12 is an important and useful result, which we shall make use of

in Section 3.2. In contrast, the final example of this section is neither important

nor useful. But it does present a pleasant application of the strong small index

property.

Example 1.3.13. Let M be a countable structure. Then the automorphism

group G = Aut(M) is said to have the strong small index property if whenever H

is a subgroup of G with [G : H] < 2ω, then there exists a finite subset X ⊂ M

such that G(X) 6 H 6 G{X}. Let Q be the rational numbers regarded as a linearly

ordered set. Then Truss [51] has shown that G = Aut(Q) has the strong small

index property. Of course, since every finite linear ordering is rigid, we have that

G(X) = G{X} for each finite subset X of Q. (Recall that a structure M is said

to be rigid iff the identity map idM is the only automorphism of M.) Thus if

[G : H] < 2ω, then there exists a finite subset X of Q such that H = G(X). In

particular, the maximal proper subgroups H with [G : H] < 2ω are precisely those

of the form H = Gq for some q ∈ Q. We shall use this result to compute the

automorphism tower of G = Aut(Q). (It is an easy exercise to show that G is a

centreless group.)

First we shall compute Aut(G). Let ϕ ∈ Aut(G). Then ϕ must permute the

set of those maximal proper subgroups H of G such that [G : H] < 2ω. Thus there



18 1. THE AUTOMORPHISM TOWER PROBLEM

is an associated permutation ϕ ∈ Sym(Q) such that ϕ [Gq] = Gϕ(q) for each q ∈ Q.

It is easily checked that the mapping π : Aut(G)→ Sym(Q), defined by π(ϕ) = ϕ,

is a homomorphism.

Lemma 1.3.14. (a) π(ig) = g for each g ∈ G.

(b) π is an embedding.

(c) π[Aut(G)] = NSym(Q)(G).

Proof. (a) If g ∈ G and q ∈ Q, then ig [Gq] = gGqg
−1 = Gg(q).

(b) Since kerπ is a normal subgroup of Aut(G) such that kerπ ∩ Inn(G) = 1,

Lemma 1.3.8 yields that kerπ = 1.

(c) Using the facts that Inn(G) E Aut(G) and π[Inn(G)] = G, it follows that

π[Aut(G)] 6 NSym(Q)(G). But clearly every element of NSym(Q)(G) induces an

automorphism of G via conjugation. Hence π[Aut(G)] = NSym(Q)(G). �

We have just seen that Aut(G) can be naturally identified with NSym(Q)(G). To

compute NSym(Q)(G), we shall make use of the following basic result on permutation

groups.

Lemma 1.3.15. Let (H,Ω) be a permutation group. Suppose that N E H and

that ∆ is an orbit of N on Ω. Then h[∆] is also an N -orbit for each h ∈ H.

Proof. By assumption, there exists x ∈ Ω such that

∆ = OrbN (x) = {g(x) | g ∈ N}.

Let h ∈ H and y = h(x). Since N E H, we have that hN = Nh and hence

h[∆] = {hg(x) | g ∈ N} = {g(y) | g ∈ N}

is the N -orbit containing y. �

We shall apply the above lemma to the action of NSym(Q)(G) on Q×Q. Note

that G = Aut(Q) has three orbits on Q×Q; namely,

(a) ∆0 = {(q, r) ∈ Q×Q | q = r},

(b) ∆1 = {(q, r) ∈ Q×Q | q < r},

(c) ∆2 = {(q, r) ∈ Q×Q | q > r}.
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Let g ∈ NSym(Q)(G). Then g must permute the three G-orbits ∆0, ∆1 and ∆2.

Clearly g [∆0] = ∆0. Thus there are only two cases to consider. If g [∆1] = ∆1,

then g is an order-preserving permutation of Q and so g ∈ G = Aut(Q). Otherwise,

g [∆1] = ∆2 and g is an order-reversing permutation of Q. Thus NSym(Q)(G) is the

group B of permutations of Q which either preserve or reverse the order. (B is

the group of those permutations of Q which preserve the ternary “betweenness”

relation R, defined by R(a, b, c) iff either a < b < c or c < b < a.) Notice that the

product of two order-reversing permutations is an order-preserving permutation. It

follows that [B : G] = 2.

Finally we shall prove that B is a complete group. By Theorem 1.2.7, it is

enough to show that G is a characteristic subgroup of B. Let π ∈ Aut(B) be

an arbitrary automorphism. Then [B : π[G]] = 2 and so [G : π[G] ∩ G] ≤ 2. If

[G : π[G]∩G] = 1, then G 6 π[G] and so G = π[G]. Otherwise, [G : π[G]∩G] = 2.

Let H = π[G] ∩ G. Since 1 < [G : H] < 2ω, there exists a finite nonempty subset

X of Q such that H = G(X). But then [G : H] = ω, which is a contradiction. We

have now completed the proof of the following result.

Theorem 1.3.16. The automorphism tower of Aut(Q) terminates after exactly

1 step.

�

1.4. The infinite dihedral group

In this section, we shall show that the automorphism tower of the infinite

dihedral group G = D∞ terminates after exactly ω + 1 steps. Before we can

compute Aut(G), we must first present a more detailed account of the structure

of G. Remember that G = 〈a〉 ∗ 〈b〉 is the free product of the cyclic subgroups

generated by the involutions a and b. Let c = ab. Then c is an element of infinite

order and

aca−1 = aaba = ba = c−1.

Thus C = 〈c〉 is a normal subgroup of G and G is the semidirect product C o 〈a〉.

In fact, C is a characteristic subgroup of G. To see this, note that each element

g ∈ Gr C has the form g = cna for some n ∈ Z and that

(cna)2 = cnacna−1 = cnc−n = 1.
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Thus Gr C is the set of involutions of G.

Lemma 1.4.1. (a) [G,G] = 〈c2〉.

(b) G has two conjugacy classes of involutions; namely, aG = {c2na | n ∈ Z}

and bG = {c2n+1a | n ∈ Z}.

Proof. (a) Note that c2 = abab = [a, b] and so 〈c2〉 6 [G,G]. Since the

quotient group G/〈c2〉 is abelian, it follows that [G,G] = 〈c2〉.

(b) An easy calculation shows that cnac−n = c2na. Since every element of G

has the form cn or cna for some n ∈ Z, it follows that aG = {c2na | n ∈ Z}. Using

the fact that b = ac, we also see that bG = {c2n+1a | n ∈ Z}. �

Let π be the outer automorphism of order 2 which interchanges the elements

a and b of G = 〈a〉 ∗ 〈b〉.

Lemma 1.4.2. Aut(G) = 〈π, ia〉.

Proof. First notice that πiaπ
−1 = ib ∈ 〈π, ia〉 and so InnG 6 〈π, ia〉. Now

let ϕ ∈ Aut(G) be an arbitrary automorphism. Then ϕ must permute the set

∆ = {aG, bG} of conjugacy classes of involutions of G. Replacing ϕ by πϕ if

necessary, we can suppose that ϕ
[
aG
]

= aG. Thus ϕ(a) = c2na for some n ∈ Z.

Let g = c−n and ψ = igϕ. Then ψ(a) = a. Since C is a characteristic subgroup

of G, we must have that ψ [C] = C. Hence either ψ(c) = c or ψ(c) = c−1. In the

former case, ψ = idG; and in the latter case, ψ = ia. Thus ϕ ∈ 〈π, ia〉. �

We have now shown that Aut(G) is also an infinite dihedral group. It follows

that Gn is a proper subgroup of Gn+1 for all n ∈ ω. In order to understand the

group Gω =
⋃
n∈ω Gn, we must first describe the embedding, Inn(G) < Aut(G), in

a little more detail.

Lemma 1.4.3. (a) [Aut(G) : Inn(G)] = 2.

(b) (iaπ)2 = ic.

(c) 〈ic〉 = [Aut(G),Aut(G)].

(d) Any two involutions of Inn(G) are conjugate in Aut(G).

Proof. (a) We have already noted that each automorphism of G permutes

the elements of the set ∆ = {aG, bG}. This yields a surjective homomorphism
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θ : Aut(G)→ Sym(∆). The proof of Lemma 1.4.2 shows that ker θ = InnG. Hence

[Aut(G) : Inn(G)] = |Sym(∆)| = 2.

(b) It is easily checked that

(iaπiaπ)(a) = ababa = (ab)a(ab)−1 = cac−1

and that

(iaπiaπ)(b) = aba = (ab)b(ab)−1 = cbc−1.

Thus (iaπ)2 = ic.

(c) This is an immediate consequence of Lemmas 1.4.1(a), 1.4.2 and 1.4.3(b).

(d) This follows from the fact that πiaπ
−1 = ib. �

Hence for each n ∈ ω, the nth group in the automorphism tower of G is

Gn = Cn o 〈a〉, where

(1) Cn = 〈cn〉 is infinite cyclic;

(2) acna
−1 = c−1

n ; and

(3) c2n+1 = cn.

Thus Gω = Cω o 〈a〉, where

(i) Cω =
⋃
n∈ω Cn is isomorphic to the additive group of dyadic rationals

Z [1/2] = {m/2n | m ∈ Z, n ∈ N}; and

(ii) the automorphism induced by a on Cω corresponds to the automorphism

σ ∈ Aut(Z [1/2]) such that σ(x) = −x for all x ∈ Z [1/2].

In order to simplify notation, we will identify Gω = Cω o 〈a〉 with Z [1/2]o 〈σ〉.

Lemma 1.4.4. (a) Gω has a single conjugacy class of involutions.

(b) [Gω, Gω] = Z [1/2].

Proof. (a) By Lemma 1.4.3(d), any two involutions of Gn are conjugate in

Gn+1. Thus Gω has a single conjugacy class of involutions.

(b) By Lemma 1.4.3(c), [Gn+1, Gn+1] = Cn. Hence [Gω, Gω] = Cω = Z [1/2].

�

Since Z [1/2] = [Gω, Gω] is a characteristic subgroup of Gω, each ϕ ∈ Aut(Gω)

induces an automorphism of Z [1/2]. Now it is easy to see that any automorphism

of Z [1/2] is just multiplication by some element u ∈ U = {±2n | n ∈ Z}, the

group of multiplicative units of the ring of dyadic rationals. Let HolZ [1/2] be
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the holomorph of Z [1/2]; i.e. the semidirect product Z [1/2]o Aut(Z [1/2]), where

θxθ−1 = θ(x) for all θ ∈ Aut(Z [1/2]) and x ∈ Z [1/2]. Since Aut(Z [1/2]) ' U is

abelian, it follows that

Gω = Z [1/2]o 〈σ〉 E HolZ [1/2]

and so each element of HolZ [1/2] induces an automorphism of Gω via conjugation.

We claim that every automorphism of Gω arises in this fashion, so that Gω+1 =

HolZ [1/2]. To see this, let ϕ ∈ Aut(Gω) be an arbitrary automorphism. By Lemma

1.4.4(a), the involutions σ and ϕ(σ) are conjugate in Gω. Thus after replacing

ϕ by igϕ for a suitably chosen g ∈ Gω, we can suppose that ϕ(σ) = σ. Let

θ = ϕ � Z [1/2] ∈ Aut(Z [1/2]). Then θxθ−1 = θ(x) = ϕ(x) for all x ∈ Z [1/2] and

θσθ−1 = σ = ϕ(σ). Thus θyθ−1 = ϕ(y) for all y ∈ Gω. This completes the proof

that Gω+1 = HolZ [1/2].

Finally we shall prove that Gω+1 is a complete group.

Lemma 1.4.5. (a) [Gω+1, Gω+1] = Z [1/2].

(b) Gω is a characteristic subgroup of Gω+1.

Proof. (a) Lemma 1.4.4(b) implies that Z [1/2] 6 [Gω+1, Gω+1]. Since the

quotient Gω+1/Z [1/2] is abelian, it follows that [Gω+1, Gω+1] = Z [1/2].

(b) We have just seen that Z [1/2] is a characteristic subgroup of Gω+1. Let

ψ ∈ Aut(Z [1/2]) be the automorphism such that ψ(x) = 2x for all x ∈ Z [1/2].

Then

Gω+1/Z [1/2] ' Aut(Z [1/2]) = 〈σ〉 ⊕ 〈ψ〉

is the direct sum of the cyclic group 〈σ〉 of order 2 and the infinite cyclic group

〈ψ〉. Clearly 〈σ〉 is a characteristic subgroup of 〈σ〉 ⊕ 〈ψ〉. It follows that Gω =

Z [1/2]o 〈σ〉 is a characteristic subgroup of Gω+1. �

Since Gω is a characteristic subgroup of Gω+1, Theorem 1.2.7 yields that Gω+1

is a complete group. Summing up, we have now proved the following result.

Theorem 1.4.6 (Hulse [17]). The automorphism tower of the infinite dihedral

group D∞ terminates after exactly ω + 1 steps.

�
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1.5. Notes

The notion of the automorphism tower of a centreless group dates back to at

least 1937, when Zassenhaus [53] asked whether the automorphism tower of every

finite centreless group terminates after finitely many steps. In his classical paper

[52], Wielandt proved that this is indeed the case. One of the key ingredients of

Wielandt’s proof was his result that if

G = G0 E G1 E · · · E Gn E · · · E Gα E · · ·

is the automorphism tower of the centreless group G, then CGn(G0) = 1 for all

integers n ≥ 0. This was later generalised by Hulse [17] to the statement that

CGα(G0) = 1 for all ordinals α ≥ 0. The analysis of the automorphism tower of

the infinite dihedral group D∞ in Section 1.4 is also due to Hulse [17].

Plotkin [36] contains an interesting account of the automorphism tower prob-

lem, including the results of Section 1.2 and a proof of Wielandt’s Theorem.





CHAPTER 2

Wielandt’s Theorem

In this chapter, we shall present a proof of Wielandt’s theorem that the auto-

morphism tower of a finite centreless group terminates after finitely many steps.

Wielandt’s theorem is by far the deepest result in this book. Its proof involves an

intricate analysis of the subnormal subgroups of a finite centreless group, together

with some very ingenious commutator calculations. Section 2.1 contains an outline

of the proof, modulo two technical results which are proved in Sections 2.2 and

2.3. The reader should not feel too discouraged if he finds some of the material

in this chapter rather difficult, especially that in Section 2.3. Nothing from this

chapter will be used in the later chapters, and so the reader will not experience any

disadvantage in understanding the rest of the book if he simply skips the difficult

parts of the proof. I have included a complete proof of Wielandt’s theorem for two

reasons. Firstly, it provides a striking contrast to the extremely simple proof of

the automorphism theorem for infinite groups, which will be proved in Chapter 3.

But more importantly, sixty years after its original publication, Wielandt’s theorem

remains the high point in the study of automorphism towers.

2.1. Automorphism towers of finite groups

In this section, we shall present an outline of the proof of Wielandt’s theorem

on the automorphism towers of finite centreless groups.

Theorem 2.1.1 (Wielandt [52]). If G is a finite centreless group, then the

automorphism tower of G terminates after finitely many steps.

Theorem 2.1.1 is an easy consequence of the following important theorem on

finite subnormal subgroups.

Definition 2.1.2. Let H be a subgroup of the group G. Then H is said to

be a subnormal subgroup of G, written H sn G, if there exists a finite series of

25
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subgroups H0, H1, . . . ,Hn such that

H = H0 E H1 E · · · E Hn = G.

The defect s(G : H) of the subnormal subgroup H is the least integer n ≥ 0 for

which such a series exists.

In particular, s(G : H) = 0 iff H = G, and s(G : H) = 1 iff H is a proper

normal subgroup of G.

Theorem 2.1.3 (Wielandt [52]). There exists a function f : ω → ω such that

whenever H is a finite subnormal subgroup of a group G with CG(H) = 1, then

|G| ≤ f(|H|).

Most of this chapter will be devoted to the proof of Theorem 2.1.3. But first

we shall show how to complete the proof of Theorem 2.1.1. So let G be a finite

centreless group and let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

be the automorphism tower of G. Notice that for each n < ω, G is a subnormal

subgroup of Gn such that CGn(G) = 1. So Theorem 2.1.3 says that there is an

integer ` = f(|G|) such that |Gn| ≤ ` for all n < ω. Consequently there is an

integer n such that Gn = Gn+1. This completes the proof of Theorem 2.1.1.

Of course, this argument does nothing to clear up the mystery of why Theorem

2.1.1 is true. So in the rest of this section, we shall present the main points of

the proof of Theorem 2.1.3. (Towards the end of the proof, we shall appeal to two

technical results on finite subnormal subgroups. These will be proved in Sections 2.2

and 2.3.) In order to understand the main difficulty, let us reconsider the statement

of Theorem 2.1.1. Suppose that H is a finite subnormal subgroup of the group G

and that CG(H) = 1. Let

H = H0 E H1 E · · · E Hn = G

be a finite series from H to G. For each 0 ≤ ` < n− 1, we can define a homomor-

phism ϕ` : H`+1 → Aut(H`) by ϕ`(g) = ig � H`. Since CH`+1
(H`) 6 CG(H) = 1, it

follows that each ϕ` is an embedding and so |H`+1| ≤ |H`|!. Thus it is obvious that
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G is a finite group and that |G| can be bounded in terms of |H| and n. However,

it is far from obvious that n can be bounded in terms of |H|.

Our strategy in the proof of Theorem 2.1.3 will be to first construct a strictly

increasing series of characteristic subgroups in H

1 = S0 < S1 < · · · < St = H

and then construct a corresponding series of characteristic subgroups in G

1 = R0 6 R1 6 · · · 6 Rt 6 G

such that Si 6 Ri for each 0 ≤ i ≤ t. In particular, H = St 6 Rt.

Claim 2.1.4. It is enough to bound |Rt| in terms of |H|.

Proof. Since Rt is a characteristic subgroup of G, we can define a homomor-

phism ϕ : G → Aut(Rt) by ϕ(g) = ig � Rt. Furthermore, since H 6 Rt, it follows

that CG(Rt) 6 CG(H) = 1 and so ϕ is an embedding. Hence

|G| ≤ |Aut(Rt)| ≤ |Rt|!.

�

Also notice that t ≤ |H|. Hence it is enough to bound |Ri+1| inductively in

terms of |Ri| and |H|.

Before we can define the series 〈Si | 0 ≤ i ≤ t〉, we need to introduce some

important characteristic subgroups. Let G be any group and let p be a prime.

Suppose that H and K are normal p-subgroups of G. Then HK/K ' H/H ∩K is

a p-group and hence HK is also a normal p-subgroup of G. It follows that G has

a unique maximal normal p-subgroup, namely the subgroup generated by all the

normal p-subgroups of G.

Definition 2.1.5. If G is a group and p is a prime, then Op(G) is the unique

maximal normal p-subgroup of G.

Clearly Op(G) is a characteristic subgroup of G. If G is a finite group, then

Theorem 2.1.7 gives a useful criterion for the existence of a prime p such that

Op(G) 6= 1.
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Lemma 2.1.6. Let G be a group and let p be a prime. If P is a subnormal

p-subgroup of G, then P 6 Op(G).

Proof. We shall prove the result by induction on the defect s = s(G : P ) of

P . If s ≤ 1, then P E G and so P 6 Op(G). Suppose that s > 1 and let

P = H0 E · · · E Hs−1 E Hs = G

be a series of finite length from P to G. Then s(Hs−1 : P ) = s−1 and by induction

hypothesis, we have that P 6 Op(Hs−1). But Op(Hs−1) is a characteristic subgroup

of Hs−1 and hence Op(Hs−1) is a normal subgroup of Hs = G. This means that

Op(Hs−1) 6 Op(G) and so P 6 Op(G). �

Theorem 2.1.7. If G is a finite group, then the following statements are equiv-

alent.

(a) G has a nontrivial normal abelian subgroup.

(b) G has a nontrivial subnormal abelian subgroup.

(c) There exists a prime p such that Op(G) 6= 1.

Proof. (a) ⇒ (b). This is clear.

(b) ⇒ (c). Suppose that A is a nontrivial subnormal abelian subgroup of G. Let p

be any prime divisor of |A|. Then A contains a cyclic subgroup P of order p. Since

P is a subnormal subgroup of G, Lemma 2.1.6 implies that Op(G) 6= 1.

(c) ⇒ (a). Suppose that there exists a prime p such that P = Op(G) 6= 1. As P

is a nontrivial finite p-group, Z(P ) 6= 1. Since Z(P ) is a characteristic subgroup

of P = Op(G), it follows that Z(P ) is a normal subgroup of G. Thus Z(P ) is a

nontrivial normal abelian subgroup of G. �

Definition 2.1.8. A finite group G is said to be semisimple if G has no non-

trivial normal abelian subgroups.

Thus if G is a finite semisimple group, then every minimal nontrivial subnormal

subgroup of G is simple nonabelian.

Definition 2.1.9. If G is a group, then σ(G) is the subgroup generated by

the simple nonabelian subnormal subgroups of G. If G has no simple nonabelian

subnormal subgroups, then we set σ(G) = 1.



2.1. AUTOMORPHISM TOWERS OF FINITE GROUPS 29

Clearly σ(G) is a characteristic subgroup of G.

Theorem 2.1.10. If G is any group, then σ(G) is the internal direct sum of

the simple nonabelian subnormal subgroups of G.

Theorem 2.1.10 is a straightforward consequence of the following theorem,

which we shall prove in Section 2.2.

Theorem 2.1.11. If H is a simple nonabelian subnormal subgroup of the group

G, then H normalises every subnormal subgroup of G.

Proof of Theorem 2.1.10. Let {Si | i ∈ I} be the set of simple nonabelian

subnormal subgroups of G. Let i, j be distinct elements of I. By Theorem 2.1.11,

Si and Sj normalise each other. Hence Si ∩ Sj is a normal subgroup of Si and so

Si ∩ Sj = 1. Applying Lemma 1.2.3(b), we obtain that

[Si, Sj ] 6 Si ∩ Sj = 1.

It follows that 〈Sj | j ∈ I r {i}〉 centralises Si and hence

Si ∩ 〈Sj | j ∈ I r {i}〉 = 1

for all i ∈ I. Thus σ(G) = 〈Si | i ∈ I〉 is the internal direct sum of the subgroups

{Si | i ∈ I}. �

Now we are ready to begin the proof of Theorem 2.1.3. Suppose that H is a

finite subnormal subgroup of the group G such that CG(H) = 1. Then G is also a

finite group and we shall find a bound for |G| which depends only on the integer

|H|.

First we construct a strictly increasing series of characteristic subgroups in H

1 = S0 < S1 < · · · < St = H

as follows. Suppose inductively that Si has been constructed. If H/Si is semisimple,

then Si+1/Si = σ(H/Si) is the product of all the simple nonabelian subnormal

subgroups of H/Si. If H/Si is not semisimple, then there exists a prime pi such

that Opi (H/Si) 6= 1 and we define Si+1/Si = Opi (H/Si).

Next we construct a corresponding series of characteristic subgroups in G

1 = R0 6 R1 6 · · · 6 Rt 6 G
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as follows. If H/Si is semisimple, then Ri+1/Ri = σ(G/Ri) is the product of

all the simple nonabelian subnormal subgroups of G/Ri. Otherwise, Ri+1/Ri =

Opi (G/Ri), where pi is the prime such that Si+1/Si = Opi (H/Si).

Lemma 2.1.12. Si 6 Ri for each 0 ≤ i ≤ t.

Proof. We argue by induction on i ≥ 0. The result is clearly true when i = 0.

Suppose that i < t and that Si 6 Ri. If Si+1Ri/Ri = 1, then Si+1 6 Ri 6 Ri+1.

So we can assume that Si+1Ri/Ri 6= 1. First notice that

Si+1Ri/Ri ' Si+1/Si+1 ∩Ri

and so Si+1Ri/Ri is a homomorphic image of Si+1/Si. Thus Si+1Ri/Ri is either

a product of simple nonabelian groups or else a pi-group, depending on whether

H/Si is semisimple or not. Next note that

Si+1Ri/Ri E · · · E StRi/Ri = HRi/Ri;

and that HRi/Ri sn G/Ri, because H sn G. Hence Si+1Ri/Ri is a subnormal

subgroup of G/Ri.

Thus if H/Si is semisimple, then Si+1Ri/Ri is a product of simple nonabelian

subnormal subgroups of G/Ri and so Si+1Ri/Ri 6 Ri+1/Ri = σ(G/Ri). And if

Si+1/Si = Opi (H/Si), then Si+1Ri/Ri is a subnormal pi-subgroup of G/Ri; and

so by Lemma 2.1.6,

Si+1Ri/Ri 6 Opi (G/Ri) = Ri+1/Ri.

In both cases, we have obtained that Si+1 6 Ri+1. �

As we explained earlier in Claim 2.1.4, in order to bound |G| in terms of |H|,

it is enough to bound |Rt| in terms of |H|. And since t ≤ |H|, we need only bound

|Ri+1| inductively in terms of |Ri| and |H|. The following two results will enable

us to accomplish this.

Lemma 2.1.13. Suppose that H is a subnormal subgroup of the finite group G

and that CG(H) = 1. If N E G and R/N = σ(G/N), then |R| ≤ |HN |!.

Proof. We can suppose that σ(G/N) 6= 1. So R/N is the product of all

the simple nonabelian subnormal subgroups of G/N . By Theorem 2.1.11, each
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simple nonabelian subnormal subgroup of G/N normalises the subnormal subgroup

HN/N . Hence R/N normalises HN/N and this implies that R normalises HN .

Let ϕ : R → Aut(HN) be the homomorphism defined by ϕ(g) = ig � HN . Since

CR(HN) 6 CG(H) = 1, it follows that ϕ is an embedding. Thus

|R| ≤ |Aut(HN)| ≤ |HN |!.

�

The next result will be proved in Section 2.3.

Lemma 2.1.14. Let p be a prime. Suppose that H is a subnormal subgroup of

the finite group G and that CG(H) = 1. If N E G and R/N = Op(G/N), then

|R| ≤ |N |.|HN |!.

Let mi = |Ri| for each 0 ≤ i ≤ t. Then m0 = 1, and we can bound mi+1 in

terms of mi and h = |H| as follows. If H/Si is semisimple, then Ri+1/Ri = σ(G/Ri)

and so, applying Lemma 2.1.13, we obtain that

mi+1 = |Ri+1| ≤ (hmi)!.

If H/Si is not semisimple, then Ri+1/Ri = Opi(G/Ri) and Lemma 2.1.14 yields

that

mi+1 = |Ri+1| ≤ mi(hmi)!.

In both cases, mi+1 ≤ mi(hmi)!. This completes the proof of Theorem 2.1.3.

2.2. Subnormal subgroups

In this section, we shall prove Theorem 2.1.11. But first we need to develop

some of the basic theory of subnormal subgroups.

Definition 2.2.1. If X is a nonempty subset of the group G, then the normal

closure of X in G is the subgroup

XG = 〈gXg−1 | g ∈ G〉.

Thus XG is the smallest normal subgroup of G which contains X. Notice that

if H is a subgroup of G, then H is a normal subgroup iff HG = H. The following

lemma characterises subnormal subgroups in terms of iterated normal closures.
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Definition 2.2.2. If X is a nonempty subset of the group G, then the ith

normal closure of X in G is the subgroup XG,i defined inductively by

(a) XG,0 = G.

(b) XG,i+1 = XXG,i .

An easy induction shows that X ⊆ XG,i for all i ≥ 0 and hence XG,i+1 E XG,i.

Lemma 2.2.3. Let H sn G and suppose that

H = Hn E Hn−1 E · · · E H0 = G

is a series of finite length from H to G. Then HG,i 6 Hi for all 0 ≤ i ≤ n and so

H = HG,n.

Proof. We shall prove that HG,i 6 Hi by induction on i ≤ n. Clearly the

result is true for i = 0. Suppose that i < n and that HG,i 6 Hi. Since Hi+1 E Hi,

we have that HHi
i+1 = Hi+1. Thus

HG,i+1 = HHG,i 6 HHi
i+1 = Hi+1.

�

Hence if H is a subnormal subgroup of G, then s(G : H) is the least integer n

such that HG,n = H; and

H = HG,n E HG,n−1 E · · · E HG,1 E HG,0 = G

is a series of minimal length from H to G. Consequently, if s(G : H) = n > 0, then

s(HG : H) = s(HG,1 : H) = n− 1.

This observation is often useful in arguments which proceed by induction on the

defect s = s(G : H). In the remainder of this chapter, we shall make repeated use

of the following two results.

Theorem 2.2.4. Suppose that H and K are subgroups of the group G and that

J = 〈H,K〉. Then

(a) [H,K] E J ; and

(b) KJ = [H,K]K.
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Proof. (a) Let h, g ∈ H and k ∈ K. By Lemma 1.2.2(b),

[h, k]g = [hg, k][g, k]−1 ∈ [H,K].

It follows that H normalises [H,K]. By Lemma 1.2.3(a), [H,K] = [K,H]. Hence

K also normalises [H,K] and so [H,K] E J .

(b) We must show that [H,K]K is the smallest normal subgroup of J which

contains K. First we shall prove that [H,K]K E J . By (a), [H,K]g = [H,K] for

all g ∈ J . Hence if g ∈ K, then

([H,K]K)
g

= [H,K]gKg = [H,K]K.

Thus K normalises [H,K]K. Now suppose that g ∈ H and k ∈ K. Then

g−1k−1g = (g−1k−1gk)k−1 = [g, k]k−1 ∈ [H,K]K.

Hence if g ∈ H, then Kg 6 [H,K]K and so

([H,K]K)
g

= [H,K]gKg 6 [H,K]K.

This implies that H also normalises [H,K]K. Hence [H,K]K E J .

Finally suppose that N is a normal subgroup of J such that K 6 N E J . Then

for each h ∈ H and k ∈ K, we have that [h, k] = (h−1k−1h)k ∈ N . It follows that

[H,K] 6 N and so [H,K]K 6 N . �

Lemma 2.2.5. If K sn G and H 6 G, then H ∩ K sn H. Furthermore,

s(H : H ∩K) ≤ s(G : K).

Proof. Let n = s(G : K) and let

K = K0 E K1 E · · · E Kn = G

be a series of finite length from K to G. Intersecting this series with H, we obtain

the series

H ∩K = H ∩K0 E · · · E H ∩Kn = H.

Thus H ∩K is a subnormal subgroup of H and s(H : H ∩K) ≤ n = s(G : K). �

Theorem 2.1.11 is an easy consequence of the following result.

Lemma 2.2.6. Suppose that H and K are subnormal subgroups of the group G

and that H ∩K = 1. If H is a simple nonabelian group, then [H,K] = 1.
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Proof. Let H be a simple nonabelian subnormal subgroup of G. Suppose that

K is a subnormal subgroup of G such that H ∩K = 1 and [H,K] 6= 1. We suppose

that K has been chosen so that s = s (〈H,K〉 : H) is minimal. Let J = 〈H,K〉.

First suppose that s ≤ 1. Then H E J . In particular, K normalises H and hence

Lemma 1.2.3 implies that [H,K] 6 H. By Theorem 2.2.4(a), [H,K] E J . It follows

that [H,K] E H. Since H is a simple group and [H,K] 6= 1, we must have that

[H,K] = H. Applying Theorem 2.2.4(b), we find that H 6 [H,K]K = KJ and

hence KJ = J . But K is a subnormal subgroup of J and so Lemma 2.2.3 implies

that K = J . But then H = H ∩ J = H ∩K = 1, which is a contradiction.

Now suppose that s > 1. Then H is not a normal subgroup of J and so there

exists an element g ∈ K such that H 6= Hg. Note that Hg is also a subnormal

subgroup of G and so H ∩Hg is a subnormal subgroup of H. Since H is simple,

we must have that H ∩Hg = 1. Remember that

s
(
HJ : H

)
= s (J : H)− 1 = s− 1.

Since 〈H,Hg〉 6 HJ , it follows that s (〈H,Hg〉 : H) ≤ s− 1. By the minimality of

s, we have that [H,Hg] = 1. Therefore if h1, h2 ∈ H, then

1 = [h1, h
g
2] = [h1, h2[h2, g]] = [h1, [h2, g]][h1, h2][h2,g].

(The last equality follows from Lemma 1.2.2(c).) By Theorem 2.2.4(a), H nor-

malises [H,K] and so [H, [H,K]] 6 [H,K]. Thus

[h1, h2][h2,g] = [h1, [h2, g]]−1 ∈ [H,K]

and so [h1, h2] ∈ [H,K] for all h1, h2 ∈ H. Thus [H,H] 6 [H,K]. Since H is a

simple nonabelian group, it follows that [H,H] = H. Hence we have shown that

H 6 [H,K]. Arguing as in the first paragraph of this proof, we now find that

KJ = J ; and again this leads to the contradiction that H = 1. �

Proof of Theorem 2.1.11. Suppose that H is a simple nonabelian subnor-

mal subgroup of the group G and let K be an arbitrary subnormal subgroup of G.

By Lemma 2.2.5, H ∩K is a subnormal subgroup of H. Since H is simple, either

H ∩ K = H or H ∩ K = 1. In the former case, H 6 K; and in the latter case,

Lemma 2.2.6 yields that [H,K] = 1. So in both cases, we find that H normalises

K. �
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2.3. Finite p-groups

In this section, we shall prove Lemma 2.1.14. We shall make use of the following

two results. The first result is well-known and a proof can be found in any of the

standard textbooks in group theory. (For example, see Section 2.1 of Suzuki [48].)

Theorem 2.3.1. If P is a finite p-group, then P is nilpotent. Hence if N is a

nontrivial normal subgroup of P , then N ∩ Z(P ) 6= 1.

�

The second result is more technical; and requires some preliminary explana-

tion. Let H be a finite group and let p be a prime. Suppose that N1, N2 are

normal subgroups of H such that H/N1 and H/N2 are p-groups. Consider the

homomorphism

π : H → H/N1 ×H/N2

defined by π(h) = (hN1, hN2). Then kerπ = N1 ∩ N2 and so H/N1 ∩ N2 is

isomorphic to a subgroup of H/N1 × H/N2. In particular, H/N1 ∩ N2 is also a

p-group. This implies that there exists a smallest normal subgroup N of H such

that H/N is a p-group.

Definition 2.3.2. Let H be a finite group and let p be a prime. Then Op(H)

is the smallest normal subgroup of H such that H/Op(H) is a p-group.

Proposition 2.3.3. Suppose that H is a subnormal subgroup of the finite group

G and that p be a prime. Then Op(G) normalises Op(H).

Before proving Proposition 2.3.3, we shall complete the proof of Lemma 2.1.14.

Suppose that H is a subnormal subgroup of the finite group G and that CG(H) = 1.

Let N E G and let R/N = Op(G/N).

Claim 2.3.4. Op(HN/N) = Op(H)N/N .

Proof. Let M be the subgroup such that N E M and M/N = Op(HN/N).

Since

(HN/N) / (Op(H)N/N) ' HN/Op(H)N
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is a p-group, it follows that M 6 Op(H)N . Now consider the homomorphism

ψ : H → HN/M

defined by ψ(h) = hM . Then kerψ = H ∩M and so H/H ∩M is isomorphic to

a subgroup of the p-group HN/M . This implies that Op(H) 6 H ∩M and hence

Op(H)N 6M . Thus M = Op(H)N . �

It is easily checked that HN/N is a subnormal subgroup of G/N . Thus Propo-

sition 2.3.3 yields that R/N = Op (G/N) normalises Op(H)N/N = Op(HN/N);

and this implies that R normalises Op(H)N . Let ϕ : R → Aut(Op(H)N) be the

homomorphism defined by ϕ(g) = ig � Op(H)N and let C = CR(Op(H)N). Then

kerϕ = C and so

[R : C] ≤ |Aut(Op(H)N)| ≤ |HN |!.

We shall prove that C 6 N . This implies that

|R| ≤ |C|.|HN |! ≤ |N |.|HN |!,

as required.

First notice that H normalises Op(H), N and R; and hence H normalises

C = CR(Op(H)N). Now let P be a Sylow p-subgroup of H and let Q be a Sylow

p-subgroup of HC such that P 6 Q. Let T = C ∩Q. Clearly P normalises T .

Claim 2.3.5. T = 1.

Proof. Suppose that T 6= 1. We shall derive a contradiction by finding an

element 1 6= z ∈ T ∩ CG(H). First remember that if S is a Sylow p-subgroup of a

group K and M E K, then SM/M is a Sylow p-subgroup of K/M . In particular,

since H/Op(H) is a p-group, we must have that H/Op(H) = POp(H)/Op(H) and

so H = POp(H).

Since P normalises T , it follows that PT is a p-group. By Theorem 2.3.1,

there exists an element 1 6= z ∈ T ∩ Z(PT ). But since z ∈ C 6 CG(Op(H)) and

H = POp(H), this means that z ∈ CG(H). �

Now recall that if S is a Sylow p-subgroup of a group K and M E K, then M∩S

is a Sylow p-subgroup of M . In particular, since C E HC, we have that T = C ∩Q
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is a Sylow p-subgroup of C. Thus p does not divide |C|. Since R/N = Op(G/N) is

a p-group, we must have that C 6 N . This completes the proof of Lemma 2.1.14.

The proof of Proposition 2.3.3 will involve some intricate commutator calcula-

tions. In particular, we shall make use of the following characterisation of HG,i in

terms of iterated commutator subgroups.

Definition 2.3.6. If n ≥ 2 and X0, X1, . . . , Xn are nonempty subsets of the

group G, then we inductively define

[X0, . . . , Xn] = [[X0, . . . , Xn−1] , Xn] .

For each n ≥ 1, we also define

[X, nY ] = [X,Y, . . . , Y︸ ︷︷ ︸
n

].

Proposition 2.3.7. If H is a subgroup of the group G, then HG,i = [G, iH]H

for each i ≥ 1.

Proof. It is easily checked that H normalises [G, iH]H for each i ≥ 1. Thus

〈[G, iH] , H〉 = [G, iH]H. By Theorem 2.2.4, the proposition holds when i = 1.

Assuming that the result holds for i ≥ 1, then applying Theorem 2.2.4 once again,

we obtain that

HG,i+1 = HHG,i = H [G, iH]H = [[G, iH] , H]H = [G, i+1H]H.

�

We shall also make use of the following result.

Lemma 2.3.8. Suppose that H and K are subgroups of the group G, and that

K normalises H. Then [HK,K] = [H,K][K,K].

Proof. First note that

[H,K][K,K] 6 [HK,K][HK,K] = [HK,K].

Now let h ∈ H and x, y ∈ K. Applying Lemma 1.2.2(b), we obtain that

[hx, y] = [h, y]x[x, y] = [hx, yx][x, y] ∈ [H,K][K,K].

Thus [HK,K] 6 [H,K][K,K]. �
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Finally we are ready to begin the proof of Proposition 2.3.3. So suppose that

H is a subnormal subgroup of the finite group G and that p is a prime.

Claim 2.3.9. [Op(G), Op(H)] = [Op(G), Op(H), Op(H)].

Before proving Claim 2.3.9, we shall show how to complete the proof of Propo-

sition 2.3.3. Let T = 〈Op(G), Op(H)〉 = Op(G)Op(H). Since Op(H) E H and

H sn G, it follows that Op(H) sn G. Hence Op(H) sn T . Applying Proposition

2.3.7 and Lemma 2.3.8, we see that

Op(H)T,1 = [T,Op(H)]Op(H)

= [Op(G)Op(H), Op(H)]Op(H)

= [Op(G), Op(H)]Op(H).

Similarly we have that Op(H)T,2 = [Op(G), Op(H), Op(H)]Op(H). Applying Claim

2.3.9, we obtain that Op(H)T,1 = Op(H)T,2 and so Op(H)T,1 = Op(H)T,i for all

i ≥ 1. Since Op(H) sn T , Lemma 2.2.3 implies that there exists an integer n ≥ 1

such that Op(H) = Op(H)T,n. But this means that

Op(H) = Op(H)T,n = Op(H)T,1 = Op(H)T

and so Op(G) normalises Op(H).

Proof of Claim 2.3.9. Clearly bothOp(G) and [Op(G), Op(H)] are normalised

by Op(H). Hence [Op(G), Op(H)] 6 Op(G) and

[Op(G), Op(H), Op(H)] = [[Op(G), Op(H)] , Op(H)] 6 [Op(G), Op(H)] .

The proof of the opposite inclusion is more involved. First note that, by Theorem

2.2.4, [Op(G), Op(H), Op(H)] E [Op(G), Op(H)]. Fix some element g ∈ Op(G) and

let x, y ∈ Op(H). Using the definition of the commutator, it is easily verified that

[xy, g] = [x, g] [[x, g]y] [y, g].

Thus

[xy, g] = [x, g][y, g] mod [Op(G), Op(H), Op(H)] ,

since [[x, g], y] = [[g, x]−1, y] ∈ [Op(G), Op(H), Op(H)]. Thus we can define a ho-

momorphism

ϕ : Op(H)→ [Op(G), Op(H)] / [Op(G), Op(H), Op(H)]
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by

ϕ(x) = [x, g] [Op(G), Op(H), Op(H)] .

Let K = kerϕ. As [Op(G), Op(H)] 6 Op(G), it follows that Op(H)/K is a p-group.

Let L =
⋂
h∈H K

h. Then L is a normal subgroup of H such that L 6 K 6 Op(H).

Let H = {h1, . . . , ht}. Then we can define a homomorphism

ψ : Op(H)→ Op(H)/Kh1 × · · · ×Op(H)/Kht

by ψ(x) =
(
xKh1 , . . . , xKht

)
. Clearly kerψ = L and so Op(H)/L is a p-group.

This implies that H/L is also a p-group and so L = K = Op(H). Consequently

[x, g] ∈ [Op(G), Op(H), Op(H)] for all x ∈ Op(H) and g ∈ Op(G); and hence

[Op(G), Op(H)] 6 [Op(G), Op(H), Op(H)]. This completes the proof of Claim 2.3.9.

�

2.4. Notes

My account of Wielandt’s Theorem is closely based on that in Robinson’s text-

book [39]. The same material can also be found in Plotkin [36]. Alternative proofs

of Theorem 2.1.3 can be found in Pettet [35] and Schenkman [40]. Pettet [35] also

solves the problem of finding an explicit bound in the statement of Theorem 2.1.3

as follows. Suppose that H is a finite subnormal subgroup of the group G and

that CG(H) = 1. Let H∞ be the nilpotent residual of H; i.e. the smallest normal

subgroup of H such that H/H∞ is nilpotent. Then

|G| ≤ (|Z(H∞)||Aut(H∞)|)!.





CHAPTER 3

The Automorphism Tower Theorem

In this chapter, we shall present two proofs of the automorphism tower theo-

rem. The first proof, which is given in Section 3.1, uses only the most elementary

properties of regular cardinals; and shows that the automorphism tower of an infi-

nite centreless group G terminates after at most
(
2|G|

)+
steps. The second proof,

which is given in Section 3.3, makes use of Fodor’s Lemma on regressive functions

defined on stationary sets; and shows that actually the automorphism tower of G

always terminates after strictly less than
(
2|G|

)+
steps. Most of Sections 3.1 and

3.3 will be devoted to a development of the basic theory of regular cardinals and

stationary sets.

In Section 3.2, we shall prove that if ω ≤ λ < κ and H is a centreless group

of cardinality λ whose automorphism tower terminates after exactly α ≥ 1 steps,

then there exists a centreless group G of cardinality κ whose automorphism tower

also terminates after exactly α steps. Finally, in Section 3.4, we shall discuss the

question of finding better upper bounds for the heights of automorphism towers.

3.1. The automorphism tower theorem

In this section, we shall prove that the automorphism tower of an arbitrary

infinite centreless group G eventually terminates. As this theorem turns out to be

an easy consequence of the result that every successor cardinal is regular, most of

this section will be devoted to an account of some of the basic properties of regular

cardinals. First we need to introduce the notion of cofinality.

Definition 3.1.1. Let α and β be ordinals. Then the mapping f : α → β is

cofinal iff ran f is unbounded in β.

Definition 3.1.2. Let β be an ordinal. Then the cofinality of β, written cf(β),

is the least ordinal α such that there exists a cofinal mapping f : α→ β.

41
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For example, it is clear that cf(ω) = ω. The notion of cofinality is only inter-

esting when β is a limit ordinal. For suppose that β is a successor ordinal; say,

β = γ + 1 = γ ∪ {γ}. Then we can define a cofinal map f : 1→ β by f(0) = γ and

so cf(β) = 1.

Lemma 3.1.3. There exists a cofinal map f : cf(β)→ β such that f is strictly

increasing.

Proof. Clearly we can suppose that β is a limit ordinal. Let g : cf(β)→ β be

any cofinal map, and define f : cf(β)→ β recursively on ξ < β by

f(ξ) = max{g(ξ), sup{(f(η) + 1) | η < ξ}}.

Notice that if ξ < cf(β), then {f(η) + 1 | η < ξ} must be bounded in β. Thus the

map f is well-defined. Since f(ξ) ≥ g(ξ) for all ξ < cf(β), it follows that f is a

cofinal map; and it is clear that f is strictly increasing. �

Lemma 3.1.4. If α is a limit ordinal and f : α → β is a strictly increasing

cofinal map, then cf(α) = cf(β).

Proof. Let g : cf(α)→ α be a cofinal map. Since f is strictly increasing and

cofinal, it follows that f ◦ g : cf(α)→ β is also cofinal. Thus cf(β) ≤ cf(α).

To see that cf(α) ≤ cf(β), let h : cf(β) → β be a cofinal map and define

ϕ : cf(β)→ α by

ϕ(ξ) = the least η < α such that f(η) > h(ξ).

Then it is easily checked that ϕ : cf(β)→ α is a cofinal map. �

For example, we can define a strictly increasing cofinal map f : ω → ℵω by

f(n) = ℵn. Hence cf(ℵω) = ω.

Definition 3.1.5. (a) An infinite cardinal κ is regular if cf(κ) = κ.

(b) An infinite cardinal κ is singular if cf(κ) < κ.

If λ is an infinite cardinal, then the least cardinal greater than λ is denoted

by λ+. Thus ℵ+
α = ℵα+1 for every ordinal α. Cardinals of the form λ+ are called

successor cardinals.

Theorem 3.1.6. If λ is an infinite cardinal, then λ+ is regular.
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Proof. Suppose not. Then there exists a cofinal map f : λ → λ+. For each

α < λ, let Bα = {β | β < f(α)}. Then λ+ =
⋃
α<λBα. But |Bα| ≤ λ for all α < λ

and so
∣∣⋃

α<λBα
∣∣ ≤ λ, which is a contradiction. �

Notice that if κ is a cardinal and X is a set of cardinality κ, then cf(κ) is the

least cardinal θ such that we can express X =
⋃
α<θXα, where |Xα| < κ for each

α < θ. We shall make use of this observation in the proof of the next theorem,

which will be needed in Section 3.3.

Theorem 3.1.7 (König). If λ is an infinite cardinal, then cf(2λ) > λ.

Proof. Let κ = cf(2λ) and suppose that κ ≤ λ. Since |P(λ)| = 2λ, this

implies that there exist sets Sα ⊂ P(λ) for α < κ such that

(a) |Sα| < 2λ for all α < κ; and

(b) P(λ) =
⋃
α<κ Sα.

Since κ ≤ λ, we can express λ =
⊔
α<κXα as the disjoint union of κ subsets such

that |Xα| = λ for all α < κ. For each α < κ, let

Pα = {Y ∈ P(Xα) | There exists Z ∈ Sα such that Y = Z ∩Xα}.

Then |Pα| ≤ |Sα| < 2λ and hence there exists a subset Aα ∈ P(Xα) r Pα. Let

A =
⊔
α<κAα. Then A ∈ Sα for some α < κ. But since Aα = A ∩Xα, this means

that Aα ∈ Pα, which is a contradiction. �

Definition 3.1.8. Let κ be a regular uncountable cardinal.

(a) A subset C ⊆ κ is closed in κ if for every limit ordinal δ < κ and every

increasing δ-sequence

α0 < α1 < · · · < αξ < · · ·

of elements of C, we have that sup{αξ | ξ < δ} ∈ C.

(b) A subset C ⊆ κ is a club if C is both closed and unbounded in κ.

The notion of a club is of central importance in many applications of set theory

to algebra; and in Section 3.3, we shall present a detailed account of clubs and

the related notion of stationary sets. In this section, we shall only prove Theorem

3.1.10, which is the set-theoretic key to the automorphism tower theorem.
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Definition 3.1.9. Let X be a set and let κ be an infinite cardinal. We say

that X =
⋃
α<κXα is a smooth strictly increasing union if the following conditions

are satisfied.

(a) If α < β < κ, then Xα  Xβ .

(b) If α is a limit ordinal such that α < κ, then Xα =
⋃
ξ<αXξ.

Theorem 3.1.10. Let κ be a regular uncountable cardinal. Suppose that X =⋃
α<κXα and Y =

⋃
α<κ Yα are smooth strictly increasing unions such that |Xα| <

κ and |Yα| < κ for all α < κ. If f : X → Y is a bijection, then

C = {α < κ | f [Xα] = Yα}

is a club of κ.

Proof. It is clear that C is closed. The main point is to show that C is

unbounded in κ.

Claim 3.1.11. If α < κ, then there exists β < κ such that f [Xα] ⊆ Yβ.

Proof of Claim 3.1.11. Let |Xα| = λ and write Xα = {xξ | ξ < λ}. Let

ϕ : λ→ κ be the map defined by

ϕ(ξ) = the least γ < κ such that f(xξ) ∈ Yγ .

Since λ < κ = cf(κ), there exists β < κ such that ϕ(ξ) ≤ β for all ξ < λ. Thus

f [Xα] ⊆ Yβ . �

Claim 3.1.12. If β < κ, then there exists γ < κ such that Yβ ⊆ f [Xγ ].

Proof of Claim 3.1.12. By applying Claim 3.1.11 to the inverse function

f−1 : Y → X, we see that there exists γ < κ such that f−1 [Yβ ] ⊆ Xγ . The result

follows. �

Let α < κ. We shall find an element β ∈ C such that α < β < κ. Using Claims

3.1.11 and 3.1.12, we can inductively define a strictly increasing sequence

α = α0 < α1 < · · · < αn < · · · < κ

for n ∈ ω such that

f [Xα0
] ⊆ Yα1

⊆ f [Xα2
] ⊆ · · · ⊆ f [Xα2n

] ⊆ Yα2n+1
⊆ · · ·
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Let β = sup{αn | n ∈ ω}. Since ω < κ = cf(κ), it follows that β < κ. Furthermore,

f [Xβ ] =
⋃
n∈ω

f [Xα2n ] =
⋃
n∈ω

Yα2n+1 = Yβ .

Thus β ∈ C. �

Theorem 3.1.13. If G is an infinite centreless group, then the automorphism

tower of G terminates after at most
(
2|G|

)+
steps.

Proof. Let G be an infinite centreless group and let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

be the automorphism tower of G. By Theorem 1.1.10, CGα(G) = 1 for all ordinals

α. Suppose that α ≥ 1 and that g ∈ NGα(G). Then g induces an automorphism

of G via conjugation, and so there exists an element h ∈ G1 = Aut(G) such that

gxg−1 = hxh−1 for all x ∈ G. Thus h−1g ∈ CGα(G) = 1. Therefore g = h ∈ G1

and we have shown that NGα(G) = G1 for all α ≥ 1. It follows that

[Gα+1 : G1] = [Gα+1 : NGα(G)]

equals the cardinality of the set of all conjugates of G in Gα+1. Since G 6 Gα and

Gα E Gα+1, each such conjugate is contained in Gα and so [Gα+1 : G1] ≤ |Gα||G|.

Hence

|Gα+1| = |G1| [Gα+1 : G1] ≤ |G1| |Gα||G| = |Gα||G|

and an easy transfinite induction shows that |Gα| ≤ 2|G| for all α <
(
2|G|

)+
.

Let κ =
(
2|G|

)+
. Suppose that the automorphism tower ofG does not terminate

in less than κ steps. Thus Gα  Gβ for all α < β < κ and Gκ =
⋃
α<κGα is a

smooth strictly increasing union. We shall show that Gκ = Gκ+1. Let π ∈ Aut(Gκ)

be an arbitrary automorphism. Since κ is a regular uncountable cardinal and

|Gα| < κ for all α < κ, Theorem 3.1.10 yields that

C = {α < κ | π [Gα] = Gα}

is a club of κ. If α ∈ C, then there exists an element gα ∈ Gα+1 = Aut(Gα) such

that gαxg
−1
α = π(x) for all x ∈ Gα. Notice that if α, β ∈ C and α < β, then

g−1
α gβ ∈ CGκ(Gα) 6 CGκ(G) = 1 and so gα = gβ . Thus there is a fixed element

g ∈ Gκ such that π � Gα = ig � Gα for each α ∈ C. Since C is unbounded in κ,
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this implies that π = ig ∈ Inn(Gκ). We have now shown that Inn(Gκ) = Aut(Gκ);

i.e. that Gκ = Gκ+1. �

Definition 3.1.14. If G is a centreless group, then the height τ(G) of the

automorphism tower of G is the least ordinal α such that Gα+1 = Gα.

Most of this book will be concerned with the problem of finding an optimal

upper bound for τ(G) in terms of the cardinality κ of G.

Definition 3.1.15. If κ is an infinite cardinal, then τκ is the least ordinal such

that τ(G) < τκ for every centreless group G of cardinality κ.

Theorem 3.1.13 says that τκ ≤ (2κ)
+

+ 1. In Section 3.3, we shall use Fodor’s

Lemma to prove that τκ < (2κ)
+

. In the other direction, in Section 4.1, we shall

show that for every α < κ+, there exists a centreless group G of cardinality κ such

that τ(G) = α. Thus κ+ ≤ τκ < (2κ)
+

. It is natural to ask whether better upper

and lower bounds for τκ can be proved in ZFC. In Chapter 7, we shall show that

no such upper bounds can be proved in ZFC. It remains an open problem whether

a better lower bound can be proved.

Question 3.1.16. Let κ ≥ ω. Does there exist a centreless group G of cardi-

nality κ such that τ(G) ≥ κ+?

In Chapter 7, we shall see that if κ > ω, then it is consistent that such a group

exists. However, it is unknown whether it is consistent that there exists a countable

centreless group G such that τ(G) ≥ ω1.

Nothing is known concerning the exact value of τκ in any model of ZFC.

Problem 3.1.17. Find a model M of ZFC and an infinite cardinal κ ∈ M

such that it is possible to compute the exact value of τκ in M .

In Chapter 7, we shall see that it is consistent that τκ is not a cardinal. But it

remains open whether τκ can be a successor ordinal. This seems a remote possibility,

for it would mean that there was a centreless group G of cardinality κ with an

automorphism tower of maximum height τ(G) = τκ − 1. However, it seems likely

that given a centreless group G of cardinality κ such that τ(G) = α, it should be

possible to construct a related group H of cardinality κ such that τ(H) = α + 1.
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Thus I expect that τκ must be a limit ordinal. Similar considerations lead me to

expect that cf(τκ) > κ. For suppose that α = supi<κ αi and that for each i < κ,

there exists a centreless group Gi of cardinality κ such that τ(Gi) = αi. Then

it should be possible to construct a centreless group G of cardinality κ such that

τ(G) = α. A first approximation to such a group G might be the direct sum

⊕i<κGi.

Conjecture 3.1.18. If κ is an infinite cardinal, then τκ is a limit ordinal such

that cf(τκ) > κ.

It is also natural to ask which ordinals α < τκ are actually realised as the

heights of automorphism towers of centreless groups of cardinality κ.

Conjecture 3.1.19. For every α < τκ, there exists a centreless group G of

cardinality κ such that τ(G) = α.

3.2. τκ is increasing

In this section, we shall prove that the function, κ 7→ τκ, is increasing. This

result is an immediate consequence of the following theorem, which will also be

needed in Chapter 7.

Theorem 3.2.1. Let ω ≤ λ < κ. If H is a centreless group of cardinality λ

such that τ(H) ≥ 1, then τ(H ×Alt(κ)) = τ(H).

Corollary 3.2.2. If ω ≤ λ < κ, then τλ ≤ τκ.

�

The remainder of this section will be devoted to the proof of Theorem 3.2.1. Let

G = H×Alt(κ) and let Hβ , Gβ be the βth groups in the automorphism towers of H,

G respectively. We shall prove by induction that Gβ = Hβ × Sym(κ) for all β ≥ 1.

To accomplish this, we need to keep track of ϕ[Alt(κ)] for each automorphism ϕ

of Gβ . The next lemma shows that for all ϕ ∈ Aut(Gβ), either ϕ[Alt(κ)] 6 Hβ

or ϕ[Alt(κ)] 6 Sym(κ). The main point will be to eliminate the possibility that

ϕ[Alt(κ)] 6 Hβ . This will be straightforward when β is a successor ordinal. To

deal with the case when β is a limit ordinal, we shall make use of the result that

Alt(κ) is strictly simple.
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Lemma 3.2.3. Suppose that A is a simple nonabelian normal subgroup of the

direct product H × S. Then either A 6 H or A 6 S.

Proof. Let 1 6= g = xy ∈ A, where x ∈ H and y ∈ S. If y = 1, then the

conjugacy class gA = xA is contained in H and so A = 〈gA〉 6 H. So suppose that

y 6= 1. Let π : H×S → S be the canonical projection map. Then 1 6= y ∈ π[A] 6 S

and π[A] ' A. Hence there exists an element z ∈ π[A] 6 S such that zyz−1 6= y.

Since A E H × S, it follows that

zgz−1g−1 = zxyz−1y−1x−1 = zyz−1y−1 6= 1

is an element of A ∩ S. Arguing as above, we now obtain that A 6 S. �

The notion of an ascendant subgroup generalises that of a subnormal subgroup.

Definition 3.2.4. Let H be a subgroup of the group G. Then H is said to

be an ascendant subgroup of G if there exist an ordinal β and a strictly increasing

chain of subgroups {Hα | α ≤ β} such that the following conditions are satisfied.

(a) H0 = H and Hβ = G.

(b) If α < β, then Hα E Hα+1.

(c) If δ is a limit ordinal such that δ ≤ β, then Hδ =
⋃
α<δHα.

For example, let G be a centreless group and let τ = τ(G). If 〈Gα | α ≤ τ〉

is the automorphism tower of G, then G is an ascendant subgroup of Gα for each

α ≤ τ .

Definition 3.2.5. A group A is strictly simple if it has no nontrivial proper

ascendant subgroups.

Clearly if A is strictly simple, then A is simple. However, Hall [13] has shown

that the converse does not hold.

Theorem 3.2.6 (Macpherson and Neumann [28]). For each κ ≥ ω, the alter-

nating group Alt(κ) is strictly simple.

Proof. Suppose that H is a nontrivial proper ascendant subgroup of Alt(κ).

Then there exists an ordinal β and a strictly increasing chain {Hα | α ≤ β} of

subgroups such that the following conditions are satisfied.
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(a) H0 = H and Hβ = Alt(κ).

(b) If α < β, then Hα E Hα+1.

(c) If δ is a limit ordinal such that δ ≤ β, then Hδ =
⋃
α<δHα.

Since Alt(κ) is simple, it follows that β is a limit ordinal. Let γ be the least ordinal

such that Hγ contains a 3-cycle π. Then Hγ is also a nontrivial proper ascendant

subgroup of Alt(κ) and so we can suppose that π ∈ H0. Let ∆ = supp(π). Let

σ ∈ Alt(κ) be any 3-cycle such that supp(σ) ∩∆ = ∅ and let Φ = supp(σ). Then

Aσ = Alt(∆ ∪Φ) is a finite simple group. Let α < β be the least ordinal such that

Aσ 6 Hα. Clearly α is not a limit ordinal. Suppose that α = γ + 1 is a successor

ordinal. Then

π ∈ Aσ ∩Hγ E Aσ ∩Hγ+1 = Aσ,

and so Aσ ∩Hγ is a nontrivial proper normal subgroup of Aσ, which is a contra-

diction. Thus α = 0. We have now shown that σ ∈ H0 for every 3-cycle σ ∈ Alt(κ)

such that supp(σ)∩∆ = ∅. Since each alternating group is generated by its 3-cycles,

it follows that Alt(κr∆) 6 H0. Finally note that if σ ∈ Alt(κ) is any 3-cycle such

that supp(σ) ∩∆ = ∅, then Alt(κ) = 〈Alt(κr∆), Aσ〉. Hence Alt(κ) 6 H0, which

is a contradiction. �

Lemma 3.2.7. Suppose that H is a centreless group. Let τ = τ(H) and let

〈Hα | α ≤ τ〉 be the automorphism tower of H. If A is a strictly simple normal

subgroup of Hτ , then A 6 H0.

Proof. Let α ≤ τ be the least ordinal such that A 6 Hα. First suppose that

α is a limit ordinal. Then A =
⋃
β<α (A ∩Hβ) and A ∩ Hβ E A ∩ Hβ+1 for all

β < α. It follows that if γ < α is the least ordinal such that A ∩ Hγ 6= 1, then

A ∩ Hγ is a nontrivial proper ascendant subgroup of A. But this contradicts the

assumption that A is strictly simple.

Next suppose that α = β + 1 is a successor ordinal. Since A ∩Hβ is a proper

normal subgroup of A, it follows that A ∩ Hβ = 1. Since A 6 Hβ+1 6 NHτ (Hβ)

and Hβ 6 NHτ (A) = Hτ , Lemma 1.2.3 implies that [A,Hβ ] 6 A ∩ Hβ = 1. But

then A 6 CHβ+1
(Hβ) = 1, which is a contradiction. The only remaining possibility

is that α = 0. �
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Proof of Theorem 3.2.1. Let τ = τ(H) and let

H = H0 E H1 E · · · E Hα E Hα+1 E · · · E Hτ = Hτ+1 = · · ·

be the automorphism tower of H. Let G = H ×Alt(κ) and let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

be the automorphism tower of G. We shall prove by induction on α ≥ 1 that

Gα = Hα × Sym(κ).

First consider the case when α = 1. Let ϕ ∈ Aut(G) be any automorphism.

Then ϕ[Alt(κ)] is a simple nonabelian normal subgroup of G = H × Alt(κ). By

Lemma 3.2.3, either ϕ[Alt(κ)] 6 H or ϕ[Alt(κ)] 6 Alt(κ). Since

|ϕ[Alt(κ)]| = κ > λ = |H|,

it follows that ϕ[Alt(κ)] 6 Alt(κ). As ϕ[Alt(κ)] is a normal subgroup of G, we

must have that ϕ[Alt(κ)] = Alt(κ). Note that CG(Alt(κ)) = H. Hence we must

also have that ϕ[H] = H. By Theorem 1.3.12, Aut(Alt(κ)) = Sym(κ). It follows

that

G1 = Aut(G) = Aut(H)×Aut(Alt(κ)) = H1 × Sym(κ).

Next suppose that α = β+1 and that Gβ = Hβ×Sym(κ). Let ϕ ∈ Aut(Gβ) be

any automorphism. By Lemma 3.2.3, either ϕ[Alt(κ)] 6 Hβ or ϕ[Alt(κ)] 6 Sym(κ).

As Alt(κ) is a strictly simple group, Lemma 3.2.7 implies that ϕ[Alt(κ)] 6 Sym(κ).

Since ϕ[Alt(κ)] is a normal subgroup of Gβ , it follows that ϕ[Alt(κ)] = Alt(κ).

Using the facts that CGβ (Alt(κ)) = Hβ and CGβ (Hβ) = Sym(κ), we now see that

ϕ[Hβ ] = Hβ and ϕ[Sym(κ)] = Sym(κ). Hence

Gβ+1 = Aut(Gβ) = Aut(Hβ)×Aut(Sym(κ)) = Hβ+1 × Sym(κ).

Finally no difficulties arise when α is a limit ordinal. �

Question 3.2.8. Is τκ a strictly increasing function of κ?

In Chapter 7, we shall prove that it is consistent that τκ is a strictly increasing

function of κ.
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3.3. A better bound

In Section 3.1, we proved Wielandt’s theorem that if H is a finite subnormal

subgroup of a group G with CG(H) = 1, then there is an upper bound for |G|

depending only on |H|. In [7], Faber proved the following analogous result for

infinite ascendant subgroups.

Theorem 3.3.1. If H is an infinite ascendant subgroup of the group G and

CG(H) = 1, then |G| ≤ 2|H|.

Clearly Theorem 3.3.1 gives the best possible bound. (For example, consider the

inclusion Alt(κ) E Sym(κ).) It also yields the following improvement on Theorem

3.1.13.

Corollary 3.3.2. If G is an infinite centreless group, then τ(G) <
(
2|G|

)+
.

Proof. Let G be an infinite centreless group and let

G = G0 E G1 E G2 E · · · E Gα E Gα+1 E · · ·

be the automorphism tower of G. Let τ = τ(G). Then G is an ascendant subgroup

of Gτ and CGτ (G) = 1. Thus |Gτ | ≤ 2|G|. Since Gα  Gα+1 for all α < τ , it

follows that |Gτ | ≥ |τ |. Hence τ <
(
2|G|

)+
. �

Theorem 3.3.1 is a straightforward consequence of Fodor’s Lemma on regressive

functions. Before we can prove Fodor’s Lemma, we must first present a little more

of the theory of clubs. As Kunen points out in [25], there is a suggestive analogy

between measure theory and the theory of clubs; namely, clubs can be imagined

as being large or of probability measure 1. The following lemma is an analogue of

the result that in a probability space, the intersection of countably many sets of

measure 1 also has measure 1.

Lemma 3.3.3. Let κ be a regular uncountable cardinal and let λ < κ. If Cα is

a club of κ for each α < λ, then C =
⋂
α<λ Cα is also a club of κ.

Proof. It is easily checked that C is closed. The main point is to show that

C is unbounded in κ. To this end, for each α < λ, define the function fα : κ → κ

by

fα(β) = the least γ ∈ Cα such that γ > β.
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Let g : κ → κ be the function defined by g(β) = sup{fα(β) | α < λ}. Since

λ < cf(κ) = κ, we have that g(β) < κ. Thus g is well-defined. For each 1 ≤ n < ω,

let

gn = g ◦ · · · ◦ g︸ ︷︷ ︸
n times

: κ→ κ

be the n-fold composition of g; and define gω : κ→ κ by

gω(β) = sup{gn(β) | 1 ≤ n < ω}.

Clearly β < gω(β) < κ. We claim that gω(β) ∈ C =
⋂
α<λ Cα. To see this , fix

some ordinal α < λ. Then

fα(β) ≤ g(β) < fα(g(β)) ≤ g2(β) < · · · < fα(gn(β)) ≤ gn+1(β) < · · ·

Thus gω(β) = sup{fα(gn(β)) | 1 ≤ n < ω}. Since fα(gn(β)) ∈ Cα for all 1 ≤ n < ω,

it follows that gω(β) ∈ Cα. �

Definition 3.3.4. Let κ be a regular uncountable cardinal. A subset S ⊆ κ is

stationary in κ if S ∩ C 6= ∅ for every club C of κ.

If T ⊆ κ is nonstationary, then there exists a club C such that T ⊆ κr C. So

continuing with our measure theoretic analogy, nonstationary sets can be imagined

as being small or of probability measure 0. Consequently, stationary sets can be

imagined as having positive measure. By Lemma 3.3.3, every club is stationary. If

κ > λ+, then the next result provides an example of a stationary set which is not

a club. (To see that T is not a club, for each ξ < λ+, let βξ be the ξth element of

T . Then sup{βξ | ξ < λ+} /∈ T .)

Lemma 3.3.5. Let κ be a regular uncountable cardinal. If λ is a regular cardinal

such that ω ≤ λ < κ, then

T = {α < κ | cf(α) = λ}

is a stationary subset of κ.

Proof. Let C be a club of κ and let {αξ | ξ < κ} be the increasing enumeration

of C. Then αλ = sup{αξ | ξ < λ} and so cf(αλ) = cf(λ) = λ. Thus αλ ∈ T ∩C. �
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Algebraists often experience more difficulty in grasping the significance of the

notion of a stationary set than that of a club. So before giving the definition

of a regressive function, I will give a simple example which illustrates the natural

manner in which stationary sets arise in the construction of uncountable structures.

Example 3.3.6. A linear ordering L is said to be a DLO if L is dense and

has no endpoints. It is well-known that every countable DLO is isomorphic to

the ordered set Q of rational numbers. Now consider the problem of constructing

nonisomorphic DLOs of cardinality ω1. For each A ⊆ ω1, we shall construct a DLO

DA =
⋃
α<ω1

DA
α

as the smooth strictly increasing union of a suitably chosen sequence of countable

DLOs. In the successor steps of our construction, we shall make use of two kinds

of embeddings DA
α ⊂ DA

α+1.

Definition 3.3.7. An embedding D1 ⊂ D2 of countable DLOs is said to be a

rational embedding if

(a) D1 is an initial segment of D2; and

(b) D1 has a least upper bound in D2.

In this case, the embedding D1 ⊂ D2 is isomorphic to (−∞, 1) ∩Q ⊂ Q.

Definition 3.3.8. An embedding D1 ⊂ D2 of countable DLOs is said to be

an irrational embedding if

(a) D1 is an initial segment of D2; and

(b) D1 has no least upper bound in D2.

In this case, the embedding D1 ⊂ D2 is isomorphic to (−∞,
√

2) ∩Q ⊂ Q.

For each A ⊆ ω1, let DA =
⋃
α<ω1

DA
α be the smooth strictly increasing union

of the countable DLOs DA
α chosen so that

(i) if α ∈ A, then DA
α ⊂ DA

α+1 is a rational embedding; and

(ii) if α /∈ A, then DA
α ⊂ DA

α+1 is an irrational embedding.

It is natural to expect that if A and B are “sufficiently different” subsets of ω1, then

DA 6' DB . As the next result shows, stationary sets provide the correct notion of

“sufficiently different”.
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Proposition 3.3.9. DA 6' DB iff the symmetric difference A 4 B is a sta-

tionary subset of ω1.

Proof. First assume that S = A4 B is a stationary subset of ω1. Suppose

that f : DA → DB is an isomorphism. By Theorem 3.1.10, the set

C = {α < ω1 | f [DA
α ] = DB

α }

is a club of ω1. Hence there exists an ordinal α ∈ S∩C. Without loss of generality,

we can suppose that α ∈ ArB. But then DA
α has a least upper bound in DA and

f [DA
α ] = DB

α has no least upper bound in DB , which is a contradiction.

Now assume that S = A4B is a nonstationary subset of ω1. Then there exists

a club C such that S ∩ C = ∅. Let {αξ | ξ < ω1} be the increasing enumeration

of C. Note that for each ξ < ω1, DA
αξ

has a least upper bound in DA
αξ+1

iff DB
αξ

has a least upper bound in DB
αξ+1

. Hence it is easy to inductively define a sequence

of isomorphisms fξ : DA
αξ
→ DB

αξ
such that fη ⊂ fξ for all η < ξ < ω1. Then

f =
⋃
ξ<ω1

fξ is an isomorphism from DA onto DB . �

It is well-known that for every regular uncountable cardinal κ, there exists

a family {Aξ | ξ < 2κ} of subsets of κ such that Aξ 4 Aη is stationary for all

ξ < η < 2κ. (Since we shall not require this result in the main body of this book, we

shall not give a proof here. A clear treatment of this result can be found in Section

II.4 of [6].) Hence our construction yields a family of 2ω1 pairwise nonisomorphic

DLOs of cardinality ω1.

Definition 3.3.10. Let κ be a regular uncountable cardinal and let T ⊆ κ.

The function f : T → κ is regressive if f(α) < α for all α ∈ T .

For example, suppose that T is a nonstationary subset of κ such that 0 /∈ T .

Then there exists a club C such that T ∩ C = ∅ and 0 ∈ C. So we can define a

regressive function f : T → κ by

f(α) = sup{β < α | β ∈ C}

= max{β < α | β ∈ C}.

Notice that for each γ < κ, the set {α ∈ T | f(α) = γ} has cardinality less than

κ. In contrast, Fodor’s Lemma implies that every regressive function defined on a

stationary subset of κ is constant on a set of cardinality κ.
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Theorem 3.3.11 (Fodor’s Lemma). Let κ be a regular uncountable cardinal

and let T be a stationary subset of κ. If f : T → κ is a regressive function, then

there exists an ordinal γ < κ such that

S = {α ∈ T | f(α) = γ}

is a stationary subset of κ.

Fodor’s Lemma is an easy consequence of the following somewhat technical

lemma.

Lemma 3.3.12. Let κ be a regular uncountable cardinal and let Cγ be a club of

κ for each γ < κ. Then the diagonal intersection

D = {β < κ | β ∈
⋂
γ<β

Cγ}

is also a club of κ.

Proof. First we shall show that D is closed in κ. So suppose that

β0 < β1 < · · · < βξ < . . .

is an increasing δ-sequence of elements of D for some limit ordinal δ < κ. Let

β = sup{βξ | ξ < δ}. If γ < β, then there exists ξ0 < δ such that γ < βξ for all

ξ0 ≤ ξ < δ. Thus βξ ∈ Cγ for all ξ0 ≤ ξ < δ and so β = sup{βξ | ξ0 ≤ ξ < δ} ∈ Cγ .

Hence β ∈ D.

To see that D is unbounded in κ, define the function g : κ→ κ by

g(β) = the least α ∈
⋂
γ<β

Cγ such that α > β.

By Lemma 3.3.3,
⋂
γ<β Cγ is also a club of κ. Thus g is well-defined. Once again,

for each 1 ≤ n < ω, let gn : κ → κ be the n-fold composition of g; and let

gω(β) = sup{gn(β) | 1 ≤ n < ω}. Clearly β < gω(β) < κ. We claim that

gω(β) ∈ D. To see this, fix some γ < gω(β). Then there exists an integer m such

that γ < gn(β) for all m ≤ n < ω. Thus gn(β) ∈ Cγ for all m < n < ω and so

gω(β) = sup{gn(β) | m < n < ω} ∈ Cγ . Hence gω(β) ∈ D. �

Proof of Fodor’s Lemma. Suppose that the regressive function f : T → κ

is a counterexample. Then for every γ < κ, there exists a club Cγ of κ such



56 3. THE AUTOMORPHISM TOWER THEOREM

that f(β) 6= γ for all β ∈ Cγ ∩ T . By Lemma 3.3.12, the diagonal intersection

D = {β < κ | β ∈
⋂
γ<β Cγ} is also a club of κ. Hence there exists an ordinal

β ∈ T ∩D. Since β ∈ D, we have that f(β) 6= γ for all γ < β. But this contradicts

the fact that f(β) < β. �

We are now ready to prove Faber’s theorem on infinite ascendant subgroups.

Proof of Theorem 3.3.1. Suppose that H is an infinite ascendant subgroup

of the group G and that CG(H) = 1. Then there exist an ordinal β and a strictly

increasing chain of subgroups {Hα | α ≤ β} such that the following conditions are

satisfied.

(a) H0 = H and Hβ = G.

(b) If α < β, then Hα E Hα+1.

(c) If δ is a limit ordinal such that δ ≤ β, then Hδ =
⋃
α<δHα.

We shall prove inductively that |Hα| ≤ 2|H| for all α ≤ β. This is certainly true

when α = 0. Next consider the case when α is a successor ordinal; say, α = γ + 1.

For each h ∈ Hα, let ϕh : H → Hα be the embedding such that ϕh(x) = hxh−1 for

all x ∈ H. Since H 6 Hγ E Hα, we have that ϕh[H] 6 Hγ for all h ∈ Hα. Thus

|{ϕh | h ∈ Hα}| ≤ |Hγ ||H| ≤ 2|H|.|H| = 2|H|.

If ϕh = ϕg, then h−1g ∈ CHα(H) = 1 and so h = g. Hence |Hα| ≤ 2|H|.

Finally suppose that α is a limit ordinal. If α <
(
2|H|

)+
, then it is clear that

|Hα| ≤ 2|H|. Thus to complete the proof of Theorem 3.3.1, we need only show that

β <
(
2|H|

)+
. Suppose not. Let κ =

(
2|H|

)+
and λ = cf

(
2|H|

)
. By Lemma 3.3.5,

T = {α < κ | cf(α) = λ} is a stationary subset of κ. For each α ∈ T , choose an

element hα ∈ Hα+1 rHα. Since H 6 Hα E Hα+1, we have that

hαHh
−1
α 6 Hα =

⋃
γ<α

Hγ .

By Lemma 3.1.4, |H| < cf
(
2|H|

)
= λ = cf(α). Hence there exists an ordinal

f(α) < α such that hαHh
−1
α 6 Hf(α). Applying Fodor’s Lemma to the regressive

function f : T → κ, we see that there exists an ordinal γ < κ such that

S = {α ∈ T | f(α) = γ}
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is a stationary subset of κ. For each α ∈ S, let ϕα : H → Hγ be the embedding

such that ϕα(x) = hαxh
−1
α for all x ∈ H. Then

|{ϕα | α ∈ S}| ≤ |Hγ ||H| ≤ 2|H| < κ.

Since |S| = κ, there exist distinct ordinals α1, α2 ∈ S such that ϕα1
= ϕα2

. But

then 1 6= h−1
α1
hα2 ∈ CHκ(H), which is a contradiction. �

We shall end this section with the following easy observation, which shows that

Corollary 3.3.2 does not give the best possible upper bound for τκ.

Theorem 3.3.13. If κ is an infinite cardinal, then τκ < (2κ)
+

.

Proof. By Corollary 3.3.2, if G is a centreless group of cardinality κ, then

τ(G) < (2κ)
+

. Since there are only 2κ centreless groups of cardinality κ up to

isomorphism, it follows that

sup{τ(G) | G is a centreless group of cardinality κ} < (2κ)
+
.

�

3.4. The automorphism tower problem revisited

We have just seen that Corollary 3.3.2 does not give the best possible upper

bound for τκ. So it is natural to ask whether a better upper bound on τκ can

be proved in ZFC, preferably one which does not involve cardinal exponentiation.

Since the proofs in this chapter are extremely simple and use only the most basic

results in group theory, together with some elementary properties of the infinite

cardinal numbers, it is not really surprising that Corollary 3.3.2 does not give the

best possible upper bound for τκ. In contrast, the proof of Wielandt’s theorem

is much deeper and involves an intricate analysis of the subnormal subgroups of a

finite centreless group. The real question behind the search for better upper bounds

for τκ is whether there exists a subtler, more informative, group-theoretic proof of

the automorphism tower theorem for infinite groups. The main result of Chapter

7 says that no such bounds can be proved in ZFC, and thus can be interpreted as

saying that no such proof exists.

Of course, it is still possible that such proofs exist for various restricted classes

of infinite centreless groups. For example, Rae and Roseblade presented such a proof
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for the class of Černikov groups in [38], where they showed that the automorphism

tower of a centreless Černikov group terminates after finitely many steps. (The

definition of a Černikov group can be found in Section 5.4 of Robinson [39].) And

in [17], Hulse gave an intricate proof that the automorphism tower of a centreless

polycyclic group terminates in countably many steps. (Once again, the definition of

a polycyclic group can be found in Section 5.4 of Robinson [39].) It turns out that

there is actually a much easier proof of Hulse’s theorem. Every polycyclic group is

finitely generated and so Hulse’s theorem is a consequence of the following stronger

theorem. However, a careful examination of Hulse’s proof should yield a better

upper bound for the height of the automorphism tower of a centreless polycyclic

group.

Theorem 3.4.1. If G is a finitely generated centreless group, then τ(G) < ω1.

Once again, this result is an immediate consequence of the appropriate analogue

of Wielandt’s theorem on finite subnormal subgroups.

Theorem 3.4.2. If H is a finitely generated ascendant subgroup of the group

G and CG(H) = 1, then |G| ≤ ω.

Proof. Since the proof of Theorem 3.4.2 is almost identical to that of Theorem

3.3.1, we shall just mention the main points. Suppose that H = 〈h1, . . . hn〉 is a

finitely generated ascendant subgroup of the group G and that CG(H) = 1. Then

there exist an ordinal β and a strictly increasing chain of subgroups {Hα | α ≤ β}

such that the following conditions are satisfied.

(a) H0 = H and Hβ = G.

(b) If α < β, then Hα E Hα+1.

(c) If δ is a limit ordinal such that δ ≤ β, then Hδ =
⋃
α<δHα.

By Theorem 2.1.3, we can suppose that H is an infinite group. We can now prove

inductively that |Hα| = ω for all α ≤ β. First consider the case when α = γ + 1

is a successor ordinal. For each h ∈ Hα, let ϕh : H → Hα be the embedding such

that ϕh(x) = hxh−1 for all x ∈ H. Then ϕh[H] 6 Hγ for all h ∈ Hα and each

embedding ϕh is uniquely determined by its restriction ϕh � {h1, . . . , hn}. Thus

ω ≤ |Hα+1| = |{ϕh | h ∈ Hα+1}| ≤ |Hγ |n = ωn = ω.
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Finally suppose that α is a limit ordinal. If α < ω1, then it is clear that |Hα| = ω.

Thus we need only show that β < ω1. Suppose not. Let T = {α < ω1 | cf(α) = ω}

and for each α ∈ T , choose an element hα ∈ Hα+1 r Hα. Then we have that

hαHh
−1
α 6 Hα =

⋃
γ<αHγ . Since H is a finitely generated group, there exists an

ordinal f(α) < α such that hαHh
−1
α 6 Hf(α). Applying Fodor’s Lemma to the

regressive function f : T → ω1, we see that there exists an ordinal γ < ω1 such

that S = {α ∈ T | f(α) = γ} is a stationary subset of ω1. Arguing as in the proof

of Theorem 3.3.1, we easily obtain a contradiction. �

Definition 3.4.3. τfg is the least ordinal such that τ(G) < τfg for every

finitely generated centreless group G.

B. H. Neumann [33] has shown that there are 2ω two-generator centreless

groups up to isomorphism. So it is conceivable that Theorem 3.4.1 gives the best

possible bound.

Question 3.4.4. Is τfg = ω1?

We obtain an even more interesting problem when we restrict our attention to

the class of finitely presented groups.

Definition 3.4.5. τfp is the least ordinal such that τ(G) < τfp for every

finitely presented centreless group G.

Since there are only countably many finitely presented groups up to isomor-

phism, it follows that τfp is a countable ordinal.

Problem 3.4.6. Compute the exact value of τfp.

Problem 3.4.6 is probably very difficult. But there is a special case that appears

to be much more managable. It is well-known that every polycyclic group is finitely

presented; and a careful reading of Hulse’s paper [17] may be enough to solve the

following problem.

Definition 3.4.7. τpc is the least ordinal such that τ(G) < τpc for every

centreless polycyclic group G.

Problem 3.4.8. Compute the exact value of τpc.



60 3. THE AUTOMORPHISM TOWER THEOREM

Finally it should be pointed out that the argument of Theorem 3.4.2 gives an

easy proof of the fact that if H is a finite ascendant subgroup of a group G such that

CG(H) = 1, then G is necessarily a countable group. (Using the notation of the

proof of Theorem 3.4.2, it is clear that Hn is finite for each n ∈ ω. If Hω is infinite,

then the argument of Theorem 3.4.2 shows that |Hα| = ω for all ω ≤ α ≤ β.)

Of course, this implies that the automorphism tower of a finite centreless group

terminates in countably many steps. However, there does not seem to be an easy

reduction from countable to finite; and it appears that some form of Wielandt’s

analysis is necessary.

3.5. Notes

My account of clubs and stationary sets is closely based on that in Kunen’s

textbook [26]. Theorem 3.1.13 first appeared in my 1985 paper [49]. Soon af-

terwards, Ulrich Felgner and I noticed independently that Fodor’s Lemma implied

that the automorphism tower of an infinite centreless group actually terminates

after strictly less than
(
2|G|

)+
steps. While I gave a direct proof, which later ap-

peared in [50], Felgner realised that Corollary 3.3.2 was an immediate consequence

of Faber’s work [7] on infinite ascendent subgroups. I am very grateful to Felgner

for pointing out the connection between Faber’s work and the automorphism tower

problem. (Of course, I am even more grateful that nobody noticed this connection

before the publication of [49].) Theorem 3.4.1 was also noticed independently by

Felgner. Theorem 3.2.1 first appeared in Just-Shelah-Thomas [22].



CHAPTER 4

The Normaliser Tower Technique

Much of this book will be concerned with the problem of constructing centreless

groups with extremely long automorphism towers. Unfortunately it is usually very

difficult to compute the successive groups in the automorphism tower of a centreless

group. For example, we saw in Section 1.4 that it is already a nontrivial task just

to compute the automorphism tower of the infinite dihedral group. In this chapter,

we shall introduce the normaliser tower technique, which will enable us to entirely

bypass this problem. Instead, throughout this book, we shall only have to deal with

the much easier problem of computing the successive normalisers of a subgroup H

of a group G.

In Section 4.1, after defining the notion of a normaliser tower, we shall reduce

the problem of constructing centreless groups with long automorphism towers to

that of finding long normaliser towers within the automorphism groups of first-order

structures. Our reduction will make use of two “coding theorems”, which will be

proved in the remaining sections of this chapter. In Section 4.2, we shall prove

that if M is an arbitrary first-order structure, then there exists a graph Γ such

that Aut(Γ) ' Aut(M); and in Section 4.3, we shall prove that if Γ is any graph,

then there exists a field KΓ such that Aut(KΓ) ' Aut(Γ). Section 4.4 contains

the proof of a technical field-theoretic lemma which is needed in Section 4.3. In

some of the later chapters of this book, we shall make use of the observation that

the construction of the field KΓ in Section 4.3 is upwards absolute. (The notion of

“upwards absoluteness” will be defined in Chapter 6.) So it is important that the

reader should at least read the definition of the field KΓ in Section 4.3. However,

the reader will not experience any disadvantage in understanding the rest of this

book if he simply skips Section 4.4.

61
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4.1. Normaliser towers

In this section, we shall reduce the problem of constructing centreless groups

with long automorphism towers to that of finding long normaliser towers within the

automorphism groups of first-order structures.

Definition 4.1.1. If H is a subgroup of the group G, then the normaliser

tower of H in G is defined inductively as follows.

(a) N0(H) = H.

(b) If α = β + 1, then Nα(H) = NG (Nβ(H)).

(c) If α is a limit ordinal, then Nα(H) =
⋃
β<αNβ(H).

The height of the normaliser tower of H in G is the least ordinal α such that

Nα(H) = Nα+1(H). When it is necessary for the notation to include an explicit

reference to the ambient group G, we shall write Nα(H) = Nα(H,G).

The definition of the normaliser tower is motivated by the following observation,

which says that automorphism towers can be regarded as special cases of normaliser

towers.

Proposition 4.1.2. Let G be a centreless group and let τ = τ(G). Then

NGτ (Gα) = Gα+1 for all α < τ . Hence the automorphism tower of G coincides

with the normaliser tower of G in Gτ(G).

Proof. Let α < τ . Since the inclusion Gα 6 Gα+1 is isomorphic to the

inclusion Inn(Gα) 6 Aut(Gα), it follows that Gα+1 6 NGτ (Gα). Conversely, sup-

pose that g ∈ NGτ (Gα). Then g induces an automorphism of Gα via conjugation,

and so there exists h ∈ Gα+1 such that hxh−1 = gxg−1 for all x ∈ Gα. Thus

h−1g ∈ CGτ (Gα) = 1 and so g = h ∈ Gα+1. Hence NGτ (Gα) = Gα+1. �

As we shall see later in this section, if α is any ordinal, then it is easy to

construct examples of pairs of groups, H 6 G, such that the normaliser tower of

H in G terminates after exactly α steps. The following results will enable us to

convert arbitrary normaliser towers into corresponding automorphism towers.

Theorem 4.1.3. Let S be a simple nonabelian group and let G, H be groups

such that Inn(S) 6 G,H 6 Aut(S). If π : G → H is an isomorphism, then there
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exists ϕ ∈ Aut(S) such that

π(g) = ϕgϕ−1

for all g ∈ G.

Proof. By Theorem 1.2.8, Inn(S) is the unique minimal nontrivial normal

subgroup of both G and H. It follows that π[Inn(S)] = Inn(S) and hence there

exists ϕ ∈ Aut(S) such that

π(c) = ϕcϕ−1

for all c ∈ Inn(S). Now let g ∈ G be an arbitrary element. Then for all c ∈ Inn(S),

we have that

(ϕg)c(ϕg)−1 = ϕ(gcg−1)ϕ−1

= π(gcg−1) since gcg−1 ∈ Inn(S),

= π(g)π(c)π(g)−1

= π(g)ϕcϕ−1π(g)−1

= (π(g)ϕ)c(π(g)ϕ)−1.

Since CAut(S)(Inn(S)) = 1, it follows that ϕg = π(g)ϕ and hence π(g) = ϕgϕ−1. �

Theorem 4.1.4. Let S be a simple nonabelian group and let G be a group such

that Inn(S) 6 G 6 Aut(S). Then the automorphism tower of G coincides with the

normaliser tower of G in Aut(S).

Proof. Clearly it is enough to show that if G is an arbitrary group such that

Inn(S) 6 G 6 Aut(S), then the inclusion Inn(G) E Aut(G) is naturally isomorphic

to the inclusion G E NAut(S)(G).

Applying Theorem 4.1.3 in the special case when G = H, we see that for every

automorphism π ∈ Aut(G), there exists a corresponding element ϕπ ∈ Aut(S) such

that

π(g) = ϕπgϕ
−1
π

for all g ∈ G. Furthermore, since CAut(S)(Inn(S)) = 1, it follows that there exists

a unique such element ϕπ. Consider the homomorphism θ : Aut(G) → Aut(S)

defined by θ(π) = ϕπ. For each a ∈ G, let ia ∈ Inn(G) be the corresponding

inner automorphism. Then it is clear that θ(ia) = a for all a ∈ G. In particular,
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ker θ ∩ Inn(G) = 1 and hence Lemma 1.3.8 implies that θ is an embedding. Since

Inn(G) E Aut(G) and θ[Inn(G)] = G, it follows that θ[Aut(G)] 6 NAut(S)(G). But

every element of NAut(S)(G) induces an automorphism of G via conjugation and

hence θ[Aut(G)] = NAut(S)(G). �

Corollary 4.1.5. Let κ be an infinite cardinal and let G be a group such that

Alt(κ) 6 G 6 Sym(κ). Then G is a centreless group and the automorphism tower

of G coincides with the normaliser tower of G in Sym(κ).

Proof. In Example 1.3.6, we showed that the inclusion

Inn(Alt(κ)) E Aut(Alt(κ))

is naturally isomorphic to the inclusion Alt(κ) E Sym(κ). So the result follows

from Theorem 4.1.4. �

While Corollary 4.1.5 is certainly suggestive, it appears to be difficult to use

it to construct examples of long automorphism towers. Instead it is more useful to

apply Theorem 4.1.4 to the simple groups S = PSL(2,K) for suitably chosen fields

K.

Theorem 4.1.6. Let K be a field such that |K| > 3 and let H be a subgroup of

Aut(K). Let

G = PGL(2,K)oH 6 PΓL(2,K) = PGL(2,K)oAut(K).

Then G is a centreless group and for each ordinal α,

Gα = PGL(2,K)oNα(H),

where Nα(H) is the αth group in the normaliser tower of H in Aut(K).

Proof. Since |K| > 3, it follows that PSL(2,K) is a simple group. (For

example, see Section 1.9 of Suzuki [48].) By a well-known theorem of Schreier and

van der Waerden [41], every automorphism of PSL(2,K) is induced via conjugation

by an element of PΓL(2,K); and so the inclusion

Inn(PSL(2,K)) E Aut(PSL(2,K))
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is naturally isomorphic to the inclusion PSL(2,K) E PΓL(2,K). Hence Lemma

1.1.2 implies that CPΓL(2,K)(PSL(2,K)) = 1 and it follows that G is centreless.

Finally it is easily checked that if H 6 Aut(K), then

NPΓL(2,K)(PGL(2,K)oH) = PGL(2,K)oNAut(K)(H).

So the result follows from Theorem 4.1.4. �

It is well-known that every group G can realised as the automorphism group

of a suitable graph Γ. (We shall prove this result in Section 4.2.) So the following

result implies that every group G can also be realised as the automorphism group

of a suitable field K.

Theorem 4.1.7 (Fried and Kollár [10]). Let Γ = 〈X,E〉 be any graph. Then

there exists a field KΓ of cardinality max{|X| , ω} which satisfies the following con-

ditions.

(a) X is an Aut(KΓ)-invariant subset of KΓ.

(b) The restriction mapping, π 7→ π � X, is an isomorphism from Aut(KΓ)

onto Aut(Γ).

We shall prove Theorem 4.1.7 in Section 4.3. Combining Theorems 4.1.6 and

4.1.7, we have now reduced our problem to that of finding long normaliser tow-

ers within the automorphism groups of suitably chosen graphs. In fact, we can

do slightly better than this. The following theorem, which will be proved in Sec-

tion 4.2, reduces our problem to that of finding long normaliser towers within the

automorphism groups of arbitrary first-order structures.

Theorem 4.1.8. Let M be a structure for the first-order language L and sup-

pose that κ ≥ max{|M|, |L|, ω}. Then there exists a graph Γ of cardinality κ such

that Aut(M) ' Aut(Γ).

Theorem 4.1.9. Let M be a structure for the first-order language L and let H

be a subgroup of Aut(M). Suppose that

(a) κ ≥ max{|M|, |L|, |H|, ω}; and

(b) the normaliser tower of H in Aut(M) terminates after exactly α steps.

Then there exists a centreless group G of cardinality κ such that τ(G) = α.
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Proof of Theorem 4.1.9. By Theorem 4.1.8, we can assume that M is a

graph Γ of cardinality κ. By Theorem 4.1.7, there exists a field KΓ of cardinality κ

such that Aut(KΓ) ' Aut(Γ). To simplify notation, identify Aut(KΓ) with Aut(Γ)

and let G = PGL(2,KΓ) o H. By Theorem 4.1.6, G is a centreless group of

cardinality κ such that τ(G) = α. �

Next for each ordinal α, we shall construct a pair of groups, H 6 G, such that

the normaliser tower of H in G terminates after exactly α steps.

Definition 4.1.10. The ascending chain of groups

W0 6W1 6 · · · 6Wα 6Wα+1 6 . . .

is defined inductively as follows.

(a) W0 = C2, the cyclic group of order 2.

(b) Suppose that α = β + 1. Then

Wβ = Wβ ⊕ 1 6
[
Wβ ⊕W ∗β

]
o 〈σβ+1〉 = Wβ+1.

Here W ∗β is an isomorphic copy of Wβ ; and σβ+1 is an element of order

2 which interchanges the factors Wβ ⊕ 1 and 1 ⊕W ∗β of the direct sum

Wβ⊕W ∗β via conjugation. Thus Wβ+1 is isomorphic to the wreath product

Wβ Wr C2.

(c) If α is a limit ordinal, then Wα =
⋃
β<α

Wβ .

Lemma 4.1.11. |Wα| ≤ max{|α|, ω} for all ordinals α.

Proof. This follows by an easy induction on α. �

Lemma 4.1.12. (a) If 1 ≤ n < ω, then the normaliser tower of W0 in Wn

terminates after exactly n+ 1 steps.

(b) If α ≥ ω, then the normaliser tower of W0 in Wα terminates after exactly

α steps.

Proof. (a) It is easily checked that

N1(W0,Wn) = W0 ⊕W ∗0 ⊕W ∗1 ⊕ · · · ⊕W ∗n−1

and that

N2(W0,Wn) = W1 ⊕W ∗1 ⊕ · · · ⊕W ∗n−1;
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and that, in general, for each 0 ≤ ` ≤ n− 1,

N`+1(W0,Wn) = W` ⊕
⊕

`≤m<n

W ∗m.

(b) For example, consider the case when α > ω. Then for each ` ∈ ω,

N`+1(W0,Wα) = W` ⊕
⊕

`≤β<α

W ∗β ;

and for each γ such that ω ≤ γ < α,

Nγ(W0,Wα) = Wγ ⊕
⊕

γ≤β<α

W ∗β .

�

Theorem 4.1.13. Suppose that α is any ordinal and that κ ≥ max{|α|, ω}.

Then there exists a centreless group G of cardinality κ such that τ(G) = α.

Proof. First we shall find a pair of groups, H 6W , such that

(i) |W | ≤ max{|α|, ω}, and

(ii) the normaliser tower of H in W terminates after exactly α steps.

Applying Lemmas 4.1.11 and 4.1.12, we see that if α ≥ ω, then we can take H = W0

and W = Wα; and if 2 ≤ α < ω, then we can take H = W0 and W = Wα−1. This

just leaves the cases when α = 0, 1. When α = 0, then we can take H = W = C2;

and when α = 1, we can take H = Alt(3) and W = Sym(3).

Next we shall construct a first-order structure M such that Aut(M) ' W .

For each w ∈ W , let Rw be a binary relation symbol and let L be the first-order

language {Rw | w ∈W}. Let

M =
(
W ;RMw

)
w∈W

be the L-structure such that RMw = {(x, xw) | x ∈ W} for each w ∈ W . For each

g ∈W , let λg ∈ Sym(W ) be the left multiplication map, defined by λg(x) = gx for

all x ∈ W . Then it is easily checked that λg ∈ Aut(M) for all g ∈ W . We claim

that

Aut(M) = {λg | g ∈W}.

To see this, let π ∈ Aut(M) be any automorphism and let g = π(1). If x ∈W , then

(1, x) ∈ Rx and so (g, π(x)) ∈ Rx. Thus π(x) = gx for all x ∈W and so π = λg.
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By Theorem 4.1.9, there exists a centreless group G of cardinality κ such that

τ(G) = α. �

Corollary 4.1.14. If κ is an infinite cardinal, then τκ ≥ κ+.

�

4.2. Coding structures in graphs

In this section, we shall prove Theorem 4.1.8. We shall begin by showing how an

arbitrary structureM can be coded within a structureM′ for a suitable countable

language.

Lemma 4.2.1. Let M = 〈M, . . .〉 be a structure for the first-order language L

and let κ ≥ max{|M|, |L|, ω}. Then there exists a countable first-order language L′

and a structure M′ for L′ of cardinality κ such that the following conditions are

satisfied.

(a) M is an Aut(M′)-invariant subset of M′.

(b) The restriction map, π 7→ π �M , is an isomorphism from Aut(M′) onto

Aut(M).

Proof. We can suppose that L is a relational first-order language. (If f is an

n-ary function symbol, then we replace it by an (n+1)-ary relation symbol R which

represents the graph of the associated function fM; and if c is a constant symbol,

then we replace it by a unary relation symbol C which represents the subset {cM}.)

Let L =
⋃
n≥1 Ln, where Ln = {Rn,α | α < λn} is the set of n-ary relations symbols

of L. Let L′ = {P,<} ∪ {Sn | n ≥ 1} be a first-order language such that

(i) P is a unary relation symbol;

(ii) < is a binary relation symbol; and

(iii) for each n ≥ 1, Sn is an (n+ 1)-ary relation symbol.

Let M′ be the structure for the language L′ defined as follows.

(1) The universe of M′ is the disjoint union M t κ.

(2) PM
′

= κ.

(3) <M
′

is the usual well-ordering of κ.

(4) For each n ≥ 1, 〈a1, . . . , an, α〉 ∈ SM
′

n iff a1, . . . , an ∈ M , α < λn and

〈a1, . . . , an〉 ∈ RMn,α.
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Clearly M is an Aut(M′)-invariant subset of M′; and since the well-ordered set κ

is rigid, π � κ = idκ for each π ∈ Aut(M′). It follows easily that M′ satisfies our

requirements. �

Next we shall show how a structure M for a countable language can be coded

within a suitably chosen connected graph Γ. ( In Section 4.3, we shall present Fried

and Kollár’s coding of graphs within fields. As we shall see, their argument requires

the additional hypothesis that the encoded graph Γ has no isolated vertices. How-

ever, if the graph Γ happens to have isolated vertices, then we can first use Lemma

4.2.2 to code Γ within a connected graph Γ+ and then apply the construction of

Fried and Kollár to Γ+.) The proof of the following lemma is essentially a proper

subset of that of Hodges [16, Theorem 5.5.1].

Lemma 4.2.2. Let M = 〈M, . . .〉 be a structure for the countable first-order

language L and let κ ≥ max{|M|, ω}. Then there exists a connected graph ΓM of

cardinality κ such that the following conditions are satisfied.

(a) M is an Aut(ΓM)-invariant subset of ΓM.

(b) The restriction map, π 7→ π �M , is an isomorphism from Aut(ΓM) onto

Aut(M).

Proof. We can suppose that M has cardinality κ. (If |M| < κ, then we can

first use Lemma 4.2.1 to codeM within a structureM′ of cardinality κ.) As in the

proof of Lemma 4.2.1, we can suppose that L is a relational first-order language; say

L = {Sn | 1 ≤ n < λ}, where 1 ≤ λ ≤ ω and each Sn is an rn-ary relation symbol.

In order to ensure that our construction always produces a connected graph, we

shall also assume that S1 is a binary relation symbol which represents the “trivial

connected relation” SM1 = {〈a, b〉 ∈M2 | a 6= b}.

We shall begin by describing the main ingredients of our coding construction.

Let Γ be a graph and let n ≥ 3. Then a vertex v of Γ is said to be n-tagged if Γ
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contains an induced subgraph of the form:

v
©

b0
©

b1
©

bn
©

bn−1

©

©
c

©
b2

©
b3

©
b4

In this case, we say that the induced subgraph {c, b0, . . . , bn} is an n-tag of v. Note

that the induced subgraph {v, c, b0, . . . , bn} is rigid.

Next we shall describe the construction of the graph ΓM. First we regard M

as a null graph. Now for each 1 ≤ n < λ and each tuple 〈a1, . . . arn〉 ∈ SMn , we add

a corresponding finite graph Γn(a1, . . . , arn) as follows.

(i) First we adjoin a vertex d, together with an (n+ 2)-tag T of d.

(ii) Then we adjoin pairwise disjoint paths p` of length `+ 1 from a` to d for

each 1 ≤ ` ≤ rn.

For example, if a1 6= a2 ∈M , then the graph Γ1(a1, a2) has the form:

© © a1

T ©
d

© © © a2

Note that each of the induced subgraphs Γn(a1, . . . , arn) is also rigid. This com-

pletes the construction of ΓM.

Finally we shall check that ΓM satisfies our requirements. First notice that

since SM1 = {〈a, b〉 ∈ M2 | a 6= b}, it follows both that ΓM is connected and that

each vertex m ∈M has infinite valency in ΓM. By construction, each vertex v /∈M

has finite valency. Hence M is an Aut(ΓM)-invariant subset of ΓM. It is clear that

every automorphism ϕ ∈ Aut(M) extends to an automorphism π ∈ Aut(ΓM).

Thus it only remains to show that if π ∈ Aut(ΓM) satisfies π � M = idM , then

π = idΓM . So consider any vertex v /∈ M . Then v lies in a π-invariant induced
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subgraph Γ0 of the form Γn(a1, . . . , arn) for some n ≥ 1 and a1, . . . , arn ∈M . Since

Γ0 is rigid, it follows that π(v) = v. �

Clearly Theorem 4.1.8 is an immediate consequence of Lemmas 4.2.1 and 4.2.2.

We shall end this section with some observations which will be needed in Chapter 8.

Suppose that L = {Sn | 1 ≤ n < λ} is a countable relational first-order language.

Let C be the category of infinite structures for L and let G be the category of

graphs. For each M ∈ C, let ΓM be the corresponding graph of cardinality |M|,

constructed as in the proof of Lemma 4.2.2. Then if M1, M2 ∈ C,

(a) M1 'M2 iff ΓM1
' ΓM2

; and

(b) Aut(M1) ' Aut(ΓM1
).

In Chapter 8, we shall also make use of the fact that the construction of ΓM from

M is upwards absolute. (The notion of “upwards absoluteness” will be defined

in Chapter 6.) Hence properties (a) and (b) will continue to hold in any generic

extension of the set-theoretic universe.

4.3. Coding graphs in fields

In this section, we shall prove Theorem 4.1.7. Let Γ = 〈X,E〉 be any graph. We

shall construct a field KΓ of cardinality max{|X| , ω} which satisfies the following

conditions.

(a) X is an Aut(KΓ)-invariant subset of KΓ.

(b) The restriction mapping, π 7→ π � X, is an isomorphism from Aut(KΓ)

onto Aut(Γ).

If the Γ happens to have isolated vertices, then we first use Lemma 4.2.2 to

code Γ within a connected graph Γ+. To simplify notation, we shall assume that Γ

has no isolated vertices.

Definition 4.3.1. Let F be a field of characteristic 0 and let p be a prime.

Let S be a set of algebraically independent elements over F and let F (S) be the

corresponding purely transcendental extension of F . Then F (S)(S, p) denotes the

field which is obtained by adjoining the elements {s(`) | s ∈ S, ` ∈ ω} to F (S),

where

(a) s(0) = s, and
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(b) s(`+ 1)p = s(`).

Note that the field F (S)(S, p) is uniquely defined up to isomorphism. Let

(pn | n ∈ ω) be the increasing sequence of odd primes. We shall construct KΓ as

the union of an increasing chain {Kn(Γ) | n ∈ ω} of fields. At each stage of

the construction, we shall also define a distinguished subset Hn(Γ) of Kn(Γ). To

begin the construction, regard the set X of vertices of Γ as a set of algebraically

independent elements over the field Q of rational numbers; and let

K0(Γ) = Q(X)(X, p0)

and

H0(Γ) = {u+ v | (u, v) ∈ E}.

Suppose inductively that we have defined Kn(Γ) and Hn(Γ). First let tn be a

transcendental element over Kn(Γ) and let Ln = Kn(Γ)(tn)({tn}, pn+1). Then let

Kn+1(Γ) be the splitting field over Ln of the set of polynomials

Pn = {y2 − (tn − a) | a ∈ Hn(Γ)}

and let Hn+1(Γ) be a set which contains exactly one root of each of the polynomials

in Pn. Finally let KΓ =
⋃
n∈ωKn(Γ).

The idea behind this construction is easily explained. In the first two stages of

the construction, we attempt to encode the graph Γ within the field K1(Γ). Later

we shall see that K1(Γ) satisfies the following conditions.

(1) Both X and {t0} are Aut(K1(Γ))-invariant subsets of K1(Γ).

(2) The restriction mapping, π 7→ π � X, is a surjective homomorphism from

Aut(K1(Γ)) onto Aut(Γ).

However, the restriction map is not injective. While each automorphism ϕ ∈ Aut(Γ)

can be extended uniquely to an automorphism θ ∈ Aut(L0) satisfying θ(t0) = t0,

there are then many ways to extend θ to an automorphism of the splitting field

K1(Γ) of the set of polynomials

P0 = {y2 − (t0 − a) | a ∈ H0(Γ)}.

So at the next stage of the construction, we use K2(Γ) to pick out a distinguished

root of each of the polynomials in P0. Iterating this procedure ω times, we obtain

a field KΓ which satisfies all of our requirements.
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It is relatively straightforward to show that every automorphism ϕ ∈ Aut(Γ)

lifts inductively through automorphisms of the Kn(Γ) to an automorphism of KΓ.

The only thing that needs to be checked is that we cannot accidently block an au-

tomorphism by an “unfortunate choice” of the roots in some Hn+1(Γ); and Lemma

4.3.2 will deal with this point. On the other hand, it will require a substantial effort

to show that all automorphisms of KΓ arise in this manner; and Lemma 4.3.2 will

also play an important role in the proof of this result.

Lemma 4.3.2. Let F be a field of characteristic 0 and let t be a transcendental

element over F . Suppose that T1, . . . , Tn are mutually prime nonconstant polyno-

mials in F [t], each having no multiple factors; and for each 1 ≤ i ≤ n, let ϑi

be an element such that ϑ2
i = Ti. Let F0 = F (t) and for each 1 ≤ i ≤ n, let

Fi = F (t, ϑ1, . . . , ϑi). Then the following statements hold for each 1 ≤ i ≤ n.

(a) ϑi /∈ Fi−1.

(b) If η ∈ Fi satisfies η2 ∈ F0, then there exist an element c ∈ F0 and a subset

Z of {1, . . . , i} such that η = c
∏
`∈Z ϑ`.

(c) If η ∈ Fi and η is algebraic over F , then η ∈ F .

Proof. First we shall prove by induction on i ≥ 1 that both (a) and (b) hold.

Clearly (a) holds when i = 1. Assume inductively that (a) holds for all k ≤ i and

that (b) holds for all k < i. Suppose that η ∈ Fi r Fi−1 and that η2 = a ∈ F0.

Let η = b+ cϑi, where b, c ∈ Fi−1. Since ϑi /∈ Fi−1, there exists an automorphism

π ∈ Gal(Fi/Fi−1) such that π(ϑi) = −ϑi. Since π(η) = b− cϑi is also a root of the

polynomial x2 − a ∈ F0[x], it follows that

b− cϑi = π(η) = −η = −b− cϑi.

Hence η = cϑi. Notice that η/ϑi = c ∈ Fi−1 and that (η/ϑi)
2

= a/Ti ∈ F0.

Hence by inductive hypothesis, there exists an element d ∈ F0 and a subset Y of

{1, . . . , i−1} such that η/ϑi = d
∏
`∈Y ϑ`. Thus η = dϑi

∏
`∈Y ϑ` and (b) also holds

for i.

Now suppose that ϑi+1 ∈ Fi. Since θ2
i+1 = Ti+1 ∈ F0, (b) implies that there

exists relatively prime polynomials f(t), g(t) ∈ F [t] and a subset Z of {1, . . . , i}
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such that ϑi+1 = f(t)/g(t)
∏
`∈Z ϑ` and so

g2(t)Ti+1 = f2(t)
∏
`∈Z

T`.

Since the polynomials {T` | ` ∈ Z} are mutually prime and have no multiple factors,

it follows that g(t) ∈ F . Similary we find that f(t) ∈ F and then that Z = ∅. But

this is a contradiction. Hence ϑi+1 /∈ Fi and (a) also holds for i+ 1.

Finally we shall prove that (c) holds by induction on i ≥ 0. Clearly (c) holds

when i = 0. Assume inductively that (c) holds for all k < i. Suppose that η = b+cϑi

is algebraic over F , where b, c ∈ Fi−1. Then clearly t remains transcendental over

F̃ = F (η). Furthermore, the polynomials T1, . . . , Tn are mutually prime noncon-

stant polynomials in F̃ [t], each having no multiple factors. Let F̃0 = F̃ (t) and for

each 1 ≤ i ≤ n, let F̃i = F̃ (t, ϑ1, . . . , ϑi). Applying (a), we obtain that ϑi /∈ F̃i−1.

Since η = b + cϑi ∈ F̃ ⊆ F̃i−1, this implies that c = 0. Thus η = b ∈ Fi−1. By

inductive hypothesis, η ∈ F and so (c) also holds for i. �

Corollary 4.3.3. Suppose that n ∈ ω and b ∈ KΓ. If b is algebraic over

Kn(Γ), then b ∈ Kn(Γ).

Proof. We shall prove that for each n ∈ ω, if b ∈ Kn+1(Γ) is algebraic over

Kn(Γ), then b ∈ Kn(Γ). Then an easy inductive argument yields Corollary 4.3.3.

Fix some n ∈ ω. Let p = pn+1 and F = Kn(Γ). Suppose that b ∈ Kn+1(Γ) is

algebraic over Kn(Γ). There exists a finite subset {ai | 1 ≤ i ≤ s} of Hn(Γ) such

that b is in the splitting field over Ln of the set of polynomials

{y2 − (tn − ai) | 1 ≤ i ≤ s}.

For each 1 ≤ i ≤ s, let ϑi ∈ Kn+1(Γ) be an element such that ϑ2
i = tn−ai. Choose

an integer k and an element t ∈ Ln such that

(a) tp
k

= tn, and

(b) b ∈ F (t, ϑ1, . . . , ϑs).

For each 1 ≤ i ≤ s, let Ti = tp
k − ai ∈ F [t]. Then T1, . . . , Ts satisfy the hypotheses

of Lemma 4.3.2. So applying Lemma 4.3.2(c), we obtain that b ∈ F = Kn(Γ). �

In the proof of Lemma 4.3.8, we shall make use of the fact that −1 has no

square root in KΓ. This result is an immediate consequence of Corollary 4.3.3,

together with the observation that −1 has no square root in K0(Γ).
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We are now ready to prove that every automorphism ϕ ∈ Aut(Γ) extends to

an automorphism of KΓ.

Lemma 4.3.4. For each ϕ ∈ Aut(Γ), there exists a unique π ∈ Aut(KΓ) such

that the following conditions are satisfied.

(a) π � X = ϕ.

(b) π(tn) = tn for all n ∈ ω.

(c) π [Hn(Γ)] = Hn(Γ) for all n ∈ ω.

Proof. We shall define the sequence of approximations πn = π � Kn(Γ) by

induction on n ≥ 0. First note that there exists a unique π0 ∈ Aut(K0(Γ)) such

that π0 � X = ϕ. Now suppose that we have defined πn ∈ Aut(Kn(Γ)) such that

that πn(tk) = tk for all k < n and that πn [Hk(Γ)] = Hk(Γ) for all k ≤ n. Clearly

there is a unique extension π′n to Ln such that π′n(tn) = tn. For each a ∈ Hn(Γ),

let ra ∈ Hn+1(Γ) be the corresponding root of y2 − (tn − a). Arguing as in the

proof of Corollary 4.3.3, we see that ra /∈ Ln({rb | b ∈ Hn(Γ) r {a}). It follows

that there is a unique extension πn+1 ∈ Aut(Kn+1(Γ)) such that πn+1(tn) = tn

and πn+1(ra) = rπn(a) for each a ∈ Hn(Γ). �

The rest of this section will be devoted to the proof that every automorphism

of KΓ arises in the above manner.

Definition 4.3.5. Let F be a field and let p be a prime. Then a nonzero

element u ∈ F is said to be a p-high element of F if the equation yp
n

= u is

solvable in F for all n ∈ ω.

In the hope of distinguishing these elements, each of the vertices of Γ and each

of the transcendal elements {tn | n ∈ ω} has been made p-high in KΓ for a suitably

chosen odd prime p. Of course, these will not be the only p-high elements of KΓ.

For example, since each vertex x of Γ is 3-high, it follows that ±xm/3` is also 3-high

for each m ∈ Z and ` ∈ N. The next two lemmas tell us that every p-high element

of KΓ arises in essentially this manner. The rather technical proof of Lemma 4.3.6

will be given in Section 4.4.

Lemma 4.3.6. Let F be a field of characteristic 0 and let t be a transcendental

element over F . Let p be an odd prime, and let {t(`) | ` ∈ N} be a set of elements
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such that t(0) = t and t(`+ 1)p = t(`). Let

L = F (t(0), t(1), . . . , t(`), . . . ) = F (t)({t}, p).

Let {Ti | i ∈ I} be a set of mutually prime polynomials in F [t], none of which is

divisible by t or has a multiple factor; and for each i ∈ I, let ϑi be an element such

that ϑ2
i = Ti. Let M = L(. . . , ϑi, . . . ).

(a) If u is a p-high element of M , then u = ct(`)m for some ` ∈ N, m ∈ Z

and some p-high element c of F .

(b) If p′ is an odd prime such that p′ 6= p and u is a p′-high element of M ,

then u is a p′-high element of F .

Lemma 4.3.7. Let p be an odd prime, and suppose that u is a p-high element

of KΓ.

(a) If p = p0, then either u or −u is a product of elements of the form xm/p
`

,

where x is a vertex of Γ, m ∈ Z and ` ∈ N.

(b) If p = pn+1 for some n ∈ ω, then either u or −u is of the form t
m/p`

n ,

where m ∈ Z and ` ∈ N.

Proof of Lemma 4.3.7. The result is an easy consequence of Lemma 4.3.6,

together with the observation that ±1 are the only p-high elements of Q. �

Lemma 4.3.8. Let n ∈ ω and suppose that b ∈ KΓ satifies the equation

b2 = e(trn − a),

where e2 = 1, a ∈ Kn(Γ)r {0}, and r = m/p`n+1 for some m ∈ Zr {0} and ` ∈ N.

Then e = r = 1 and a ∈ Hn(Γ).

Proof. Let p = pn+1 and F = Kn(Γ). By Corollary 4.3.3, b ∈ Kn+1(Γ).

Thus there exists a finite subset {ai | 1 ≤ i ≤ s} of Hn(Γ) such that b is in the

splitting field over Ln of the set of polynomials {y2 − (tn − ai) | 1 ≤ i ≤ s}. For

each 1 ≤ i ≤ s, let ϑi ∈ Kn+1(Γ) be an element such that ϑ2
i = tn − ai. Choose an

integer k > ` and an element t ∈ Ln such that

(a) tp
k

= tn, and

(b) b ∈ F (t, ϑ1, . . . , ϑs).
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For each 1 ≤ i ≤ s, let Ti = tp
k − ai ∈ F [t]. Then T1, . . . , Ts satisfy the hypotheses

of Lemma 4.3.2. Note that

b2 = e(trn − a) = e(tmp
k−`
− a) ∈ F (t).

By Lemma 4.3.2, there exist polynomials f(t), g(t) ∈ F [t] and a subset Z of

{1, . . . , s} such that

b =
f(t)

g(t)

∏
i∈Z

ϑi.

It follows that

g2(t)e(tmp
k−`
− a) = f2(t)

∏
i∈Z

(tp
k

− ai).

First suppose that m > 0. Then we must have that eg2(t) = f2(t), since the

other factors do not have multiple roots. Hence

(tmp
k−`
− a) =

∏
i∈Z

(tp
k

− ai).

We claim that |Z| = 1. To see this, suppose that |Z| = z ≥ 2; say, Z = {i1, . . . , iz}.

By considering the coefficient of t(z−1)pk in the expansion of
∏
i∈Z(tp

k − ai), we

find that
∑
i∈Z ai = 0. But this is impossible. For if n = 0, then each ai has the

form u + v for some u, v ∈ X; and if n > 0, then we have already noted that the

proof of Corollary 4.3.3 shows that aiz /∈ Ln−1(ai1 , . . . , aiz−1). Thus |Z| = 1 and

so tmp
k−` − a = tp

k − ai for some 1 ≤ i ≤ s. Consequently, r = m/p` = 1 and

a = ai ∈ Hn(Γ). Also since e = f2(t)/g2(t) and −1 has no square root in KΓ, it

follows that e = 1.

Now suppose that m < 0. Then multiplying by t−mp
k−`

, we obtain that

g2(t)e(1− at−mp
k−`

) = f2(t)
∏
i∈Z

(tp
k

− ai)t−mp
k−`

and so

−eag2(t)(t−mp
k−`
− a−1) = f2(t)

∏
i∈Z

(tp
k

− ai)t−mp
k−`

.

Arguing as above, we must have that

−eag2(t) = f2(t)t2c

for some integer c such that 0 ≤ −mpk−` − 2c ≤ 1 and

t−mp
k−`
− a−1 = td

∏
i∈Z

(tp
k

− ai),
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where d = −mpk−` − 2c. It follows that d = 0 and that −mpk−` = pk. But then

pk = 2c, which is impossible since p is odd. �

Finally Theorem 4.1.7 is an immediate consequence of Lemmas 4.3.4 and 4.3.9.

Lemma 4.3.9. If π ∈ Aut(KΓ), then

(a) π[X] = X;

(b) π(tn) = tn for all n ∈ ω;

(c) π [Hn(Γ)] = Hn(Γ) for all n ∈ ω; and

(d) there exists ϕ ∈ Aut(Γ) such that π � X = ϕ.

Proof. If v ∈ X, then π(v) is a p0-high element of KΓ and so Lemma 4.3.7(a)

yields that π(v) ∈ K0(Γ). Similarly, if n ∈ ω, then π(tn) is a pn+1-high element of

KΓ, and so π(tn) ∈ Kn+1(Γ). Applying Corollary 4.3.3, we obtain inductively that

π [Kn(Γ)] ⊆ Kn(Γ) for all n ∈ ω.

Now fix some integer n ∈ ω. By Lemma 4.3.7(b), we have that π(tn) = etrn,

where e2 = 1 and r = m/p`n+1 for some m ∈ Z r {0} and ` ∈ N. Let a ∈ Hn(Γ).

Then there exists an element c ∈ Kn+1(Γ) such that c2 = tn−a. Hence there exists

b ∈ Kn+1(Γ) such that

b2 = e(trn − π(ea)).

Since π(ea) ∈ Kn(Γ), Lemma 4.3.8 yields that e = r = 1 and π(a) = π(ea) ∈ Hn(Γ).

Thus π(tn) = tn and π [Hn(Γ)] ⊆ Hn(Γ). Similarly, π−1 [Hn(Γ)] ⊆ Hn(Γ) and so

π [Hn(Γ)] = Hn(Γ).

In particular, if (u, v) ∈ E, then π(u) + π(v) = π(u + v) ∈ H0(Γ). Thus there

exists an edge (u′, v′) ∈ E such that π(u) + π(v) = u′ + v′. Since π(u) is a p0-high

element of KΓ, either π(u) or −π(u) is a product of elements of the form xm/p
`
0 ,

where x ∈ X is a vertex of Γ, m ∈ Z r {0} and ` ∈ N. The same is true of π(v).

This easily implies that {π(u), π(v)} = {u′, v′}. Since Γ has no isolated vertices, it

follows that π(u) ∈ X for all u ∈ X. It is now clear that π � X ∈ Aut(Γ). �

4.4. A technical lemma

In this section, we shall prove Lemma 4.3.6. So let F be a field of characteristic

0 and let t be a transcendental element over F . Let p be an odd prime, and let
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{t(`) | ` ∈ N} be a set of elements such that t(0) = t and t(`+ 1)p = t(`). Let

L = F (t(0), t(1), . . . , t(`), . . . ) = F (t)({t}, p).

Let {Ti | i ∈ I} be a set of mutually prime polynomials in F [t], none of which is

divisible by t or has a multiple factor; and for each i ∈ I, let ϑi be an element such

that ϑ2
i = Ti. Let M = L(. . . , ϑi, . . . ). Suppose that q is an odd prime and that

u is a q-high element of M . Then we must prove that u is one of the “obvious”

q-high elements; namely:

(a) if q = p, then u = ct(`)m for some ` ∈ N, m ∈ Z and some p-high element

c of F ;

(b) if q 6= p, then u is a q-high element of F .

At various points during the proof of Lemma 4.3.6, it will be helpful if F

contains various primitive roots of unity. Fortunately, it is enough to prove Lemma

4.3.6 in the special case when F is algebraically closed. To see this, suppose that

Lemma 4.3.6 is true whenever F is an algebraically closed field. Now let F be

an arbitrary field of characteristic 0 and let F be the algebraic closure of F . Let

L = F (t(0), t(1), . . . , t(`), . . . ) and let M = L(. . . , ϑi, . . . ).

First suppose that u is a p-high element of M . Then u is also a p-high element

of M . Hence u = ct(`)m for some ` ∈ N, m ∈ Z and some p-high element c of

F . Since t(`)m is p-high in M , it follows that c = u/t(`)m is also p-high in M .

Consequently, c is a p-high element of M ∩ F . But the proof of Corollary 4.3.3

shows that M ∩ F = F . Hence c is a p-high element of F . A similar argument

shows that if u is a q-high element of M for some odd prime q 6= p, then u is a

q-high element of F .

So from now on, we shall assume that F is an algebraically closed field. In

particular, every nonzero element of F is q-high.

Suppose that u is a q-high element of M . Then there exists an integer ` ≥ 0

and a finite subset {i1, . . . , im} of I such that u ∈ F (t(`), ϑi1 , . . . , ϑim). There are

essentially two possibilities to consider.

Possibility (I): u is already a q-high element of F (t(`), ϑi1 , . . . , ϑim).
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Possibility (II): As n gets larger, in order to obtain solutions to the equation

yq
n

= u, it is necessary to pass to progressively larger algebraic extensions of

F (t(`), ϑi1 , . . . , ϑim).

First we shall use valuation theory to show that if possibility (I) holds, then

u ∈ F . Afterwards we shall use some basic Kummer theory to deal with possibility

(II).

Definition 4.4.1. Let K be any field. Then a valuation ν of K is a map

ν : K → R such that for every a, b ∈ K, the following properties hold:

(a) ν(a) ≥ 0, and ν(a) = 0 iff a = 0;

(b) ν(ab) = ν(a)ν(b); and

(c) ν(a+ b) ≤ ν(a) + ν(b).

The subgroup ν[K∗] of R is called the value group of ν; and the valuation ν is said

to be discrete if the value group ν[K∗] is an infinite cyclic group. Two valuations

ν1, ν2 of the field K are said to be equivalent iff there exists a positive r ∈ R such

that ν2(a) = ν1(a)r for all a ∈ K.

Example 4.4.2. Let K0 be any field and let x be a transcendental element

over K0.Let K = K0(x) be the corresponding rational function field. Fix some real

number r such that 0 < r < 1. For each irreducible polynomial f ∈ K0[x], we can

define a discrete valuation νf of K by

νf (a) = r−` deg(f) iff u = (b/c)f `,

where ` ∈ Z and b, c ∈ K0[x] are polynomials which are relatively prime to f . We

can also define a discrete valuation ν∞ of K by setting

ν∞(b/c) = rdeg(b)−deg(c),

for each nonzero quotient of polynomials b, c ∈ K0[x]. It is easily checked that the

set

S = {ν∞} ∪ {νf | f ∈ K0[x] is irreducible }

of pairwise nonequivalent discrete valuations of K satisfies the product formula; i.e.

for every 0 6= a ∈ K,

(i) there exist only finitely many ν ∈ S such that ν(a) 6= 1; and
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(ii)
∏
ν∈S ν(a) = 1.

It is also easily checked that the following property holds.

(iii) K0 = {0} ∪ {a ∈ K | ν(a) = 1 for all ν ∈ S}.

In our analysis of possibility (I), we shall make use of the fact that for every

finite extension of a rational function field, there exists a corresponding set of

discrete valuations satisfying the appropriate analogues of the above properties.

Theorem 4.4.3. Let K0 be any field and let E be a finite extension of the

rational function field K0(x). Then there exists a set {νj | j ∈ J} of pairwise

nonequivalent discrete valuations of E which satisfies the following properties.

(i) If 0 6= a ∈ E, then there exist only finitely many j ∈ J such that νj(a) 6= 1.

(ii) If 0 6= a ∈ E, then
∏
j∈J νi(a) = 1.

(iii) {0} ∪ {a ∈ E | νj(a) = 1 for all j ∈ J} is the algebraic closure of K0 in

E.

Proof. This is proved in Chapter 12 of Artin [1]. �

Lemma 4.4.4. Let q be any prime. Let ` ≥ 0 be an integer and let {i1, . . . , im}

be a finite subset of I. If u is a q-high element of F (t(`), ϑi1 , . . . , ϑim) then u ∈ F .

Proof. Let x = t(`). Then E = F (t(`), ϑi1 , . . . , ϑim) is a finite extension of

the rational function field F (x). Let {νj | j ∈ J} be the set of discrete valuations

of E, which is given by Theorem 4.4.3. Consider the abelian group homomorphism

π : E∗ →
∏
j∈J

νj [E
∗]

defined by π(a) = (νj(a))j∈J . Then π[E∗] is a subgroup of the free abelian group⊕
j∈J νj [E

∗] and so π[E∗] is a free abelian group. By Lemma 4.3.2, if a ∈ E is

algebraic over F , then a ∈ F . Thus kerπ = F ∗. Hence if a ∈ E rF , then π(a) is a

nonidentity element of the free abelian group π[E∗] and this implies that a is not

a q-high element of E. �

Lemma 4.4.5. If u is a q-high element of M for some odd prime q 6= p, then

u ∈ F .
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Proof. There exists an integer ` ≥ 0 and a finite subset {i1, . . . , im} of I such

that u ∈ E = F (t(`), ϑi1 , . . . , ϑim). Suppose that there exists an integer n ≥ 0

such that the equation yq
n+1

= u is not solvable in E. Let n be the least such

integer and let v ∈ E be such that vq
n

= u. Let w ∈ M satisfy wq = v. Then

[E(w) : E] = q. But clearly if E′ is a finite extension of E such that E ⊆ E′ ⊆M ,

then [E′ : E] = 2rps for some r, s ≥ 0. Thus u must already be q-high in E and so

u ∈ F . �

It now only remains for us to analyse the case when u is a p-high element of

M such that u /∈ F . (The above analysis shows that this case correponds exactly

to possibility (II).) Once again, there exists an integer ` ≥ 0 and a finite subset

{i1, . . . , im} of I such that u ∈ E = F (t(`), ϑi1 , . . . , ϑim). Let E = L(ϑi1 , . . . , ϑim).

If E′ is a finite extension of E such that E ⊆ E′ ⊆M , then [E′ : E] = 2r for some

r ≥ 0 and it follows that u is already p-high in E. Thus in order to complete the

proof of Lemma 4.3.6, it is enough to prove the following two lemmas.

Lemma 4.4.6. If u is a p-high element of L(ϑi1 , . . . , ϑim) for some finite subset

{i1, . . . , im} of I, then u ∈ L.

(Of course, the argument of the previous paragraph implies that if u ∈ L is a

p-high element of M , then u is already p-high in L.)

Lemma 4.4.7. If u is a p-high element of L, then u = ct(`)m for some ` ∈ N,

m ∈ Z and c ∈ F .

In order to prove Lemma 4.4.7, we must check that in passing from F (t(`))

to F (t(` + 1)), only the “obvious” elements of F (t(`)) obtain pth roots. This is

one of the issues which is addressed by Kummer theory. More specifically, let n

be a positive integer and let K be a field of characteristic 0 containing a primitive

nth root of unity. Then an extension L of K is said to be a Kummer extension of

exponent n iff

L = K(
n
√

∆ )

for some subgroup ∆ of K∗ containing the group (K∗)n of nth powers of K∗; i.e. L

is the field generated by the roots n
√
a for a ∈ ∆. The most basic result of Kummer
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theory is that ∆ is uniquely determined via the formula

∆ = (L∗)n ∩K.

(For example, see Section VIII.8 of Lang [27].) In other words, in passing from K

to the Kummer extension K( n
√

∆ ), only the “obvious” elements of K obtain nth

roots.

Theorem 4.4.8. Let n be a positive integer and let K be a field of characteristic

0 containing a primitive nth root of unity. Let 0 6= a ∈ K and suppose that z is a

root of the equation yn = a. If 0 6= b ∈ K(z) satisfies bn ∈ K, then b = czk for

some k ∈ Z and c ∈ K.

Proof. Let L = K(z). Then L is the Kummer extension K( n
√

∆), where ∆ is

the subgroup of K∗ generated by (K∗)n ∪ {a}. Hence

bn ∈ (L∗)n ∩K = ∆;

say, bn = cnak for some k ∈ Z and c ∈ K∗. After multiplying c by a suitable nth

root of unity if necessary, we obtain that b = czk. �

Proof of Lemma 4.4.7. Let ` ≥ 0 be an integer such that u ∈ F (t(`)). Let

x = t(`) and let u = xmf1(x)/g1(x), where m ∈ Z and f1(x), g1(x) ∈ F [x] are

relatively prime polynomials, neither of which is divisible by x. Since x is p-high in

L, it follows that c = u/xm is also p-high in L. Suppose that there exists an integer

n ≥ 0 such that the equation yp
n+1

= c is not solvable in F (x). Let n be the least

such integer and let b ∈ F (x) be such that bp
n

= c. Then there exist relatively

prime polynomials f2(x), g2(x) ∈ F [x], neither of which is divisible by x, such that

b = f2(x)/g2(x). After increasing ` if necessary, we can suppose that there exists

an element a ∈ F (t(` + 1)) such that ap = b. By Theorem 4.4.8, a = t(` + 1)kd

for some k ∈ Z and d ∈ F (x). Note that since a /∈ F (x), it follows that k is not

divisible by p. Let d = xrf3(x)/g3(x), where r ∈ Z and f3(x), g3(x) ∈ F [x] are

relatively prime polynomials, neither of which is divisible by x. Since

xk+rpfp3 (x)/gp3(x) = ap = b = f2(x)/g2(x),
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it follows that k + rp = 0. But this contradicts the fact that k is not divisible

by p. Hence c is already p-high in F (x) and so by Lemma 4.4.4, c ∈ F . Thus

u = cxm = ct(`)m has the required form. �

Finally we shall prove Lemma 4.4.6. We shall argue by induction on m ≥ 1

that the following statement holds.

Claim 4.4.9. Let F be an algebraically closed field of characteristic 0 and let t

be a transcendental element over F . Let p be an odd prime, and let {t(`) | ` ∈ N}

be a set of elements such that t(0) = t and t(`+ 1)p = t(`). Let

L = F (t(0), t(1), . . . , t(`), . . . ) = F (t)({t}, p).

Let {T1, . . . , Tm} be a set of mutually prime polynomials in F [t], none of which is

divisible by t or has a multiple factor; and for each 1 ≤ i ≤ m, let ϑi be an element

such that ϑ2
i = Ti. If u is a p-high element of L(ϑ1, . . . , ϑm), then u ∈ L.

We shall begin by giving the relatively straightforward induction step of the

argument. So suppose that m > 1 and that u is p-high in L(ϑ1, . . . , ϑm). Let

N = L(ϑ3, . . . , ϑm). Then Lemma 4.3.2 implies that we can express u uniquely as

u = a+ b1ϑ1 + b2ϑ2 + cϑ1ϑ2

where a, b1, b2, c ∈ N . Furthermore, there exist elements π1, π2 of the Galois group

Gal(N(ϑ1, ϑ2)/N) such that

• π1(ϑ1) = −ϑ1 and π1(ϑ2) = ϑ2;

• π2(ϑ1) = ϑ1 and π2(ϑ2) = −ϑ2.

Applying π1 and π2 to u, we see that the elements

u1 = a− b1ϑ1 + b2ϑ2 − cϑ1ϑ2

and

u2 = a+ b1ϑ1 − b2ϑ2 − cϑ1ϑ2

are also p-high in N(ϑ1, ϑ2); and so uu1 and uu2 are also p-high in N(ϑ1, ϑ2). Note

that uu1 = uπ1(u) ∈ N(ϑ2) and that uu2 = uπ2(u) ∈ N(ϑ1). It follows that

uu1 and uu2 are already p-high in N(ϑ2) and N(ϑ1) respectively. By induction
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hypothesis, we obtain that uu1, uu2 ∈ L. Hence there exists an element d ∈ L such

that u1 = du2; i.e.

a− b1ϑ1 + b2ϑ2 − cϑ1ϑ2 = da+ db1ϑ1 − db2ϑ2 − dcϑ1ϑ2.

It follows that either

• d = 1 and b1 = b2 = 0; or

• d = −1 and a = c = 0.

Consequently, u can be expressed in one of the two following forms:

u = a+ cϑ1ϑ2 or u = b1ϑ1 + b2ϑ2.

In the first case, u is a p-high element of N(ϑ1ϑ2) = L(ϑ1ϑ2, ϑ3, . . . , ϑm). Since

the polynomials T1T2, T3, . . . , Tm also satisfy the hypotheses of Claim 4.4.9, the

induction hypothesis yields that u ∈ L. In the second case,

u2 = (b21T1 + b22T2) + 2b1b2ϑ1ϑ2

is a p-high element of N(ϑ1ϑ2) and so u2 ∈ L. Thus b1b2 = 0 and so either

u = b2ϑ2 ∈ N(ϑ2) or u = b1ϑ1 ∈ N(ϑ1). Once again, the induction hypothesis

yields that u ∈ L.

Finally we shall deal with the more difficult basis step of the argument. In order

to simplify the notation, let T = T1 and ϑ = ϑ1. Suppose that u = a+ bϑ ∈ L(ϑ),

where a, b ∈ L. Then u = a − bϑ denotes the image of u under the nontrivial

element of the Galois group Gal(L(ϑ)/L).

Claim 4.4.10. If b ∈ L∗, then the element v = bϑ is not p-high in L(ϑ).

Proof. Suppose that there exists an element b ∈ L∗ such that v = bϑ is p-high

in L(ϑ). Let ` ≥ 0 be an integer such that b ∈ F (t(`)). Let x = t(`) and let f(x),

g(x) ∈ F [x] be relatively prime polynomials such that b = f(x)/g(x).

Since −1 is p-high in F , it follows that v2 = −vv is p-high in L. Applying

Lemma 4.4.7, we find that either

• f2(x)T = cg2(x)xn; or

• f2(x)Txn = cg2(x)

for some n ≥ 0 and c ∈ F . In the first case, we obtain that g2(x) divides T ; and

since T has no multiple factors, this implies that g(x) ∈ F . But this means that
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T divides xn, which contradicts the hypothesis that T is not divisible by t. In the

second case, we must have that f(x) ∈ F . After cancelling a suitable power of x,

we obtain that either Tx = dg2
1(x) or T = dg2

1(x) for some d ∈ F and g1(x) ∈ F [x].

In the former case, we see that x divides T , which implies that t divides T . In the

latter case, T has a multiple factor. So both cases lead to a contradiction. �

Now suppose that u is any p-high element of L(ϑ). Then we can express u

uniquely in the form u = a + bϑ, where a, b ∈ L and a 6= 0. For the sake of

contradiction, suppose that b 6= 0. Clearly

λ = uu = a2 − b2T

is a p-high element of L. Hence λ = ct(`)m for some ` ∈ N, m ∈ Z and c ∈ F . Let

m = 2n + k, where k = 0, 1. If k = 0, then
√
λ ∈ L. So after dividing a and b

by
√
λ if necessary, we can suppose that uu = 1. Similarly if k = 1, then we can

suppose that uu = t(`). Since u is p-high, it follows that

v = −uut(`)−1 = u2t(`)−1 = (a2 + b2T )t(`)−1 + (2abt(`)−1)ϑ

is also p-high in L(ϑ). Furthermore,

vv = (uu)2t(`)−2 = 1.

If we can show that 2abt(`)−1 = 0, then it follows that b = 0. Hence it is enough

to consider the case when uu = 1. Let a, b ∈ F (t(`)) and let x = t(`). Then there

exist polynomials f , g, h ∈ F [x] such that

u = a+ bϑ = (f/h) + (g/h)ϑ.

Since uu = 1, we have that f2 − g2T = h2. Since T has no multiple factors, we

can suppose that f , g and h are pairwise relatively prime; and we can also suppose

that h has been chosen so that its leading coefficient is 1. We shall eventually show

that f + gϑ is already p-high in F (x, ϑ). But then Lemma 4.4.4 implies that g = 0,

which contradicts the assumption that b = g/h 6= 0.

Fix some integer n ≥ 1 and let m = pn. Let v ∈ L(ϑ) satisfy vm = u. Let i ≥ 0

be such that v ∈ F (t(`+ i)) and let z = t(`+ i). Then there exist polynomials c, d,

e ∈ F [z] such that v = (c/e) + (d/e)ϑ. Since (vv)m = uu = 1 and F is algebraically

closed, we can suppose that vv = 1. This gives that c2 − d2T = e2; and so we can
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suppose that c, d and e are pairwise relatively prime and that the leading coefficient

of e is 1. Since

[(c/e) + (d/e)ϑ]m = (f/h) + (g/h)ϑ,

it follows that

fem = ch

[
cm−1 +

(
m

2

)
cm−3d2T + · · ·+

(
m

m− 1

)
dm−1T (m−1)/2

]
.

Using the facts that d2T = c2 − e2 and that

1 +

(
m

2

)
+

(
m

4

)
+ · · ·+

(
m

m− 1

)
= 2m−1,

we obtain the equality

fem = ch[2m−1cm−1 + e2Φ(c, e)],

where Φ is a polynomial in two variables over Q. Let 0 ≤ j ≤ m be the greatest

integer such that ej divides h and let h1 = h/ej . Then

fem−j = ch1[2m−1cm−1 + e2Φ(c, e)].

Since c and e are relatively prime, it follows that e does not divide the right-hand

side of this last equation. Hence m = j and so h1 divides f . Since f , h are relatively

prime and the leading coefficients of h and e are 1, it follows that h1 = 1. Thus

h = em and (c+ dϑ)m = f + gϑ.

At this point, we only know that c, d ∈ F [z], where z = t(`+ i) for some i ≥ 0.

Now we shall use Kummer theory to show that c, d ∈ F [x]. Clearly we can suppose

that i was chosen so that pi ≥ m = pn. Thus

(c+ dϑ)p
i

= (f + gϑ)p
i/m ∈ F (x, ϑ).

By Theorem 4.4.8, there exist rational functions ϕ, ψ ∈ F (x) and an integer k ∈ Z

such that

c(z) + d(z)ϑ = [ϕ(x) + ψ(x)ϑ]zk = [ϕ(zp
i

) + ψ(zp
i

)ϑ]zk.

Since c, d ∈ F [z], we can choose ϕ, ψ, k such that ϕ, ψ ∈ F [x] and k ≥ 0. Consider

the equality

f(x) + g(x)ϑ = [ϕ(x) + ψ(x)ϑ]mzkm.
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As f and g are relatively prime polynomials, we must have that k = 0; and so c = ϕ

and d = ψ. Since m = pn was an arbitrary power of p, we have now shown that

f + gϑ is already p-high in F (x, ϑ), which is the desired contradiction.

4.5. Notes

The normaliser tower technique was first introduced in Thomas [49], where it

was used to prove Theorem 4.1.13. The proof of Theorem 4.1.8 is closely based upon

Hodges [16, Section 5.5]. The proof of Theorem 4.1.7 is an expanded version of the

original proof of Fried-Kollar [10]. (There is no mention of valuations or Kummer

theory in the purely computational proof of Fried-Kollar. While the introduction

of these notions neither shortens nor simplifies the proof, I think that it helps to

explain why Lemma 4.3.6 is true.)



CHAPTER 5

Hamkins’ Theorem

Recently Joel Hamkins has observed that it is possible to define the automor-

phism tower of an arbitrary (not necessarily centreless) group. The only complica-

tion is that, instead of defining the automorphism tower to be an ascending chain of

groups, it is now necessary to define the automorphism tower to be a suitable direct

system of groups and homomorphisms. In this chapter, we shall prove Hamkins’

theorem which says that if G is an arbitrary group, then the automorphism tower

of G eventually terminates. Perhaps the most interesting feature of Hamkins’ proof

is that it gives virtually no information concerning the height τ(G) of the automor-

phism tower of an arbitrary group G, apart from the fact that τ(G) is less than

the least inaccessible cardinal κ such that κ > |G|. Even in the case when G is

a finite group, no better upper bound for τ(G) is currently known than the least

inaccessible cardinal.

5.1. Automorphism towers of arbitrary groups

In this section, we shall define the automorphism tower of an arbitrary (not

necessarily centreless) group; and we shall prove that the automorphism tower of an

arbitrary group eventually terminates. But before we can define the automorphism

tower of an arbitrary group, we first need to introduce the notion of the direct limit

of a direct system of groups and homomorphisms.

Definition 5.1.1. A partial ordering 〈Λ,≤〉 is said to be a directed set if for

all σ, ν ∈ Λ, there exists an element λ ∈ Λ such that σ ≤ λ and ν ≤ λ.

In this book, we shall only need to consider the case when Λ is an ordinal,

equipped with its usual well-ordering.

Definition 5.1.2. Let Λ be a directed set. Then a direct system of groups and

homomorphisms indexed by Λ consists of

89
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(a) a set {Gλ | λ ∈ Λ} of groups and

(b) a set {ϕλ,µ : Gλ → Gµ | λ ≤ µ ∈ Λ} of homomorphisms

such that the following conditions hold.

(i) ϕλ,λ : Gλ → Gλ is the identity map for all λ ∈ Λ.

(ii) ϕµ,ν ◦ ϕλ,µ = ϕλ,ν for all λ ≤ µ ≤ ν.

Definition 5.1.3. Suppose that {Gλ | λ ∈ Λ} and {ϕλ,µ | λ ≤ µ ∈ Λ} is a

direct system of groups and homomorphisms indexed by Λ. Let G be a group and

let ϕλ : Gλ → G be a homomorphism for each λ ∈ Λ. Then (G, {ϕλ | λ ∈ Λ}) is

the direct limit of the direct system if the following conditions hold.

(a) ϕλ = ϕµ ◦ ϕλ,µ for all λ ≤ µ.

(b) Suppose that H is a group and that for each λ ∈ Λ, ψλ : Gλ → H is a

homomorphism such that ψλ = ψµ ◦ ϕλ,µ for all λ ≤ µ ∈ Λ. Then there

exists a unique homomorphism ψ : G→ H such that ψλ = ψ ◦ ϕλ for all

λ ∈ Λ.

In this case, we write G = lim−→Gλ.

It is clear that each direct system has at most one direct limit up to isomor-

phism.

Theorem 5.1.4. Any direct system of groups and homomorphisms has a direct

limit.

Proof. Suppose that {Gλ | λ ∈ Λ} and {ϕλ,µ | λ ≤ µ ∈ Λ} is a direct system

of groups and homomorphisms indexed by Λ. To simplify notation, assume that

the groups {Gλ | λ ∈ Λ} are pairwise disjoint. Define an equivalence relation E on

X =
⊔
λ∈ΛGλ as follows.

• Suppose that g ∈ Gσ and h ∈ Gν . Then g E h iff there exists λ ≥ σ, ν

such that ϕσ,λ(g) = ϕν,λ(h).

For each g ∈ X, let [g] = {h ∈ X | gE h} be the corresponding E-equivalence class.

Then we can define a group operation on the set G = {[g] | g ∈ X} of E-equivalence

classes as follows.

• Suppose that [g], [h] ∈ G, where g ∈ Gσ and h ∈ Gν . Then

[g] · [h] = [ϕσ,λ(g) · ϕν,λ(h)],
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where λ ∈ Λ is any element such that λ ≥ σ, ν.

Finally for each λ ∈ Λ, define the homomorphism ϕλ : Gλ → G by ϕλ(g) = [g].

Then it is easily checked that G = lim−→Gλ. �

We are now ready to define the automorphism tower of an arbitrary (not nec-

essarily centreless) group.

Definition 5.1.5. Let G be an arbitrary group. Then the automorphism

tower of G consists of the class of groups {Gα | α ∈ On}, together with the class

of canonical homomorphisms {πβ,α : Gβ → Gα | β ≤ α ∈ On}, defined inductively

as follows.

(a) G0 = G and π0,0 = idG0
.

(b) If α = β + 1, then Gα = Aut(Gβ) and πβ,α : Gβ → Gα is the canonical

homomorphism which sends each g ∈ Gβ to the corresponding inner au-

tomorphism ig ∈ Aut(Gβ) = Gα. Furthermore, πα,α = idGα and if γ < β,

then πγ,α = πβ,α ◦ πγ,β .

(c) If α is a limit ordinal, then we define (Gα, {πβ,α | β < α}) to be the di-

rect limit of the direct system of groups {Gβ | β < α} and canonical

homomorphisms {πγ,β | γ ≤ β < α}; and we set πα,α = idGα .

The automorphism tower of G is said to terminate if there exists an ordinal α

such that the canonical homomorphism πα,α+1 : Gα → Gα+1 is an isomorphism.

Once again, this occurs if and only if there exists an ordinal α such that Gα is

a complete group. In order for the automorphism tower of G to terminate, it is

actually enough that there should exist an ordinal γ such that Gγ is centreless;

since then Theorems 2.1.1 and 3.1.13 imply that there exists an ordinal α such that

Gα is complete.

Theorem 5.1.6 (Hamkins [14]). If G is an arbitrary group, then the automor-

phism tower of G eventually terminates.

Proof. Let G be an arbitrary group and let 〈Gα | α ∈ On〉 be the automor-

phism tower of G. For each α ≤ β, let πα,β : Gα → Gβ be the corresponding

canonical homomorphism. As we explained above, it suffices to show that there
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exists an ordinal γ such that Gγ is a centreless group. For each ordinal α, let

Hα = {g ∈ Gα | There exists β ≥ α such that πα,β(g) = 1}.

For each g ∈ Hα, let βg be the least ordinal such that πα,βg (g) = 1 and let

f(α) = sup{βg | g ∈ Hα}.

It is easily checked that if α < β, then α ≤ f(α) ≤ f(β). Now define a strictly

increasing ω-sequence of ordinals by

(a) γ0 = 0,

(b) γn+1 = f(γn + 1),

and let γ = sup{γn | n ∈ ω}. Then γ is a limit ordinal such that f(α) < γ for every

α < γ. We shall prove that Gγ is a centreless group.

Suppose that g ∈ Z(Gγ), so that πγ,γ+1(g) = 1. Since γ is a limit ordinal,

there exists α < γ such that g = πα,γ(h) for some h ∈ Gα. Notice that

πα,γ+1(h) = πγ,γ+1 (πα,γ(h)) = πγ,γ+1(g) = 1.

Hence πα,f(α)(h) = 1. But this means that

g = πα,γ(h) = πf(α),γ

(
πα,f(α)(h)

)
= πf(α),γ(1) = 1,

as desired. �

Definition 5.1.7. Let G be an arbitrary group.

(a) τ(G) is the height of the automorphism tower of G; i.e. the least ordinal

α such that Gα is a complete group.

(b) τc(G) is the least ordinal γ such that Gγ is a centreless group.

By Theorem 2.1.1 and Corollary 3.3.2, if γ = τc(G), then

• τ(G) < γ + ω if Gγ is finite, and

• τ(G) <
(
2|Gγ |

)+
if Gγ is infinite.

Unfortunately theproof of Theorem 5.1.6 gives absolutely no upper bound for τc(G).

However, with a little more effort, it is possible to obtain an upper bound for τc(G),

albeit a seemingly terrible one.
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Theorem 5.1.8 (Hamkins [14]). Let G be an arbitrary group. If κ is a regular

uncountable cardinal such that |Gα| < κ for all α < κ, then

(a) τc(G) < κ; and

(b) τ(G) ≤ κ.

Proof. (a) This follows from a slight variation of the proof of Theorem 5.1.6.

For each ordinal α < κ, let

Kα = {g ∈ Gα | πα,κ(g) = 1};

and for each g ∈ Kα, let βg be the least ordinal β such that πα,β(g) = 1. Clearly

βg < κ each g ∈ Kα. Let

f(α) = sup{βg | g ∈ Kα}.

Since κ is regular and |Kα| < κ, it follows that f(α) < κ. Arguing as in the proof

of Theorem 5.1.6, we can now find a limit ordinal γ < κ such that f(α) < γ for all

α < γ; and then the proof of Theorem 5.1.6 shows that Gγ is a centreless group.

(b) Let γ = τc(G) < κ. Then the groups from step γ to step κ

Gγ → · · · → Gα → · · · → Gκ

in the automorphism tower of G can be identified with the corresponding groups

in the classical automorphism tower of the centreless group Gγ ; and we can apply

the argument in the proof of Theorem 3.1.13 to the increasing chain

Gγ E Gγ+1 E · · · E Gα E · · ·Gκ =
⋃

γ≤α<κ

Gα.

Specifically, suppose that π ∈ Aut(Gκ). By Theorem 3.1.10, there exists a club C

of κ such that C ⊆ κ r γ and π[Gα] = Gα for all α ∈ C. For each α ∈ C, there

exists an element gα ∈ Gα+1 = Aut(Gα) such that gαxg
−1
α = π(x) for all x ∈ Gα.

If α, β ∈ C and α < β, then g−1
α gβ ∈ CGκ(Gα) 6 CGκ(G) = 1 and so gα = gβ .

Hence there is a fixed element g ∈ Gκ such that π � Gα = ig � Gα for each α ∈ C

and so π = ig ∈ Inn(Gκ). Thus Aut(Gκ) = Inn(Gκ) and so τ(G) ≤ κ. �

Of course, in order to apply Theorem 5.1.8, we must first find a regular un-

countable cardinal κ such that |Gα| < κ for all α < κ. In the special case when
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G is already centreless, Theorem 3.3.1 implies that we can take κ =
(
2|G|

)+
. Un-

fortunately this is not true in general. For example, in the next section, we shall

present an example of a countable abelian group G such that |Aut(G)| = 2ω and

|Aut(Aut(G))| = 22ω . At present, we can find no smaller value for κ than the least

inaccessible cardinal greater than |G|. (In this case, we can obtain a slightly better

bound for τ(G) than that given by Theorem 5.1.8(b).)

Definition 5.1.9. A regular uncountable cardinal κ is inaccessible if 2θ < κ

for all cardinals θ < κ.

Corollary 5.1.10. Let G be an arbitrary group. If κ is an inaccessible cardinal

greater than |G|, then τ(G) < κ.

Proof. An easy induction shows that |Gα| < κ for all α < κ. Hence Theorem

5.1.8 yields that τc(G) < κ. Let γ = τc(G). Then |Gγ | < κ and it follows that

τ(G) < max{γ + ω,
(
2|Gγ |

)+} < κ. �

It has to be admitted that the bound given by Corollary 5.1.10 is very un-

satisfactory, particularly when it is remembered that the existence of inaccessible

cardinals cannot be proved in ZFC. (For example, see Section IV.10 of Kunen

[26].) It is especially embarrassing that even when G is a finite group, no better

upper bound for τ(G) is currently known than the first inaccessible cardinal.

5.2. Two examples and many questions

The most interesting open problem on automorphism towers is that of finding

a satisfactory upper bound for τ(G) when G is an arbitrary group. As we saw in

the last section, this problem is essentially the same as that of finding a satisfactory

upper for τc(G). These problems remain open even in the case when G is finite. We

shall begin this section by presenting a natural example of a finite group G such

that the automorphism tower of G does not terminate after finitely many steps.

Thus Wielandt’s theorem does not extend to arbitrary finite groups.

Theorem 5.2.1. The automorphism tower of the dihedral group D8 terminates

after exactly ω + 1 steps.
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Proof. Let 〈Gα | α ∈ On〉 be the automorphism tower of the dihedral group

G = D8 = 〈a, b | a2 = b2 = (ab)4 = 1〉;

and for each α ≤ β, let πα,β : Gα → Gβ be the corresponding canonical ho-

momorphism. Clearly D8 has an outer automorphism ϕ of order 2 which inter-

changes the involutions a and b; and it is a straightforward exercise to show that

Aut(D8) = 〈ia, ϕ〉. Furthermore, an easy calculation shows that iaϕ has order 4

and so Aut(D8) ' D8. Notice that Z(D8) = 〈(ab)2〉 has order 2. Thus the canoni-

cal homomorphism D8 → Aut(D8) is not an isomorphism; and it follows that the

automorphism tower of D8 does not terminate after finitely many steps.

Another easy calculation shows that (iaϕ)2 = iab. Hence π0,1(ab) = iab is the

central involution of Aut(D8). It follows that π0,2(ab) = 1 and so π0,2(a) = π0,2(b).

Thus Gω = 〈π0,ω(a)〉 is cyclic of order 2. It follows that the automorphism tower

of G = D8 terminates after exactly ω + 1 steps with the group Gω+1 = 1. �

No examples are known of finite groups G such that τ(G) > ω + 1. However,

this is probably because of the serious difficulty of computing the automorphism

towers of finite groups. It seems that if G is a finite group, then after a small

number of steps either

(a) the sequence 〈Gn | n ∈ ω〉 becomes constant up to isomorphism; or

(b) the groups Gn become too complicated to compute.

Of course, the problem is even worse if G is an infinite group.

Conjecture 5.2.2. The automorphism tower of an arbitrary finite group ter-

minates after countably many steps.

Theorem 5.1.8 implies that if G is a counterexample to Conjecture 5.2.2, then

there exists an ordinal α < ω1 such that |Gα| ≥ ω.

Question 5.2.3. Does there exist a finite group G such that |Gα| ≥ ω for some

α < ω1?

Initially it seems reasonable to concentrate on the special case of whether there

exists a finite group G such that Gω is infinite. (It is not obvious to me whether
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this special case is equivalent to Question 5.2.3.) If G is such a group, then clearly

|Gn| → ∞ as n→∞. Thus we are led to consider the question of whether

〈|Gn| | n ∈ ω〉

is a bounded sequence of integers for every finite group G. This question has already

been raised by Scott [42] in the following equivalent formulation.

Question 5.2.4. Let G be an arbitrary finite group. Is the sequence of groups

〈Gn | n ∈ ω〉 eventually periodic up to isomorphism?

With this wording, Question 5.2.4 almost seems to imply a prior knowledge of

the existence of finite groups G such that

(i) G 6' Aut(G) and

(ii) G ' Gn for some n > 1.

However, despite raising this question with a number of leading group theorists, I

have yet to find anyone who knows of an example of such a group.

Question 5.2.5. Does there exist a finite group G such that the sequence of

groups 〈Gn | n ∈ ω〉 is eventually periodic up to isomorphism, but not eventually

constant?

Virtually nothing is known concerning the problem of finding upper bounds for

the heights of the automorphism towers of arbitrary infinite groups. As we have

already seen, this problem is closely related to the problems of bounding τc(G)

and |Gα| in terms of |G|. The current state of ignorance concerning the first of

these problems is particularly embarrassing. While the only known upper bound

for τc(G) is the next inaccesssible cardinal after |G|, no example is known of a group

such that τc(G) > ω + 1.

Conjecture 5.2.6. For each ordinal α, there exists a group G such that

τc(G) = α.

Conjecture 5.2.6 is most naturally approached via the notion of the (transfinite)

upper central series of a group.
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Definition 5.2.7. The upper central series of a group G is defined to be the

series

1 = Z0(G) 6 Z1(G) 6 Z2(G) 6 · · · 6 Zα(G) 6 · · ·

such that

(a) Zα+1(G)/Zα(G) is the centre of G/Zα(G); and

(b) if α is a limit ordinal, then Zα(G) =
⋃
β<α Zβ(G).

If α is the least ordinal such that Zα(G) = Zα+1(G), then we say that the upper

central series of G has length α and that ζ(G) = Zα(G) is the hypercentre of G. If

ζ(G) = G, then we say that G is a hypercentral group.

It seems reasonable to expect that for each α, there exists a group G whose

upper central series has length exactly exactly α and which satisfies τc(G) = α.

For example, it might be worth considering the hypercentral groups constructed

by McLain [31]. Of course, even if this approach to Conjecture 5.2.6 is successful,

each of the resulting groups G will satisfy |G| ≥ |α| and so τc(G) < |G|+. However,

the real question is whether τc(G) can be substantially greater than |G|.

Question 5.2.8. Does there exist an infinite group G such that τc(G) ≥ |G|+?

Very little is also known concerning the problem of bounding |Gα| in terms of

|G|. We have seen that if G is centreless, then |Gα| <
(
2|G|

)+
for all ordinals α.

However, this result does not extend to arbitrary groups.

Theorem 5.2.9. There exists a countable group G such that |Aut(G)| = 2ω

and |Aut(Aut(G))| = 22ω .

Proof. For each prime p, let Z [1/p] = {m/pn | m ∈ Z, n ∈ N} be the additive

group of p-adic rationals. Let G =
⊕

p Z [1/p]. Clearly an element g ∈ G is divisible

by pn for all n ∈ N iff g ∈ Z [1/p]. Hence if π ∈ Aut(G), then π [Z [1/p]] = Z [1/p] for

each prime p. It is easy to see that any automorphism of Z [1/p] is just multiplication

by some element u ∈ Up = {±pn | n ∈ Z}, the group of multiplicative units of the

ring of p-adic rationals. Thus Aut(G) '
∏
p Up and so |Aut(G)| = 2ω.

Next note that Up ' Z× C2 for each prime p. Hence Aut(G) ' P × V , where

P is the direct product of countably many copies of Z and V is the direct product

of countably many copies of C2. Since each nonzero element of V has order 2, it
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follows that V is isomorphic to a direct sum of |V | copies of C2. So we can identify

V with the vector space of dimension 2ω over the field F2 of two elements. Hence

Aut(Aut(G)) > Aut(P )×Aut(V ) = Aut(P )×GL(V ),

where GL(V ) is the general linear group on the vector space V . It follows that

22ω = |GL(V )| ≤ |Aut(Aut(G))| ≤ 22ω .

�

Definition 5.2.10. If κ is an infinite cardinal, then the cardinal iα(κ) is

defined inductively as follows.

(a) i0(κ) = κ.

(b) iα+1(κ) = 2iα(κ).

(c) If α is a limit ordinal, then iα(κ) = supβ<α iβ(κ)

Question 5.2.11. Does there exist a fixed ordinal β such that if G is an arbi-

trary infinite group, then |Gα| ≤ iβ(|G|) for all α?

In Chapter 7, we shall prove a result which shows that in the classical case of

centreless groups, the upper bound of τ(G) <
(
2|G|

)+
cannot be improved in ZFC.

It is conceivable that the analogous result is true for the case of arbitrary groups.

We shall say a little more about this possibility at the end of Section 7.1.

5.3. Notes

In retrospect, it is surprising that the notion of the automorphism tower of an

arbitrary (perhaps centreless) group was not defined before Hamkins’ elegant paper

[14]. Theorems 5.1.6 and 5.1.8 are due to Hamkins [14]. Theorem 5.2.1 is an easy

consequence of Robinson [39, Exercise 1.5.6].

Joel Hamkins has pointed out that it is slightly inaccurate to say that no better

bound for τ(G) is known than the least inaccessible cardinal κ such that κ > |G|.

For example, let λ be the least cardinal such that Vλ � ZFC and λ > |G|. Then

an easy Lowenheim-Skolem argument shows that λ is strictly less than κ. Clearly

we can assume that G ∈ Vλ. Since ZFC proves that the automorphism tower of G
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eventually terminates, it follows that

Vλ � The automorphism tower of G terminates.

Clearly the notion of the automorphism tower of G is absolute between Vλ and V .

Hence τ(G) < λ.





CHAPTER 6

Set-theoretic Forcing

The first half of this book presented those results on automorphism towers

which can currently be proved using the classical ZFC axioms of set theory. The

final three chapters will explain why a number of natural problems concerning

automorphism towers are independent of ZFC. For example, we shall prove that

if κ is a regular uncountable cardinal, then ZFC cannot decide the question of

whether there exists a centreless groupG of cardinality κ such that τ(G) ≥ 2κ. More

precisely, in Chapter 7, we shall prove that if κ is a (possibly singular) uncountable

cardinal, then it is consistent with ZFC that there exists a centreless group G of

cardinality κ such that τ(G) > 2κ; and in Chapter 9, we shall prove that it is

also consistent with ZFC that τ(G) < 2κ for every centreless group G of regular

uncountable cardinality κ. In both cases, we shall use the technique of set-theoretic

forcing to construct a suitable model of ZFC which satisfies the relevant group-

theoretic statement.

The first five sections of this chapter contain a short introduction to set-

theoretic forcing, which is aimed primarily at nonlogicians. In these sections, we

shall present a detailed discussion of the fundamental concepts and basic results of

set-theoretic forcing. Proofs of results will be provided only when they are both

easy and also illustrate important ideas which will be needed in the later chapters of

this book. (For a thorough introduction to set-theoretic forcing, the reader should

consult the excellent textbook of Kunen [26].) In Section 6.8, we shall discuss

some of the basic ideas of iterated forcing, including the notion of a reverse Easton

iterated forcing.

Those readers who are already familiar with the basic theory of set-theoretic

forcing need only read Sections 6.6 and 6.7. In Section 6.6, we shall prove that

the height τ(G) of the automorphism tower of an infinite centreless group G is

not necessarily an absolute concept. In Section 6.7, we shall prove some partial

101
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absoluteness results for the heights of automorphism towers, which will be used

repeatedly in the later chapters of this book.

In the first four sections of this chapter, V will always denote the actual set-

theoretic universe.

6.1. Countable transitive models of ZFC

Suppose that σ is a sentence in the first-order language of set theory. By

Gödel’s Completeness Theorem, σ is consistent with ZFC, written Con(ZFC+σ),

iff there exists a countable model 〈M,E〉 of ZFC + σ. (Here the relation E is

the interpretation of the membership symbol ∈ in M .) This chapter presents an

account of set-theoretic forcing: a technique for constructing countable models of

theories such as ZFC+2ω = ω2, etc. Unfortunately, these constructions cannot be

carried out using just the axioms of ZFC, since Gödel’s Incompleteness Theorem

implies that Con(ZFC) is not a theorem of ZFC. Throughout this book, our basic

assumption is that ZFC is consistent and hence there exists a countable model

〈M,E〉 of ZFC. In fact, we shall make the stronger assumption that the axioms of

ZFC are true in the actual set-theoretic universe V . This implies that there exists

a countable model 〈M,E〉 of ZFC which satisfies the following further hypotheses.

(For more details, see Section IV.7 of Kunen [26]. As we indicated above, while it

is true platonistically that there exists a countable transitive model of ZFC, the

proof of its existence cannot be formalised within ZFC. A clear discussion of this

point, together with an account of other less platonistic approaches to forcing, can

be found in Section VII.9 of Kunen [26].)

6.1.1(a) The relation E is the genuine membership relation on M ; i.e.

E = {〈x, y〉 ∈M ×M | x ∈ y}.

Thus our model has the form 〈M,∈〉.

6.1.1(b) M is a transitive set ; i.e. if x ∈M and y ∈ x, then y ∈M .

Definition 6.1.1. If the countable model M of ZFC satisfies hypotheses

6.1.1(a) and 6.1.1(b), then M is said to be a countable transitive model (c.t.m.)

If M is a c.t.m., then M contains a canonically defined transitive submodel

LM such that LM � ZFC +GCH. (For example, see Chapter VI of Kunen [26].)
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Hence, whenever it is convenient, we can also assume that the c.t.m. M satisfies

GCH.

In the next chapter, we shall prove that there exists a c.t.m. M such that

M � There exists an infinite centreless group G such that τ(G) > 2|G|.

To accomplish this, we must not only construct the c.t.m. M , but also calculate

the automorphism tower of G within M . More generally, we shall need to under-

stand the set-theoretic and algebraic properties of various sets and structures within

the c.t.m. M . Fortunately, this is not too difficult, since Hypotheses 6.1.1(a) and

6.1.1(b) imply that many basic set-theoretic and algebraic properties P (x1, . . . , xn)

are absolute for M ; i.e. for all a1, · · · , an ∈M ,

M � P (a1, . . . , an) iff V � P (a1, . . . , an).

For example, suppose that a, b ∈M . It is clear that if V � a ⊆ b, then M � a ⊆ b.

Conversely, suppose that M � a ⊆ b. Working within V , the transitivity of M

implies that if c ∈ a, then c ∈ M and hence c ∈ b. Thus V � a ⊆ b. Consequently,

for all a, b ∈M ,

M � a ⊆ b iff V � a ⊆ b.

Definition 6.1.2. A transitive class model M of ZFC is a transitive class

such that 〈M,∈〉 � ZFC. In particular, we allow the possibility that M is a proper

class. In this book, we shall only be interested in the cases when M is either a

c.t.m. or the actual universe V .

Definition 6.1.3. Let ϕ(x1, . . . , xn) be a formula with free variables x1, . . . , xn

and let M be a transitive class model of ZFC. Then ϕ is absolute for M if for all

a1, · · · , an ∈M ,

M � ϕ(a1, . . . , an) iff V � ϕ(a1, . . . , an).

Notice that if ϕ is absolute for every transitive class model of ZFC, then

whenever M , N are transitive class models of ZFC such that M ⊆ N ,

M � ϕ(a1, . . . , an) iff N � ϕ(a1, . . . , an)

for all a1, · · · , an ∈M .
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We have already seen that the formula “x ⊆ y” is absolute for every transitive

class model M of ZFC. With a little more effort, it can be shown that the formulas

“x is an ordinal” and “x = ω” are also absolute for every transitive class model

M . On the other hand, if M is a c.t.m., then the formula “x is uncountable” is

not absolute for M . To see this, let M be a c.t.m. and let s ∈ M be any element

such that M � s is uncountable. Since M is transitive and s ∈ M , it follows that

s ⊆ M . Hence, working within the actual universe V , we see that s is really only

a countably infinite set. Of course, this means that if f : ω → s is any of the

bijections which witness the countability of s, then necessarily f ∈ V rM .

In order to determine whether a formula ϕ is absolute, it is usually sufficient to

consider whether or not ϕ is equivalent to a formula which only involves bounded

quantifiers.

Definition 6.1.4. Let ϕ be a formula and let x, y be variables. Then we write

(∃x ∈ y)ϕ as an abbreviation for ∃x(x ∈ y∧ϕ). Similarly, we write (∀x ∈ y)ϕ as an

abbreviation for ∀x(x ∈ y → ϕ). We say that (∃x ∈ y) and (∀x ∈ y) are bounded

quantifiers.

Definition 6.1.5. The set of ∆0-formulas are defined inductively as follows.

(i) “x ∈ y” and “x = y” are ∆0-formulas.

(ii) If ϕ and ψ are ∆0-formulas, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ and ϕ ↔ ψ

are also ∆0-formulas.

(iii) If ϕ is a ∆0-formula and x, y are variables, then (∃x ∈ y)ϕ and (∀x ∈ y)ϕ

are also ∆0-formulas.

Lemma 6.1.6. Let ϕ(x1, . . . , xn), ψ(x1, . . . , xn) be formulas with free variables

x1, . . . , xn. If ψ is a ∆0-formula and ZFC ` ∀x1 · · · ∀xn(ϕ↔ ψ), then ϕ is absolute

for every transitive class model M of ZFC.

Proof. Since M is transitive, s ⊆ M for each s ∈ M . Hence each bounded

quantifier (∃x ∈ s), (∀x ∈ s) has the same interpretation in M and V . �

The next result mentions just a few of the many set-theoretic notions which

are easily seen to be definable by ∆0-formulas.
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Theorem 6.1.7. The following set-theoretic notions are definable by ∆0-formulas

and hence are absolute for every transitive class model M of ZFC.

(a) z is an ordered pair.

(b) R is a binary relation on the set A.

(c) f is a bijection from A onto B.

(d) α is an ordinal.

(e) n is a natural number.

(f) z is a finite sequence.

�

Many algebraic notions are also easily seen to be definable by ∆0-formulas. For

example, suppose that M is a transitive class model of ZFC and that 〈G, f, e〉 ∈M ,

where e ∈ G and f is a binary operation on G. (Of course, since M is transitive,

it follows that e, f ∈ M .) The axioms of group theory are naturally expressed as

∆0-formulas; e.g.

(∀x ∈ G)(∃y ∈ G)f(x, y) = e.

It follows that the notion “〈G, f, e〉 is a group” is definable by a ∆0-formula and

hence is absolute for every transitive class model M of ZFC. Similar remarks apply

to the notions of a graph, a field, etc.

Theorem 6.1.8. The following algebraic notions are definable by ∆0-formulas

and hence are absolute for every transitive class model M of ZFC.

(a) 〈Γ, E〉 is a connected graph.

(b) 〈G,×, 1〉 is a centreless group.

(c) 〈F,+,×, 0, 1〉 is an algebraically closed field.

�

We have already seen that if M is a c.t.m., then the notion “x is uncountable”

is not absolute for M . Of course, this means that the notion “x is countable” is also

not absolute for M . However, suppose that s ∈ M and that M � s is countable.

Then there exists a function f ∈M such that M � f : ω → s is a surjection. Since

the notion of a surjection is definable by a ∆0-formula, it follows that f is also a

surjection in the actual universe V and hence V � s is countable. Consequently,

for all s ∈M , if M � s is countable, then V � s is countable.
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Definition 6.1.9. Let ϕ(x1, . . . , xn) be a formula with free variables x1, . . . , xn

and let M be a transitive class model of ZFC. Then ϕ is upwards absolute for M if

for every transitive class model N of ZFC such that M ⊆ N , for all a1, · · · , an ∈M ,

M � ϕ(a1, . . . , an) implies N � ϕ(a1, . . . , an).

As the above example suggests, there is a simple syntactical criterion which

usually suffices to determine whether a notion is upwards absolute.

Definition 6.1.10. The formula ϕ is a Σ1-formula iff ϕ has the form

∃y1 · · · ∃ymψ,

where ψ is a ∆0-formula.

Lemma 6.1.11. Let ϕ(x1, . . . , xn), ψ(x1, . . . , xn) be formulas with free variables

x1, . . . , xn. If ψ is a Σ1-formula and ZFC ` ∀x1 · · · ∀xn(ϕ↔ ψ), then ϕ is upwards

absolute for every transitive class model M of ZFC.

�

The following theorem gives two more examples of notions which are easily seen

to be definable by Σ1-formulas. As we shall see later, neither of these notions is

absolute.

Theorem 6.1.12. The following notions are definable by Σ1-formulas and hence

are upwards absolute for every transitive class model M of ZFC.

(a) 〈Γ1, E1〉 and 〈Γ2, E2〉 are isomorphic graphs.

(b) 〈G,×, 1〉 is a group such that τ(G) > 0.

�

It occasionally requires a little more thought to determine whether a notion

is absolute. For example, consider the notion “G is a simple group.” The most

obvious definition of this notion is:

¬(∃H)(H is a nontrivial proper normal subgroup of G,

which is certainly not a ∆0-definition; and, at first glance, it seems conceivable that

there might exist a transitive class model M of ZFC and a group G ∈M such that

M � G is simple, while V � G is not simple. Of course, this would mean that G has
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nontrivial proper normal subgroups in V , but that each such subgroup H satisfies

H ∈ V rM . However, notice that if G has a nontrivial proper normal subgroup in

V , then it has such a subgroup of the form H = 〈 gG 〉 for some 1 6= g ∈ G. But,

using Theorem 6.1.7(f), we see that 〈 gG 〉 has a ∆0-definition in the language of

set theory using the parameters g, G ∈ M . It follows that 〈 gG 〉 ∈ M and hence

M � G is not simple, which is a contradiction. Hence the notion “G is a simple

group” is absolute for every transitive class model M of ZFC. An examination

of the above argument shows that the notion “G is a simple group” also has the

following slightly less obvious ∆0-defintion:

(∀x ∈ G)(∀y ∈ G)(x 6= 1 implies y ∈ 〈xG〉).

We have already noted that if M is a c.t.m., then every set s ∈ M is really

countable within V . However, since M � ZFC, it follows that there exists an

ordinal α ∈M such that

M � α is the least uncountable cardinal.

We shall denote this ordinal by ωM1 and use a similar notation for the M -versions

of other definable objects. For example, SymM (ω) will denote the group G ∈ M

such that

M � G is the group of permutations of ω.

Since the notion of a permutation of ω is absolute, we have that

SymM (ω) = Sym(ω) ∩M.

Here Sym(ω) denotes the actual symmetric group on ω. We shall occasionally use

notation such as SymV (ω) when we want to emphasise that we are referring to an

object within V rather the M -version within some c.t.m. M .

In the remainder of this section, we shall say a few words concerning the basic

strategy of set-theoretic forcing. Suppose that we wish to prove the consistency of

¬CH. Let M be any c.t.m. Working within the actual universe V , we see that

PM (ω) is really only a countable subset of P(ω) and that ωM2 is a countable ordinal.

In particular, there exist uncountably many sets S ∈ P(ω) r PM (ω) and it seems

reasonable to hope that we can obtain of model of ZFC + ¬CH by extending M

to a suitable c.t.m. N such that PM (ω)  PN (ω). For example, let f ∈ V rM
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be an injection f : ωM2 → P(ω) such that f(α) = Sα ∈ P(ω) r PM (ω) for each

α < ωM2 and suppose that N ! M is a c.t.m. such that f ∈ N . Then N contains

the ωM2 -sequence 〈Sα | α < ωM2 〉 of distinct “new” subsets Sα ⊆ ω. At first glance,

this seems to imply that that CH is false in N . Unfortunately, it only shows that

N � 2ω ≥ |ωM2 |,

and there remains the possibility that the cardinal ωM2 of M has been “collapsed”

within N ; i.e. that N also contains a bijection g : ωM1 → ωM2 or, even worse, a

bijection h : ω → ωM2 . If this occurs, then

N � |ωM2 | ≤ ω1

and we have accomplished nothing. To see that this is a genuine problem, suppose

that we inadvertently choose the sets 〈Sα | α < ωM2 〉 so that minSα 6= minSβ for

all α < β < ωM2 . Then N also contains the injection h : ωM2 → ω, defined by

h(α) = minSα,

and so ωM2 is indeed a countable ordinal in N . However, it seems reasonable to

hope that this kind of problem will not arise if the sequence 〈Sα | α < ωM2 〉 is

sufficiently “generic”. In the next section, we shall begin our study of set-theoretic

forcing: a technique for adjoining “generic” objects to countable transitive models

of ZFC.

Convention 6.1.13. From now on, we shall often use phrases such as:

• “let κ ∈M be a regular cardinal such that κ<κ = κ”,

instead of the more accurate:

• “let M � κ is a regular cardinal such that κ<κ = κ”.

6.2. Set-theoretic forcing

In this section, V will continue to denote the actual set-theoretic universe.

Definition 6.2.1. A notion of forcing is an ordered triple 〈P,≤, 1〉 such that

≤ partially orders P and 1 is the largest element of P. The elements of P are called

conditions.
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Slightly abusing notation, we shall usually say that P is a notion of forcing. On

the other hand, when more than one notion of forcing is under discussion, we shall

occasionally need to use the more explicit notation 〈P,≤P, 1P〉.

A notion of forcing typically arises as a collection of approximations to some

object that we wish to “generically adjoin”. For example, suppose that we wish to

adjoin an ω2-sequence 〈gα | α < ω2〉 of distinct functions gα ∈ ω2. Equivalently,

we wish to adjoin the associated function g : ω2 × ω → 2, defined by

g(α, n) = gα(n).

Then a suitable notion of forcing would be the set Fn(ω2 × ω, 2) of finite approxi-

mations to such a function.

Definition 6.2.2. If I, J are any sets, then Fn(I, J) is the notion of forcing

consisting of all functions p such that

(a) dom p ⊆ I,

(b) ran p ⊆ J , and

(c) |p| < ω,

ordered by q ≤ p iff q ⊇ p.

As this example suggests, if P is an arbitrary notion of forcing and p, q ∈ P are

conditions, then the intuitive meaning of q < p is that “q contains more information

than p”.

Definition 6.2.3. Let P be a notion of forcing.

(a) The conditions p, q ∈ P are compatible iff there exists r ∈ P such that

r ≤ p, q.

(b) Otherwise, p and q are incompatible, written p ⊥ q.

Definition 6.2.4. Let P be a notion of forcing.

(a) A subset D ⊆ P is dense iff for all p ∈ P, there exists q ∈ D such that

q ≤ p.

(b) A subset G ⊆ P is a filter iff the following conditions are satisfied.

(i) For all p, q ∈ G, there exists r ∈ G such that r ≤ p, q.

(ii) For all p, q ∈ P, if p ∈ G and p ≤ q, then q ∈ G.
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For example, consider the notion of forcing P = Fn(ω2×ω, 2). For each pair of

ordinals α < β < ω2, let Cα,β consist of the conditions p ∈ P for which there exists

an integer n ∈ ω such that

(1) 〈α, n〉, 〈β, n〉 ∈ dom p; and

(2) p(α, n) 6= p(β, n).

Then Cα,β is dense in P for α < β < ω2. Similarly, it is clear that for each pair

〈α, n〉 ∈ ω2 × ω, the subset

Dα,n = {p ∈ P | 〈α, n〉 ∈ dom p}

is dense in P. Now suppose that G ⊆ P is a filter. Then any two of the partial

functions p, q ∈ G are compatible and so g =
⋃
G is a partial function from ω2×ω

into 2. Clearly g will be a total function iff G∩Dα,n 6= ∅ for all 〈α, n〉 ∈ ω2×ω. In

this case, the corresponding sequence 〈gα | α < ω2〉 will consist of distinct functions

gα ∈ ω2 iff G ∩ Cα,β 6= ∅ for all α < β < ω2. Of course, such a filter G exists iff

CH is false in the actual universe V .

Up to this point, our discussion of notions of forcing, dense sets, etc. has taken

place in V . However, if we wish to generically adjoin a sequence 〈gα | α < ωM2 〉 of

functions gα ∈ ω2 to a c.t.m. M , then it is necessary to consider the corresponding

relativized versions within M . Fortunately, all of the basic ingredients of forcing

are absolute, including “≤ partially orders P”, “p ≤ q”, “p ⊥ q”, “D is a dense

subset of P”, etc.

Definition 6.2.5. Suppose that M is a c.t.m. and that P ∈ M is a notion of

forcing. Then the filter G ⊆ P is P-generic over M iff G ∩ D 6= ∅ for all dense

subsets D of P such that D ∈M .

But how can we tell whether a dense subset D of P is an element of the c.t.m.

M? In practice, this is not a source of difficulty, since each dense set D that is

actually used in our arguments will be explicitly definable; i.e. there will always

exist a formula ϕ(y, x1, · · · , xn) in the language of set theory with free variables

y, x1, · · · , xn and elements a1, · · · , an ∈M such that

D = {p ∈ P |M � ϕ(p, a1, · · · , an)}.
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Since M � ZFC, it follows that D ∈ M . In fact, the formula ϕ(y, x1, · · · , xn) will

usually be absolute for M , so that

D = {p ∈ P | V � ϕ(p, a1, · · · , an)}.

The countability of the c.t.m. M is used only once in the development of set-

theoretic forcing; namely, in the following proof that there always exists a P-generic

filter over M .

Lemma 6.2.6. Suppose that M is a c.t.m. and that P ∈M is a notion of forcing.

For each p ∈ P, there exists a filter G ⊆ P such that p ∈ G and G is P-generic over

M .

Proof. Let {Dn | n < ω} be an enumeration of the countably many dense

subsets D of P such that D ∈ M . (Of course, this enumeration is usually not an

element of M . But here we are working within the actual universe V rather than

within the countable subuniverse M .) Then we can inductively define a sequence

p = p0 ≥ p1 ≥ · · · ≥ pn ≥ · · ·

of elements of P such that pn+1 ∈ Dn for all n < ω. Let

G = {q ∈ P | There exists n < ω such that pn ≤ q}.

Then G is a P-generic filter over M such that p ∈ G. �

For example, let M be a c.t.m. and consider the notion of forcing

Q = Fn(ω2 × ω, 2)M = Fn(ωM2 × ω, 2) ∈M.

Let G be a Q-generic filter over M . For each α < β < ωM2 and 〈α, n〉 ∈ ωM2 ×ω, let

Cα,β and Dα,n be the corresponding dense subsets of Q, defined in the discussion

following Definition 6.2.4. Then Cα,β , Dα,n ∈ M and hence G ∩ Cα,β 6= ∅ and

G ∩ Dα,n 6= ∅ for each α < β < ωM2 and each 〈α, n〉 ∈ ωM2 × ω. It follows that

g =
⋃
G is a total function from ωM2 ×ω to 2 and that the corresponding sequence

〈gα | α < ωM2 〉 consists of distinct functions gα ∈ ω2.

As we shall see next, for most notions of forcing P ∈M , the c.t.m. M does not

contain any P-generic filters. (The proof of Lemma 6.2.8 also shows that if P is an

atomless notion of forcing, then there does not exist a filter G which is P-generic
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over V . Thus it is essential that we force over a countable transitive model M of

ZFC rather than over the actual set-theoretic universe V .)

Definition 6.2.7. Let P be a notion of forcing. An element p ∈ P is said to

be an atom iff there do not exist elements q1, q2 ≤ p such that q1 ⊥ q2. The notion

of forcing P is nonatomic iff P does not contain any atoms.

Notice that if P ∈M and p ∈ P is an atom, then G = {q ∈ P | q ≤ p or p ≤ q}

is a P-generic filter over M such that G ∈M .

Lemma 6.2.8. Suppose that M is a c.t.m. and that P ∈M is a atomless notion

of forcing. If G is a P-generic filter over M , then G /∈M .

Proof. Suppose that G is a P-generic filter over M such that G ∈ M . Then

D = P r G ∈ M . We claim that D is a dense subset of P. To see this, let p ∈ P

be any element. Since p is not an atom, there exist q1, q2 ≤ p such that q1 ⊥ q2;

and since G is a filter, there exists i ∈ {1, 2} such that qi ∈ P r G = D. As G

is P-generic over M , we must have that G ∩ D = G ∩ (P r G) 6= ∅, which is a

contradiction. �

Suppose that M is a c.t.m., P ∈ M is a notion of forcing and that G is a

P-generic filter over M . We shall next describe how to construct the corresponding

generic extension M [G]; i.e. the smallest c.t.m. N of ZFC such that M ⊆ N and

G ∈ N . The basic idea is that since M [G] is the smallest c.t.m. containing G, for

each element a ∈ M [G], there should be a corresponding P-name τ ∈ M which

describes how a may be constructed from G.

Definition 6.2.9. Let P be a notion of forcing. Then τ is a P-name iff

(a) τ is a set of ordered pairs; and

(b) if 〈σ, p〉 ∈ τ , then σ is a P-name and p ∈ P.

Definition 6.2.10. Suppose that M is a c.t.m. and that P ∈ M is a notion

of forcing. Let G be a P-generic filter over M . Then for each P-name τ ∈ M , we

define the corresponding interpretation by

τG = {σG | There exists p ∈ G such that 〈σ, p〉 ∈ τ}.
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For example, the empty set ∅ is trivially a P-name and clearly ∅G = ∅ for every

P-generic filter G. Hence if p ∈ P, then {〈∅, p〉} also a P-name and

{〈∅, p〉}G =

{∅}, if p ∈ G;

∅, if p /∈ G.

Slightly less trivially, let 1 be the largest element of P. Then for each x ∈ M , we

can recursively define the canonical P-name x̌ ∈M by

x̌ = {〈y̌, 1〉 | y ∈ x}.

If G is any P-generic filter, then 1 ∈ G and so an easy induction shows that x̌G = x

for all x ∈M .

Definition 6.2.11. Suppose that M is a c.t.m. and that P ∈M is a notion of

forcing. If G is a P-generic filter over M , then the corresponding generic extension

is defined to be

M [G] = {τG | τ ∈M is a P-name }.

Theorem 6.2.12. Suppose that M is a c.t.m. and that P ∈ M is a notion of

forcing. If G is a P-generic filter over M , then

(a) M [G] is a countable transitive model of ZFC;

(b) M ⊆M [G] and G ∈M [G];

(c) M and M [G] contain the same ordinals.

Furthermore, if N is a transitive class model of ZFC such that M ⊆ N and G ∈ N ,

then M [G] ⊆ N .

A complete proof of Theorem 6.2.12 can be found in Chapter VII of Kunen [26].

In this section, we shall only check some of the easier parts of Theorem 6.2.12, in

order to illustrate the basic ideas. First we shall prove that the pairing axiom

(∀x)(∀y)(∃z)(x ∈ z ∧ y ∈ z)

holds in M [G]. Suppose that a, b ∈ M [G]. Then there exist P-names τ , σ ∈ M

such that τG = a and σG = b. Let ρ = {〈τ, 1〉, 〈σ, 1〉}. Then ρ ∈ M is a P-name

and clearly ρG = {a, b}.
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Next to see that M ⊆ M [G], recall that for each x ∈ M , we have already

defined the canonical P-name x̌ ∈ M by x̌ = {〈y̌, 1〉 | y ∈ x} and that x̌G = x for

all x ∈M .

Finally we shall check that G ∈ M [G]. To see this, let Γ ∈ M be the P-name

defined by Γ = {〈p̌, p〉 | p ∈ P}. Then we clearly have that ΓG = G.

Returning to our earlier example, let M be a c.t.m.,

Q = Fn(ω2 × ω, 2)M = Fn(ωM2 × ω, 2) ∈M,

and suppose that G is a Q-generic filter over M . Then the c.t.m. M [G] contains the

ωM2 -sequence 〈gα | α < ωM2 〉 ⊆ ω2 of distinct functions gα ∈ ω2. Unfortunately, as

we pointed out in Section 6.1, this only shows that

M [G] � 2ω ≥ |ωM2 |;

and if we wish to prove that M � ¬CH, then it remains to be shown that ωM2 =

ω
M [G]
2 . In other words, we must show that the cardinal ωM2 of M has not been

collapsed. We shall deal with this problem in the next section. Once again, this is

a genuine problem. For example, consider the notion of forcing

R = Fn(ω, ω2)M = Fn(ω, ωM2 ) ∈M

and suppose that H is an R-generic filter over M . For each α ∈ ωM2 ,

Dα = {p ∈ R | α ∈ ran p} ∈M

is a dense subset of R and so H ∩Dα 6= ∅. It follows easily that h =
⋃
H ∈M [H]

is a surjective function from ω onto ωM2 and hence ωM2 is a countable ordinal in

M [H].

We shall end this section with a short discussion of the forcing relation . It will

soon become clear that this is the key to understanding the relationship between

the combinatorial properties of the notion of forcing P and the statements which

are true in the corresponding generic extensions.

Definition 6.2.13. Suppose that ϕ(x1, . . . , xn) is a formula with free variables

x1, . . . , xn and that τ1, . . . , τn ∈M are P-names. If p ∈ P, then we say that p forces

ϕ(τ1, . . . , τn), written p  ϕ(τ1, . . . , τn), iff whenever G is a P-generic filter over M

such that p ∈ G, then M [G] � ϕ((τ1)G, . . . , (τn)G).
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Occasionally, when more than one forcing notion is under discussion, we shall

need to use the more explicit notation P.

To test his understanding of Definition 6.2.13, the reader should verify the

following basic property of the forcing relation  on P.

Observation 6.2.14. If p  ϕ(τ1, . . . , τn) and q ≤ p, then q  ϕ(τ1, . . . , τn).

A complete proof of the following theorem can be found in Chapter VII of

Kunen [26].

Theorem 6.2.15. Let ϕ(x1, . . . , xn) be a formula with free variables x1, . . . , xn

and let τ1, . . . , τn ∈M be P-names.

(a) If G is a P-generic filter over M , then M [G] � ϕ((τ1)G, . . . , (τn)G) iff

there exists p ∈ G such that p  ϕ(τ1, . . . , τn).

(b) It may be decided within M whether or not p  ϕ(τ1, . . . , τn); i.e. there

exists an alternative relation ∗ definable within M such that whenever

τ1, . . . , τn ∈M are P-names, then

p  ϕ(τ1, . . . , τn) iff M � p ∗ ϕ(τ1, . . . , τn)

In order to get some feeling for why statement 6.2.15(a) is true, let M be a

c.t.m. and let

Q = Fn(ω2 × ω, 2)M = Fn(ωM2 × ω, 2) ∈M.

Let G be a Q-generic filter over M . Then we have already seen that g =
⋃
G is a

function from ωM2 × ω to 2. Since G ∈M [G], it follows that

S = {n ∈ ω | g(0, n) = 1} ∈M [G].

In fact, if we define

σ = {〈ň, p〉 | p ∈ P, 〈0, n〉 ∈ dom p and p(0, n) = 1},

then σG = S. Notice that for each n ∈ ω,

M [G] � ňG ∈ σG iff there exists p ∈ G such that p(0, n) = 1

iff there exists p ∈ G such that p  ň ∈ σ.
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As for statement 6.2.15(b), first note that since the definition of  involves

the collection of all P-generic filters, it is far from clear that the forcing relation

can be decided within M . However, there is an alternative approach ∗ to forcing

which avoids any reference to objects which lie outside M . (This approach ∗ is

essentially just the result of a tedious inductive analysis of the forcing relation ,

which can be carried out within M . It is briefly described in Section 9.1, where it

is needed for another purpose.) But why should we care whether or not the forcing

relation  can be decided within M? Mainly because it allows us to see that various

sets defined in terms of  are elements of the c.t.m. M . For a typical application,

let ϕ(x1, . . . , xn) be a formula with free variables x1, . . . , xn and let τ1, . . . , τn ∈M

be P-names. Since the relation ∗ is definable in M , it follows that the set

D = {p ∈ P | p  ϕ(τ1, . . . , τn) or p  ¬ϕ(τ1, . . . , τn)}

is an element of M . In fact, D ∈ M is a dense subset of P. To see this, let p ∈ P

be any element. By Lemma 6.2.6, there exists a P-generic filter G over M such

that p ∈ G. Suppose, for example, that M [G] � ϕ((τ1)G, . . . , (τn)G). By Theorem

6.2.15(a), there exists q ∈ G such that q  ϕ(τ1, . . . , τn). Since G is a filter, there

exists r ∈ G such that r ≤ p, q and Observation 6.2.14 implies that r ∈ D. A

similar argument proves the following basic property of the forcing relation  on P.

Observation 6.2.16. Suppose that B ∈ M and that τ1, . . . , τn ∈ M are P-

names. If p  (∃x ∈ B̌)ϕ(x, τ1, . . . , τn), then the set

{q ∈ P | There exists b ∈ B such that q  ϕ(b̌, τ1, . . . , τn)} ∈M

is dense below p.

Here a subset E ⊆ P is said to be dense below p iff for all q ≤ p, there exists

r ∈ E such that r ≤ q.

6.3. Preserving cardinals

Throughout this section, M will denote a c.t.m. of ZFC and V will denote the

actual set-theoretic universe.
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Suppose that P ∈ M is a notion of forcing. In this section, we shall isolate

certain combinatorial properties of P which are sufficient to ensure that P pre-

serves various cardinals θ ∈ M . We shall make frequent use of the following easy

observation.

Lemma 6.3.1. Suppose that G is a P-generic filter over M and that p ∈ G. If

E ∈M is dense below p, then G ∩ E 6= ∅.

Proof. Let D = {q ∈ P | q ∈ E or q ⊥ p}. Then D ∈ M and it is easily

checked that D is a dense subset of P. Thus G ∩D 6= ∅. Since the elements of the

filter G are pairwise compatible and p ∈ G, it follows that G ∩ E 6= ∅. �

Definition 6.3.2. Suppose that P ∈M is a notion of forcing and that κ ∈M

is an infinite cardinal.

(a) P preserves cardinals greater or equal to κ if whenever G is a P-generic

filter over M and θ ∈ M is a cardinal such that θ ≥ κ, then θ remains a

cardinal in M [G].

(b) P preserves cofinalities greater or equal to κ if whenever G is a P-generic

filter over M and γ ∈ M is a limit ordinal with cfM (γ) ≥ κ, then

cfM [G](γ) = cfM (γ).

If the cardinal θ ∈ M is collapsed in the generic extension M [G], then there

exists an ordinal α < θ such that M [G] contains a surjective function f : α → θ.

Clearly this is impossible unless θ is an uncountable cardinal in M . Hence if P

preserves cardinals greater or equal to ω1, then P preserves every cardinal θ ∈ M .

In this case, we shall simply say that P preserves cardinals. A similar remark applies

to cofinalities.

Lemma 6.3.3. Suppose that P ∈ M is a notion of forcing and that κ ∈ M is

an infinite cardinal.

(a) If P preserves cofinalities greater or equal to κ, then P also preserves

cardinals greater or equal to κ.

(b) If P does not preserve cofinalities greater or equal to κ, then there exists a

regular cardinal θ ∈ M with θ ≥ κ and a P-generic filter G over M such

that M [G] � θ is not a regular cardinal.
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Proof. (a) Suppose P preserves cofinalities greater or equal to κ and let G be

a P-generic filter over M . Let λ ∈M be a cardinal such that λ ≥ κ. First suppose

that λ is a regular cardinal in M . Since cfM [G](λ) = cfM (λ) = λ, it follows that λ

is also a regular cardinal in M [G]. On the other hand, if λ is a singular cardinal,

then there exists a sequence 〈λi | i < cfM (λ)〉 of regular cardinals in M such that

λ = supλi and each λi ≥ κ. Since each λi remains a cardinal in M [G], it follows

that λ is also a limit cardinal in M [G].

(b) Suppose that whenever θ ∈ M is a regular cardinal such that θ ≥ κ and

G is a P-generic filter over M , then θ remains a regular cardinal in M [G]. Let

γ ∈M be a limit ordinal such that λ = cfM (γ) ≥ κ. By Lemma 3.1.3, there exists

a function f ∈ M such that f : λ → γ is strictly increasing and cofinal. Applying

Lemma 3.1.4 in M [G], together with the fact that λ remains a regular cardinal in

M [G], we obtain that cfM [G](γ) = cfM [G](λ) = λ. �

Definition 6.3.4. Let P be a notion of forcing. A subset A ⊆ P is an antichain

iff the elements of A are pairwise incompatible.

Definition 6.3.5. Let P be a notion of forcing and let κ be an infinite cardinal.

Then P has the κ-chain condition (κ-c.c.) iff every antichain of P has cardinality

less than κ. If κ = ω1, then we say that P has the countable chain condition (c.c.c.)

Theorem 6.3.6. Suppose that P ∈ M is a notion of forcing and that κ ∈ M

is a regular cardinal. If M � P has the κ-c.c., then P preserves cofinalities and

cardinals greater or equal to κ.

Of course, if P ∈M is a notion of forcing, then P is really countable and hence

has the c.c.c. in the actual set-theoretic universe V . However, as the statement

of Theorem 6.3.6 indicates, in order to determine whether P preserves cardinals

or cofinalities, we need to understand the combinatorial properties of P within

the c.t.m. M . For example, consider the notion of forcing P = Fn(ω, ω1)M =

Fn(ω, ωM1 ) ∈M . For each α < ωM1 , let pα ∈ P be a condition such that pα(0) = α.

Then A = {pα | α < ωM1 } ∈ M and M � A is an uncountable antichain in P. It

is easily checked that if G is a P-generic filter over M , then g =
⋃
G ∈ M [G] is a

surjective function from ω onto ωM1 . Thus P does not preserve ωM1 .
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As we shall soon see, Theorem 6.3.6 is an easy consequence of the following

important result.

Lemma 6.3.7. Suppose that P ∈ M is a notion of forcing, κ ∈ M is a regular

cardinal and that M � P has the κ-c.c.. Let G be a P-generic filter over M . Suppose

that A, B ∈ M and that f ∈ M [G] with f : A → B. Then there exists a function

F ∈M such that

(a) F : A→ P(B);

(b) for all a ∈ A, f(a) ∈ F (a); and

(c) for all a ∈ A, M � |F (a)| < κ.

Proof. Let τ ∈ M be a P-name such that τG = f . Then there exists p ∈ G

such that

p  τ is a function from Ǎ into B̌.

Define the function F : A→ P(B) by

F (a) = {b ∈ B | There exists q ≤ p such that q  τ(ǎ) = b̌}.

Since the relation  is decidable in M , it follows that F ∈ M . Let a ∈ A and

suppose that f(a) = b. Then there exists r ∈ G such that r  τ(ǎ) = b̌. Let q ∈ G

satisfy q ≤ p, r. Then q  τ(ǎ) = b̌ and so b ∈ F (a).

Finally we shall show that M � |F (a)| < κ. Applying the Axiom of Choice

within M , there exists a function Q ∈ M with Q : F (a) → P such that for all

b ∈ F (a), Q(b) ≤ p and Q(b)  τ(ǎ) = b̌. We claim that if b1, b2 ∈ F (a) are

distinct, then Q(b1) ⊥ Q(b2). If not, then there exists a P-generic filter H over M

such that Q(b1), Q(b2) ∈ H. Clearly we also have that p ∈ H and so

M [H] � The function τH : A→ B satisfies τH(a) = b1 and τH(a) = b2,

which is a contradiction. Thus Q : F (a)→ P is an injection and {Q(b) | b ∈ F (a)}

is an antichain in P. Since M � P has the κ-c.c., it follows that M � |F (a)| < κ. �

Proof of Theorem 6.3.6. Suppose not. Then by Lemma 6.3.3, there exists

a regular cardinal θ ∈ M with θ ≥ κ and a P-generic filter G over M such that

M [G] � θ is not a regular cardinal. Thus there exists an ordinal α < θ and a func-

tion f ∈ M [G] such that f maps α cofinally into θ. By Lemma 6.3.7, there exists

a function F ∈M such that
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(a) F : α→ P(θ);

(b) for all ξ < α, f(ξ) ∈ F (ξ); and

(c) for all ξ < α, M � |F (ξ)| < κ.

Let S =
⋃
ξ<α F (ξ). Then S ∈M and S is a cofinal subset of θ. But computing the

cardinality of S in M , we see that M � |S| < θ and this contradicts the assumption

that M � θ is a regular cardinal. �

Let Q = Fn(ω2 × ω, 2)M = Fn(ωM2 × ω, 2) ∈M and let G be a Q-generic filter

over M . In Section 6.2, we saw that M [G] � 2ω ≥ |ωM2 |. Our next target will be

to prove that M � Q has the c.c.c. This implies that Q preserves cofinalities and

cardinals. In particular, ωM2 = ω
M [G]
2 and so M [G] � 2ω ≥ ω2.

Since M � ZFC, in order to prove that M � Q has the c.c.c., it is enough

to prove in ZFC that P = Fn(ω2 × ω, 2) has the c.c.c. in the actual set-theoretic

universe V .

Definition 6.3.8. A family D of sets is said to be a ∆-system iff there exists

a fixed set R such that A ∩ B = R whenever A, B are distinct elements of D. In

this case, R is said to be the root of the ∆-system.

Theorem 6.3.9. If B is any uncountable family of finite sets, then there is an

uncountable family D ⊆ B which forms a ∆-system.

Proof. After passing to a suitable subset of B if necessary, we can assume

that |B| = ω1. Since cf(ω1) = ω1, we can also assume that there exists an integer

n ≥ 1 such that |B| = n for all B ∈ B. Suppose inductively that the theorem holds

for every family F of finite sets such that |F| = ω1 for which there exists an integer

m < n with |F | = m for all F ∈ F . Let S =
⋃
{B | B ∈ B}. There are two cases

to consider.

First suppose that there exists an element s ∈ S such that C = {B ∈ B | s ∈ B}

has cardinality ω1. Applying the inductive hypothesis, there exists an uncountable

∆-system D∗ ⊆ C∗ = {B r {s} | B ∈ C} with root R∗. It follows that

D = {D ∪ {s} | D ∈ D∗} ⊆ B

is an uncountable ∆-system with root R = R∗ ∪ {s}.
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Otherwise, for each s ∈ S, there exist only countably many sets B ∈ B such

that s ∈ B. In this case, we shall show that B contains an uncountable subfamily

D = {Bβ | β < ω1} of pairwise disjoint sets. Of course, this means that D is an

uncountable ∆-system with root R = ∅. Suppose that α < ω1 and that we have

defined the set Bβ ∈ B for each β < α. Let Sα =
⋃
{Bβ | β < α}. Then Sα

is a countable set and hence there exist only countably many B ∈ B such that

B ∩ Sα 6= ∅. Consequently, there exists Bα ∈ B such that Bα ∩ Sα = ∅. �

Theorem 6.3.10. If J is a countable set, then Fn(I, J) has the c.c.c.

Proof. Suppose that A = {pα | α < ω1} is an uncountable antichain in

Fn(I, J). Since J is countable, if F ⊂ I is a finite subset, then there exist only

countably many functions f : F → J . Hence, after passing to a suitable subset of A

if necessary, we can suppose that if α < β < ω1, then dom pα 6= dom pβ . Applying

Theorem 6.3.9 to the family {dom pα | α < ω1}, there exists a subset X ⊆ ω1 with

|X| = ω1 and a finite subset R ⊂ I such that {dom pα | α ∈ X} forms a ∆-system

with root R. Since there are only countably many possibilities for pα � R, there

exists a subset Y ⊆ X with |Y | = ω1 and a fixed function f : R → J such that

pα � R = f for all α ∈ Y . But this means that the conditions {pα | α ∈ Y } are

pairwise compatible, which contradicts the hypothesis that A is an antichain. �

Hence if Q = Fn(ω2 × ω, 2)M ∈ M , then M � Q has the c.c.c. Hence if G is a

P-generic filter over M , then ωM2 = ω
M [G]
2 and so M [G] � 2ω ≥ ω2. This completes

the proof of the consistency of ZFC + ¬CH.

Unfortunately, many useful notions of forcing fail to have the c.c.c. For example,

consider the following variant of Fn(I, J).

Definition 6.3.11. If κ is an infinite cardinal and I, J are any sets, then

Fn(I, J, κ) is the notion of forcing consisting of all functions p such that

(a) dom p ⊆ I,

(b) ran p ⊆ J , and

(c) |p| < κ,

ordered by q ≤ p iff q ⊇ p.
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If I is infinite, |J | ≥ 2 and κ > ω, then Fn(I, J, κ) contains uncountable

antichains. However, we still have the following analogues of Theorems 6.3.9 and

6.3.10.

Theorem 6.3.12 (The ∆-System Lemma). Let κ be an infinite cardinal. Let

θ > κ be a regular cardinal such that λ<κ < θ for all cardinals λ < θ. If B is a

family of sets such that |B| ≥ θ and |B| < κ for all B ∈ B, then there exists a

∆-system D ⊆ B such that |D| = θ.

Proof. This is Theorem II.1.6 of Kunen [26]. �

In practice, we shall usually use the following special case of the ∆-System

Lemma.

Corollary 6.3.13. Let κ be an infinite cardinal such that κ<κ = κ. If B is

a family of sets such that |B| = κ+ and |B| < κ for all B ∈ B, then there exists a

∆-system D ⊆ B such that |D| = κ+.

�

Theorem 6.3.14. If κ is an infinite cardinal and I, J are any sets, then

Fn(I, J, κ) has the (|J |<κ)+-c.c.

Proof. This is Lemma VII.6.10 of Kunen [26]. �

In particular, suppose that κ ∈ M is a regular uncountable cardinal such

that M � 2<κ = κ. Let P = Fn(κ++ × κ, 2, κ)M ∈ M . By Theorem 6.3.14,

M � P has the κ+-c.c. Hence, by Theorem 6.3.6, P preserves cofinalities and car-

dinals greater or equal to κ+. As we shall soon see, P also preserves cardinals less

than or equal to κ. In the remainder of this section, we shall discuss the relevant

combinatorial property of P.

Definition 6.3.15. Suppose that P ∈M is a notion of forcing and that κ ∈M

is an infinite cardinal.

(a) P preserves cardinals less than or equal to κ if whenever G is a P-generic

filter over M and θ ∈ M is a cardinal such that θ ≤ κ, then θ remains a

cardinal in M [G].
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(b) P preserves cofinalities less than or equal to κ if whenever G is a P-

generic filter over M and γ ∈ M is a limit ordinal with cfM (γ) ≤ κ,

then cfM [G](γ) = cfM (γ).

The proof of the following lemma is essentially identical to that of Lemma 6.3.3.

Lemma 6.3.16. Suppose that P ∈ M is a notion of forcing and that κ ∈ M is

an infinite cardinal.

(a) If P preserves cofinalities less than or equal to κ, then P also preserves

cardinals less than or equal to κ.

(b) If P does not preserve cofinalities less than or equal to κ, then there exists

a regular cardinal θ ∈M with θ ≤ κ and a P-generic filter G over M such

that M [G] � θ is not a regular cardinal.

�

Definition 6.3.17. Let P be a notion of forcing and let κ be an infinite cardinal.

Then P is κ-closed iff whenever γ < κ and 〈pξ | ξ < γ〉 is a decreasing sequence of

elements of P, then there exists an element q ∈ P such that q ≤ pξ for all ξ < γ.

Lemma 6.3.18. If κ is a regular cardinal and I, J are any sets, then Fn(I, J, κ)

is κ-closed.

Proof. Suppose that γ < κ and that 〈pξ | ξ < γ〉 is a decreasing sequence

of elements of Fn(I, J, κ). Then q =
⋃
ξ<γ pξ ∈ Fn(I, J, κ) and q ≤ pξ for all

ξ < γ. �

Theorem 6.3.19. Suppose that P ∈M is a notion of forcing and that κ ∈M is

an infinite cardinal. If M � P is κ-closed, then P preserves cofinalities and cardinals

less than or equal to κ.

As we shall soon see, Theorem 6.3.19 is an easy consequence of the following

important result.

Lemma 6.3.20. Suppose that P ∈M is a notion of forcing, κ ∈M is an infinite

cardinal and that M � P is κ-closed. Let G be a P-generic filter over M . Suppose

A, B ∈M with |A| < κ and that f ∈M [G] with f : A→ B. Then f ∈M .
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Proof. Let τ ∈ M be a P-name such that τG = f . Then there exists p ∈ G

such that

p  τ is a function from Ǎ into B̌.

Let E ∈ M be the set consisting of the conditions q ∈ P such that there exists a

function g ∈ AB ∩M with q  τ = ǧ. By Lemma 6.3.1, it is enough to prove that

E is dense below p.

Let q ∈ P with q ≤ p. For the rest of this proof, we shall work within M . Let

|A| = λ < κ and let {aα | α < λ} be an enumeration of the elements of A. We shall

define sequences 〈qα | α ≤ λ〉 and 〈bα | α < λ〉 of elements of P, B respectively by

transfinite recursion such that the following conditions are satisfied.

(a) q0 = q.

(b) If β < α ≤ λ, then qα ≤ qβ .

(c) If α < λ, then qα+1  τ(ǎα) = b̌α.

First suppose that α ≤ λ is a limit ordinal. Since P is κ-closed, there exists qα ∈ P

such that qα ≤ qβ for all β < α. Now suppose that α = β + 1. Since qβ ≤ p, it

follows that

qβ  (∃x ∈ B̌)τ(ǎβ) = x.

Hence there exist qα ≤ qβ and bβ ∈ B such that qα  τ(ǎβ) = b̌β . Finally let

g ∈ AB be the function defined by g(aα) = bα for all α < λ. Then qλ  τ = ǧ. �

Of course, if P ∈M is an arbitrary notion of forcing, then P is trivially ω-closed.

Hence if A, B ∈ M and A is finite, then (AB)M = (AB)M [G] for every P-generic

filter G over M .

Proof of Theorem 6.3.19. Suppose not. Then by Lemma 6.3.16, there ex-

ists a regular cardinal θ ∈ M with θ ≤ κ and a P-generic filter G over M such

that M [G] � θ is not a regular cardinal. Thus there exists an ordinal α < θ and a

function f ∈M [G] such that f maps α cofinally into θ. By Lemma 6.3.20, f ∈M ,

contradicting the assumption that θ is a regular cardinal in M . �

Combining Theorems 6.3.6 and 6.3.19, we obtain the following important result.

Theorem 6.3.21. Suppose that P ∈ M is a notion of forcing and that κ ∈ M

is an infinite cardinal. If M � P is κ-closed and has the κ+-c.c., then P preserves

cofinalities and cardinals.
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�

6.4. Nice P-names

In this section, M will denote a c.t.m. of ZFC.

Let Q = Fn(ω2×ω, 2)M ∈M and let G be a Q-generic filter over M . Then we

have already seen that M [G] � 2ω ≥ ω2. In this section, we shall study the problem

of computing the exact value of 2ω within M [G]. There is an obvious approach to

finding an upper bound for 2ω in M [G]; namely, we should calculate the number

of Q-names τ ∈ M such that τG ⊆ ω. Unfortunately, this initial approach does

not give any useful information, since the collection of such Q-names is a proper

subclass of M . To see this, let q ∈ Q be any condition such that q /∈ G. Then for

every x ∈ M , τx = {〈x̌, q〉} ∈ M is a Q-name such that (τx)G = ∅. Of course, if

x /∈ ω, then τx seems a perverse choice for a Q-name for a subset of ω. The next

three results show that the above stategy works if we restrict our attention to more

natural Q-names for subsets of ω.

Definition 6.4.1. Let P be a notion of forcing and let B be any set. Then τ

is a nice P-name for a subset of B iff τ has the form⋃
{{b̌} ×Ab | b ∈ B},

where each Ab is an antichain in P.

Lemma 6.4.2. Suppose that P ∈ M is a notion of forcing and that G is a

P-generic filter over M .

(a) If B ∈ M and C ∈ M [G] with C ⊆ B, then there exists a nice P-name

τ ∈M for a subset of B such that τG = C.

(b) Suppose that λ, θ ∈M are cardinals and that

M � θ is the number of nice P-names for subsets of λ.

Then M [G] � 2λ ≤ |θ|.

Proof. (a) This is a special case of Lemma VII.5.12 of Kunen [26].

(b) If 〈τα | α < θ〉 ∈M is an enumeration of the nice P-names for subsets of λ,

then 〈(τα)G | α < θ〉 ∈M [G] is an enumeration with repetitions of P(λ)M [G]. �
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Lemma 6.4.3. If P has the κ-c.c., then for every set B, there exist at most

(|P|<κ)|B| nice P-names for subsets of B.

Proof. Let A be the set of antichains of P. Since P has the κ-c.c., it follows

that |A| ≤ |P|<κ. Each nice P-names for a subset of B is essentially just a function

from B to A and there are at most (|P|<κ)|B| such functions. �

Theorem 6.4.4. Suppose that κ, λ, θ ∈ M are infinite cardinals such that

κ<κ = κ ≤ λ < θ and θλ = λ. Let P = Fn(θ × λ, 2, κ)M ∈ M and let G be a

P-generic filter over M .

(a) M � P is κ-closed and has the κ+-c.c.

(b) P preserves cofinalities and cardinals.

(c) M [G] � 2λ = θ.

Proof. Throughout this proof, we shall work within the c.t.m. M . First note

that since κ<κ = κ, it follows that κ is a regular cardinal and hence P is κ-closed.

It also follows that 2<κ = κ and so Theorem 6.3.14 implies that P has the κ+-c.c.

Consequently, by Theorem 6.3.21, P preserves cofinalities and cardinals. To see

that M [G] � 2λ ≥ θ, let g =
⋃
G ∈ M [G] and for each α < θ, let gα : λ → 2

be the function defined by gα(ξ) = g(α, ξ). By considering the appropriate dense

subsets of P, it is easily checked that gα 6= gβ for all α < β < θ. Finally to see

that M [G] � 2λ ≤ θ, it is enough to show that there are at most θ nice P-names for

subsets of λ. Since there are only θ<κ possibilities for the domain D of an element

p of P and at most 2<κ possibilities for p once the domain D is fixed, it follows

that |P| = θ<κ · 2<κ = θ. Hence, by Lemma 6.4.3, the number of nice P-names for

subsets of λ is at most (|P|<κ)λ = θ. �

By König’s Theorem, if λ is an infinite cardinal, then cf(2λ) > λ. Theorem

6.4.4 implies that this is the only constraint on 2λ that can be proved in ZFC. To

see this, let M � GCH. If λ, θ ∈M are infinite cardinals, then θλ = θ iff cf(θ) > λ.

Hence, in this case, if

P = Fn(θ × λ, 2, ω)M = Fn(θ × λ, 2)M ∈M

and if G be a P-generic filter over M , then M [G] � 2λ = θ. It is easily checked that if

κ ∈M is any cardinal such that ω ≤ κ < λ, then we also have that M [G] � 2κ = θ.
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If λ ∈ M is a regular cardinal, then the following result shows that we can force

simultaneously that 2λ is arbitrarily large and also that λ is the first cardinal which

violates GCH.

Corollary 6.4.5. Suppose that M � GCH and that λ, θ ∈ M are infinite

cardinals such that λ is regular and cf(θ) > λ. Let P = Fn(θ × λ, 2, λ)M ∈ M and

let G be a P-generic filter over M .

(a) P preserves cofinalities and cardinals.

(b) M [G] � 2λ = θ.

(c) M [G] � 2µ = µ+ for every cardinal µ such that ω ≤ µ < λ.

Proof. Once again, we shall work within the c.t.m. M . Using GCH, since

λ is regular and cf(θ) > λ, it follows that λ<λ = λ and θλ = λ. Hence (a) and

(b) are immediate consequences of Theorem 6.4.4. Finally suppose that µ is a

cardinal such that ω ≤ µ < λ. By Lemma 6.3.20, since P is λ-closed, it follows that

( µ2)M [G] = ( µ2)M . Hence M [G] � 2µ = µ+. �

The situation is much more interesting when λ is a singular cardinal. In 1974,

confounding all expectations, Silver [46] proved that GCH cannot first fail at a

singular cardinal of uncountable cofinality. Assuming the consistency of suitable

large cardinals, Magidor [29] had already shown that it was consistent that GCH

first fails at ℵω. Later, again assuming the consistency of suitable large cardinals,

Gitik and Magidor [12] proved that if α is any countably infinite ordinal such that

α > ω, then it is consistent that GCH first fails at ℵω and that 2ℵω = ℵα+1. On

the other hand, Shelah [44] has used PCF theory to prove the remarkable result

that if 2ℵn < ℵω for all n < ω, then 2ℵω < ℵω4 . A well-written survey of this

fascinating area can be found in Jech [21].

6.5. Some observations and conventions

In this section, we shall make a number of simple but useful observations; and

we shall discuss some of the conventions that will be used in the remaining sections

of this book.

Suppose that we wish to establish the consistency of ZFC + σ, where σ is a

sentence in the first-order language of set theory. Then it is enough to find a c.t.m.
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M and a notion of forcing P ∈M for which there exists a P-generic filter G over M

such that M [G] � σ. In practice, we usually find a notion of forcing P ∈ M such

that M [G] � σ for every P-generic filter G over M . For this reason, we are usually

not concerned about which particular P-generic filter is chosen.

Convention 6.5.1. If P ∈ M is a notion of forcing, then we often denote the

corresponding generic extension by MP if we do not wish to specify a particular

P-generic filter over M .

We have already defined what it means for a condition p ∈ P to force a state-

ment to be true in the generic extension MP. In the later chapters of this book, it

will be useful to have the notion of a condition p ∈ P deciding a statement in MP.

Definition 6.5.2. Suppose that ϕ(x1, . . . , xn) is a formula with free variables

x1, . . . , xn and that τ1, . . . , τn ∈ M are P-names. If p ∈ P, then we say that p

decides ϕ(τ1, . . . , τn) iff p  ϕ(τ1, . . . , τn) or p  ¬ϕ(τ1, . . . , τn).

In Section 6.2, we observed that

D = {p ∈ P | p decides ϕ(τ1, . . . , τn)} ∈M

is a dense subset of P. It will also be useful have the notion of a condition p ∈ P

deciding a function or relation in MP.

Definition 6.5.3. Suppose that A, B ∈ M and that f̃ , R̃ ∈ M are P-names

for which there exist conditions q, r ∈ P such that

q  f̃ is a function from Ǎ to B̌

and

r  R̃ is an n-ary relation on Ǎ

Then we say that p decides f̃ iff p ≤ q and there exists a function g ∈ M with

g : A → B such that p  f̃ = ǧ. Similarly, we say that p decides R̃ iff p ≤ r and

there exists an n-ary relation S ∈M on A such that p  R̃ = Š.

For example, suppose also that P ∈ M is κ-closed and that A ∈ M satisfies

|A| < κ. Then the proof of Lemma 6.3.20 shows that

D = {p ∈ P | p decides f̃}
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is dense below q; and a similar argument shows that

E = {p ∈ P | p decides R̃}

is dense below r.

Next suppose that M � GCH and that λ, θ ∈M are infinite cardinals such that

λ is regular and cf(θ) > λ. In Section 6.4, we saw that if P = Fn(θ×λ, 2, λ)M ∈M ,

then the following statements are true in MP:

(i) 2λ = θ; and

(ii) 2µ = µ+ for every cardinal µ such that ω ≤ µ < λ.

In Chapter 9, it will be useful to notice that we could just as well have used the

slightly simpler notion of forcing Q = Fn(θ, 2, λ)M ∈ M . To see this, let ϕ ∈ M

be a bijection between θ and θ × λ. Then ϕ induces a corresponding isomorphism

f : P→ Q, defined by

f(p) = p ◦ ϕ.

As the reader would expect, isomorphic notions of forcing give rise to identical

generic extensions.

Theorem 6.5.4. Suppose that P, Q ∈M are notions of forcing and that f ∈M

is an isomorphism from P onto Q. If G is a P-generic filter over M , then H =

f [G] ∈M [G] is a Q-generic filter over M and M [G] = M [H].

Proof. It is easily checked that H = f [G] is a Q-generic filter over M . Since

H = f [G] ∈ M [G], it follows that M [H] ⊆ M [G]. Similarly, since G = f−1[H] ∈

M [H], we have that M [G] ⊆M [H] and so M [G] = M [H]. �

The analogous result is also true when Q is a dense sub-order of P.

Theorem 6.5.5. Suppose that P, Q ∈ M are notions of forcing and that P is

a dense sub-order of Q.

(a) If G is a P-generic filter over M , then

H = {q ∈ Q | (∃p ∈ G)(p ≤ q)}

is a Q-generic filter over M .

(b) If H is a Q-generic filter over M , then G = H ∩ P is a P-generic filter

over M .
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Furthermore, in both cases, M [G] = M [H].

Proof. (a) This is completely routine.

(b) It is easily checked that G satisfies the following properties:

(i) For all p, q ∈ G, there exists r ∈ P such that r ≤ p, q.

(ii) For all p, q ∈ P, if p ∈ G and p ≤ q, then q ∈ G.

(iii) If D ∈M is a dense subset of P, then G ∩D 6= ∅.

Thus it only remains to prove that for all p, q ∈ G, there exists r ∈ G such that

r ≤ p, q. To see this, let p, q ∈ G and consider

Dp,q = {r ∈ P | r ⊥ p or r ⊥ q or r ≤ p, q}.

It is easily checked that Dp,q ∈M is a dense subset of P and hence there exists an

element r ∈ G ∩Dp,q. Since the elements of G are pairwise compatible, it follows

that r ≤ p, q. �

In the early stages of an account of set-theoretic forcing, it is necessary to

carefully distinguish between a notion of forcing such as Fn(ω2 × ω, 2) and its

relativised version Fn(ω2 × ω, 2)M = Fn(ωM2 × ω, 2) within the c.t.m. M . For this

reason, in the first four sections of this chapter, the symbol V was reserved to stand

for the actual set-theoretic universe, and we kept track of which arguments took

place within V and which within M . However, after the basic ideas of forcing are

understood, this extremely careful approach begins to feel increasingly tedious and

clumsy. For example, in order to prove that Fn(ω2 × ω, 2)M preserves cofinalities

and cardinalities, we first proved that Fn(ω2 × ω, 2) has the c.c.c. within V and

then deduced that

M � Fn(ω2 × ω, 2)M has the c.c.c.

However, notice that it was not really necessary to conduct any of our argument

within V ; since M � ZFC, our original argument relativised to M shows directly

that Fn(ω2 × ω, 2)M has the c.c.c. within M .

From now on, V will denote some fixed c.t.m., usually referred to as the

ground model ; and, unless otherwise specified, all of our arguments will take place

in V . Furthermore, we shall usually write Fn(ω2 × ω, 2), Sym(ω), ω2, etc. for

the relativised versions of these objects within V , instead of the more accurate
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Fn(ω2 × ω, 2)V , SymV (ω), ωV2 , etc. (Of course, whenever it seems genuinely help-

ful, we shall revert to using notation such as SymV (ω). For example, this occurs in

the next section when we compute the automorphism tower of SymV (ω) within a

generic extension M of the ground model V .) In a similar vein, if P ∈ V is a notion

of forcing, then we shall usually use phrases such as

• “P has the c.c.c.”

instead of the more accurate

• “V � P has the c.c.c.”

In summary, we shall write as though V still continued to denote the actual set-

theoretic universe. (As we mentioned earlier, there is only one point in the develop-

ment of forcing where it is essential that V is a c.t.m. rather than the set-theoretic

universe; namely, the proof of the existence of a P-generic filter over V .)

6.6. τ(G) is not absolute

Throughout this section, V will denote the ground model .

In this section, we shall prove that the height τ(G) of the automorphism tower

of an infinite centreless group G is not necessarily an absolute concept. First we

shall present an example of a centreless group G ∈ V for which there exists a notion

of forcing P ∈ V such that τV
P
(G) > τV (G). The idea is very simple: we shall let G

be a suitably chosen complete group and let P be a notion of forcing which adjoins

a “new automorphism” π ∈ AutV
P
(G)rAutV (G). Then clearly π must be an outer

automorphism and so τV
P
(G) > τV (G) = 0. Of course, G cannot be an arbitrary

complete group. For example, it is impossible to adjoin a new automorphism to

a finitely generated group H. (To see this, suppose that H is generated by the

finite subset F and let P be any notion of forcing. If π ∈ AutV
P
(G), then π is

uniquely determined by its restriction π � F . By the remark following Lemma

6.3.20, π � F ∈ V and hence π ∈ V .) For a more interesting example of such a

group, consider G = Sym(ω). In Section 1.3, we proved that Sym(ω) is a complete

group. Now let P ∈ V be any notion of forcing which adjoins a new permutation

to ω; for example, we could take

P = {p ∈ Fn(ω, ω) | p is an injection }.
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Then

V P � G = SymV (ω) is a proper subgroup of Sym(ω),

and so the results of Section 1.3 can no longer be applied to G within V P. However,

the following result shows that G remains complete within V P.

Theorem 6.6.1. Let G = SymV (ω). If P ∈ V be any notion of forcing, then

G remains a complete group in the generic extension V P.

Proof. It is more convenient to consider the isomorphic group H = SymV (Z).

We shall work within the generic extension M = V P. Let π ∈ AutM (H) be an

arbitrary automorphism. Since

AltM (Z) = AltV (Z) 6 H 6 SymM (Z),

Corollary 4.1.5 implies that there exists a permutation ϕ ∈ SymM (Z) such that

π(h) = ϕhϕ−1 for all h ∈ H. In particular, this is true when σ ∈ H is the

permutation such that σ(z) = z + 1 for all z ∈ Z. Let g = ϕσϕ−1. Then g ∈ H

and g(ϕ(z)) = ϕ(z + 1) for all z ∈ Z. Hence if n ≥ 0, then ϕ(n) = gn(ϕ(0)) and

ϕ(−n) = (g−1)n(ϕ(0)). Since g ∈ H = SymV (Z), it follows that g ∈ V and hence

ϕ ∈ V . Thus π is an inner automorphism of H. �

The situation becomes more interesting if we consider the setwise stabiliser SU

of a nonprincipal ultrafilter over over the set ω of natural numbers.

Definition 6.6.2. A nonprincipal ultrafilter over the set ω is a collection U of

subsets of ω satisfying the following conditions:

(i) If A, B ∈ U , then A ∩B ∈ U .

(ii) If A ∈ U and A ⊆ B ⊆ ω, then B ∈ U .

(iii) For all A ⊆ ω, either A ∈ U or ω rA ∈ U .

(iv) If F is a finite subset of ω, then F /∈ U .

Equivalently, if µ : P(ω) → {0, 1} is the function such that µ(A) = 1 if and

only if A ∈ U , then µ is a finitely additive probability measure on ω such that

µ(F ) = 0 for all finite subsets F of ω. It is well-known that there are exactly 22ω

distinct nonprincipal ultrafilters over ω. For example, see Theorem 56 of Jech [19].
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Definition 6.6.3. If U is a nonprincipal ultrafilter filter over ω, then its setwise

stabiliser is the group

SU = {π ∈ Sym(ω) | For all X ⊆ ω,X ∈ U iff π[X] ∈ U}.

The next two results collect together some of the basic algebraic properties of

the group SU . Recall that if π ∈ Sym(ω), then

fix(π) = {n ∈ ω | π(n) = n}

and

supp(π) = {n ∈ ω | π(n) 6= n}.

Theorem 6.6.4. Let U be a nonprincipal ultrafilter on ω.

(a) SU = {π ∈ Sym(ω) | fix(π) ∈ U}.

(b) SU is a maximal proper subgroup of Sym(ω).

(c) SU is a complete group.

Proof. Clauses (a) and (b) are a restatement of Theorem 6.4 of Macpherson

and Neumann [28]. Clearly SU contains the subgroup Fin(ω) of finite permutations

of ω. Hence Corollary 4.1.5 implies that SU is centreless and that the automorphism

tower of SU coincides with the normaliser tower of SU in Sym(ω). Since SU is a

maximal proper subgroup of Sym(ω), it follows that NSym(ω)(SU ) = SU and hence

SU is a complete group. �

Theorem 6.6.5. If A, B are nonprincipal ultrafilters over ω, then the following

are equivalent.

(a) SA ' SB.

(b) There exists π ∈ Sym(ω) such that π[A] = B.

(c) There exists π ∈ Sym(ω) such that πSAπ
−1 = SB.

Hence there exist 22ω pairwise nonisomorphic groups of the form SU for some non-

principal ultrafilter U over ω.

Proof. Clearly that (b) and (c) are equivalent. It is also clear that (c) implies

(a). Finally if θ : SA → SB is an isomorphism, Theorem 4.1.3 implies that there

exists π ∈ Sym(ω) such that θ(g) = πgπ−1 for all g ∈ SA. Hence πSAπ
−1 = SB. �
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Now suppose that U ∈ V is an ultrafilter and let

G = SVU = {π ∈ SymV (ω) | For all X ∈ PV (ω), X ∈ U iff π[X] ∈ U}.

By Theorem 6.6.4(c), V � G is a complete group. Our next target is to show that

there exists a c.c.c. notion of forcing P ∈ V which adjoins an outer automorphism

of SVU . Our argument is based upon the following simple observations.

Definition 6.6.6. If A, B ⊆ ω, then A ⊆∗ B iff |ArB| < ω. In this case, we

say that A is almost contained in B.

Lemma 6.6.7. If U is a nonprincipal ultrafilter filter over ω, then there does

not exist an infinite subset T ⊆ ω such that T ⊆∗ A for all A ∈ U .

Proof. Suppose that such a set T exists. If T /∈ U , then ω r T ∈ U and

hence T ⊆∗ ω r T , which is a contradiction. Hence T ∈ U . Express T = X t Y

as the disjoint union of two infinite subsets. Since T ∈ U , it follows that either

X ∈ U or Y ∈ U . But this implies that either T ⊆∗ X or T ⊆∗ Y , which is also a

contradiction. �

Lemma 6.6.8. Let U ∈ V be a nonprincipal ultrafilter filter over ω. Suppose

that the notion of forcing P ∈ V adjoins an infinite subset T ⊆ ω such that T ⊆∗ A

for all A ∈ U . Then P adjoins an outer automorphism of SVU .

Proof. Let G = SVU . Throughout this proof, we shall work within the generic

extension M = V P. (Of course, U will no longer be an ultrafilter in M .) Let T ⊆ ω

be an infinite subset such that T ⊆∗ A for all A ∈ U and let ϕ ∈ SymM (ω) be any

permutation such that supp(ϕ) = T . By Lemma 6.6.7, ϕ /∈ V and so ϕ /∈ G. We

shall show that ϕ normalises G in SymM (ω). To see this, let π ∈ G be an arbitrary

element. By Theorem 6.6.4(a), fix(π) ∈ U . Since T ⊆∗ fix(π) and

supp(ϕ) ∩ supp(π) = supp(ϕ)r fix(π) = T r fix(π),

it follows that | supp(ϕ) ∩ supp(π)| < ω. Hence ϕπϕ−1π−1 ∈ Fin(ω) and so

ϕπϕ−1 ∈ Fin(ω)π ⊆ G.

Since ϕ normalises G and ϕ /∈ G, it follows that ϕ induces an outer automorphism

of G via conjugation. �
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Definition 6.6.9. Let U be a nonprincipal ultrafilter on ω. Then the associated

Mathias notion of forcing PU consists of the conditions p = 〈s,A〉, where s : n→ ω

is a strictly increasing function for some n < ω and A ∈ U . The ordering on PU is

given by 〈t, B〉 ≤ 〈s,A〉 iff

(i) t ⊇ s and B ⊆ A; and

(ii) t(`) ∈ A for all ` ∈ dom tr dom s.

The Mathias notion of forcing PU is designed to generically adjoin an infinite

subset T ⊆ ω such that T ⊆∗ A for all A ∈ U . Intuitively, the condition p =

〈s,A〉 ∈ PU consists of

(i) a finite approximation s : n → ω to the increasing enumeration of the

desired set T = {m` | ` < ω}; together with

(ii) a “promise” that m` ∈ A for all ` ≥ n.

Lemma 6.6.10. PU has the c.c.c.

Proof. Suppose that {pα | α < ω1} is an uncountable subset of PU ; say,

pα = 〈sα, Aα〉 for each α < ω1. Since there are only countably many possibilities

for sα, there exists a fixed function s and an uncountable subset I ⊆ ω1 such that

sα = s for all α ∈ I. If α, β ∈ I, then 〈s,Aα ∩ Aβ〉 ≤ pα, pβ . Hence PU does not

contain any uncountable antichains. �

Lemma 6.6.11. For each A ∈ U ,

DA = {〈s,B〉 | B ⊆ A}

is a dense subset of PU .

Proof. If p = 〈s, C〉 is any element of PU , then q = 〈s,A ∩ C〉 ∈ DA and

q ≤ p. �

Lemma 6.6.12. If n < ω, then

Dn = {〈s,A〉 | n ⊆ dom s}

is a dense subset of PU .
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Proof. Let p = 〈s,A〉 be any element of PU and let m = max{n, dom s}.

Since A is an infinite subset of ω, we can extend s to a strictly increasing function

t : m→ ω such that t(`) ∈ A for all ` ∈ dom tr dom s. Then q = 〈t, A〉 ∈ Dn and

q ≤ p. �

Theorem 6.6.13. Let U ∈ V be a nonprincipal ultrafilter over ω and let PU be

the associated Mathias notion of forcing. Then

(a) PU has the c.c.c.; and

(b) in V PU , there exists an infinite subset T ⊆ ω such that T ⊆∗ A for all

A ∈ U .

Proof. Let V PU = V [G], where G is a PU -generic filter over V , and define

f ∈ V [G] by

f =
⋃
{s | There exists A ∈ U such that 〈s,A〉 ∈ G}.

Then Lemma 6.6.12 implies that f ∈ ωω and clearly f is strictly increasing. Let

T = f [ω] ∈ V [G]. We shall show that T ⊆∗ A for all A ∈ U . To see this, fix

some A ∈ U . Applying Lemma 6.6.11, let p = 〈s,B〉 ∈ G be a condition such that

B ⊆ A. Let dom s = n and let m be any integer such that m ≥ n. Then there

exists a condition q = 〈t, C〉 ∈ G such that q ≤ p and m ∈ dom t. This implies that

f(m) = t(m) ∈ B. Thus

{f(m) | n ≤ m < ω} ⊆ B ⊆ A

and so T ⊆∗ A. �

This completes the proof of the following result.

Theorem 6.6.14. If U ∈ V is a nonprincipal ultrafilter over ω and G = SVU ,

then

(a) G is a complete group; and

(b) there exists a c.c.c. notion of forcing P which adjoins an outer automor-

phism of G.

In particular, τV
P
(G) > τV (G).

�
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Perhaps more surprisingly, in the remainder of this section, we shall present an

example of a centreless group G ∈ V for which there exists a notion of forcing P

such that τV
P
(G) < τV (G).

Definition 6.6.15. The notion of forcing P is said to adjoin a new real if there

exists an element R ∈ PV P
(ω)r PV (ω).

Of course, because of the natural bijections between P(ω), Sym(ω), the field R

of real numbers, etc., it follows that if P is a notion of forcing, then PV P
(ω) 6= PV (ω)

iff SymV P
(ω) 6= SymV (ω) iff RV P 6= RV , etc.

Theorem 6.6.16. There exists a centreless group G ∈ V of cardinality 2ω which

satisfies the following conditions.

(a) τV (G) = 2.

(b) If P is any notion of forcing which adjoins a new real, then τV
P
(G) = 1.

The proof of Theorem 6.6.16 makes use of the following two results.

Lemma 6.6.17. Let P be a notion of forcing which adjoins a new real and let

M = V P be the corresponding generic extension.

(a) SymV (ω) is self-normalising in SymM (ω).

(b) SymV (ω) 6' SymM (ω) in the actual set theoretic universe.

Proof. (a) If ϕ ∈ SymM (ω) normalises SymV (ω), then ϕ induces an auto-

morphism π of SymV (ω) via conjugation. By Theorem 6.6.1, π is an inner auto-

morphism and hence ϕ ∈ SymV (ω).

(b) In this part of the proof, we shall work within the actual set-theoretic

universe. Suppose that θ : SymV (ω)→ SymM (ω) is an isomorphism. By Theorem

4.1.3, there exists a permutation ϕ of ω such that θ(g) = ϕgϕ−1 for all g ∈ SymV (ω).

Arguing as in the proof of Theorem 6.6.1, we see that ϕ ∈ M . But then we have

that ϕ ∈ SymM (ω) and that ϕSymV (ω)ϕ−1 = SymM (ω), which is impossible since

SymV (ω) is a proper subgroup of SymM (ω). �

Of course, Lemma 6.6.17(b) implies that M � SymV (ω) 6' SymM (ω).

The following result is simply the observation that the construction of Fried

and Kollár in the proof of Theorem 4.1.7 is upwards absolute.
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Theorem 6.6.18. Let Γ = 〈X,E〉 ∈ V be any graph. Then there exists a field

KΓ ∈ V of cardinality max{|X|, ω} such that whenever P is a (possibly trivial)

notion of forcing and M = V P, then the following conditions are satisfied.

(a) X is an AutM (KΓ)-invariant subset of KΓ.

(b) The restriction mapping, π 7→ π � X, is an isomorphism from AutM (KΓ)

onto AutM (Γ).

�

Here a notion of forcing P is said to be trivial if |P| = 1. Of course, in this case,

we have that V P = V .

Proof of Theorem 6.6.16. Let Γ = 〈X1 t X2, E〉 ∈ V be the complete

bipartite graph such that

(i) |X1| = |X2| = ω; and

(ii) if v ∈ Xi and w ∈ Xj , then v and w are adjacent iff i 6= j.

Let KΓ ∈ V be the field given by Theorem 6.6.18. If P is a (possibly trivial) notion

of forcing, then

AutV
P
(Γ) = [SymV P

(X1)× SymV P
(X2)]o 〈σ〉,

where σ ∈ V is any involution which interchanges the null subgraphs X1 and

X2. For rest of this proof, we shall identify AutV
P
(KΓ) with AutV

P
(Γ). Let

H = SymV (X1) and let G = PGL(2,KΓ) o H. (Notice that if K ∈ V is any

field, then PGL(2,K) is absolute for V . In particular, it is not necessary to write

PGLV (2,KΓ) or PGLV
P
(2,KΓ).) By Theorems 4.1.6 and 6.6.18, whenever P is a

(possibly trivial) notion of forcing, then for each ordinal α,

GV
P

α = PGL(2,KΓ)oNV P

α (H),

where NV P

α (H) is the αth group in the normaliser tower of H in AutV
P
(Γ). Clearly

in V , the normaliser tower of H in AutV (Γ) is given by

H = SymV (X1) C SymV (X1)× SymV (X2) C AutV (Γ).

Hence τV (G) = 2.

Now let P be any notion of forcing which adjoins a real and let M = V P. By

Lemma 6.6.17(a), H = SymV (X1) is self-normalising in SymM (X1). Hence the
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normaliser of H in AutM (Γ) is N = SymV (X1) × SymM (X2). Lemma 6.6.17(b)

implies that N is self-normalising in AutM (Γ). Hence τM (G) = 1. �

In this section, we have seen that the height of the automorphism tower of an

infinite centreless group may either increase or decrease in a generic extension. In

Chapter 8, we shall prove that it is consistent that for every infinite cardinal λ ∈ V

and every ordinal α < λ, there exists a centreless group G ∈ V with the following

properties.

(a) τV (G) = α.

(b) If β is any ordinal such that 1 ≤ β < λ, then there exists a notion of forcing

P ∈ V , which preserves cofinalities and cardinals, such that τV
P
(G) = β.

6.7. An absoluteness theorem for automorphism towers

Throughout this section, V will denote the ground model .

In this section, we shall prove the following absoluteness theorem for automor-

phism towers, which will be used repeatedly in the later chapters of this book.

Theorem 6.7.1. Let P ∈ V be a κ+-closed notion of forcing and let M = V P

be the corresponding generic extension. If G ∈ V is a centreless group of cardinality

κ, then GMα = GVα for all α ≥ 0. Hence τM (G) = τV (G).

We shall prove that GMα = GVα by induction on α ≥ 0. Clearly the result holds

when α = 0, since

GM0 = G = GV0 .

In order to prove the result when α = 1, we must show that

GM1 = AutM (G) = AutV (G) = GV1 .

It is clear that AutV (G) 6 AutM (G). On the other hand, since P ∈ V is κ+-closed

and |G| = κ, Lemma 6.3.20 implies that if π ∈ AutM (G), then π ∈ V . Hence

AutM (G) 6 AutV (G). Unfortunately, this argument is not enough to prove that

GM2 = AutM (GV1 ) = AutV (GV1 ) = GV2 ,

since it is possible that |GV1 | ≥ κ+. However, note that Lemma 6.3.20 implies that

π � G ∈ V for every π ∈ AutM (GV1 ). Hence the following lemma implies that
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AutM (GV1 ) = AutV (GV1 ). Continuing in this fashion, we shall obtain Theorem

6.7.1. (Lemma 6.7.2 will also play a crucial role in Chapter 9.)

Lemma 6.7.2. Let P ∈ V be a notion of forcing and let M = V P be the cor-

responding generic extension. Suppose that G ∈ V is a centreless group and that

π ∈ AutM (GVα ) for some α ≥ 0. If π � G ∈ V , then π ∈ V .

Proof. For each β ≤ α, let πβ = π � GVβ . Working inside V , we shall prove

inductively that πβ ∈ V for all β ≤ α. In particular, π = πα ∈ V . By assumption,

π0 = π � G ∈ V . Now suppose that β > 0 and that πγ ∈ V for all γ < β. First

suppose that β = γ + 1 is a successor ordinal.

Claim 6.7.3. If g ∈ GVγ+1, then π(g) is the unique element h ∈ NGVα (πγ [GVγ ])

such that hπγ(a)h−1 = πγ(gag−1) for all a ∈ GVγ .

Proof of Claim 6.7.3. Let g ∈ GVγ+1. Then g normalises GVγ and for all

a ∈ GVγ ,

π(g)πγ(a)π(g)−1 = π(gag−1) = πγ(gag−1).

Since Theorem 1.1.10 implies that

CGVα (πγ [GVγ ]) = CGVα (π[GVγ ]) = π[CGVα (GVγ )] = 1,

it follows that π(g) is the unique such element. �

By Claim 6.7.3, πγ+1 = π � GVγ+1 is explicitly definable from GVα and πγ . Since

GVα , πγ ∈ V , it follows that πγ+1 ∈ V . Finally if β is a limit ordinal, then it is clear

that πβ =
⋃
γ<β πγ ∈ V . �

Proof of Theorem 6.7.1. We shall argue by induction on α that GMα = GVα .

This is clearly true when α = 0 and no difficulties arise when α is a limit ordinal.

Assume inductively that GMα = GVα for some α ≥ 0. Then it is enough to show that

AutM (GVα ) = AutV (GVα ). Clearly AutV (GVα ) 6 AutM (GVα ). On the other hand,

since P ∈ V is κ+-closed and |G| = κ, Lemma 6.3.20 implies that π � G ∈ V for each

π ∈ AutM (GVα ). Hence Lemma 6.7.2 implies that AutM (GVα ) 6 AutV (GVα ). �
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6.8. Iterated forcing

Throughout this section, V will denote the ground model .

In this section, we shall discuss some of the basic ideas of iterated forcing,

including the notion of a reverse Easton iterated forcing. (Clear accounts of the

theory of iterated forcing can be found in Baumgartner [2], Jech [20] and Kunen

[26].)

To prove the consistency of τω1 < τω2 , it is enough to find a notion of forcing

P which adjoins a centreless group G of cardinality ω2 such that τ(G) ≥ (2ω1)+;

and this can be done using the techniques developed in the earlier sections of this

chapter. However, these techniques are often not enough to prove the consistency

of statements involving the existence of groups of arbitrarily large cardinalities.

For example, in Section 7.4, we shall prove that it is consistent that τκ is a strictly

increasing function of κ. To accomplish this, we shall begin with a ground model

V satisfying GCH and we shall then construct a generic extension M in which the

following statements are true:

(a) GCH holds.

(b) For each regular uncountable cardinal κ, there exists a centreless group T

of cardinality κ such that τ(T ) = κ+.

It follows easily that τκ is strictly increasing in M . To see this, working within

M , suppose that θ, λ are infinite cardinals such that θ < λ. Since GCH holds,

it follows that τθ <
(
2θ
)+

= θ++. Let κ be a regular (necessarily uncountable)

cardinal such that θ < κ ≤ λ. Then there exists a centreless group T of cardinality

κ such that τ(T ) = κ+ ≥ θ++ and so τκ > τθ. Applying Corollary 3.2.2, we obtain

that τθ < τκ ≤ τλ.

In order to construct M , it seems natural to proceed as follows. First we should

force with a notion of forcing P0 ∈ V0 = V which adjoins a centreless group G0 of

cardinality ω1 such that τ(G0) = ω2. Next we should force with a notion of forcing

P1 ∈ V1 = V P0
0 which adjoins a centreless group G1 of cardinality ω2 such that

τ(G0) = ω3. Continuing in this fashion, for each n < ω, we should construct an

n-stage iterated forcing

V = V0 ⊂ V1 = V P0
0 ⊂ · · · ⊂ Vi+1 = V Pi

i ⊂ · · · ⊂ Vn = V
Pn−1

n−1 ,



142 6. SET-THEORETIC FORCING

where each Pi ∈ Vi adjoins a centreless group Gi of cardinality ωi+1 such that

τ(Gi) = ωi+2. However, this approach runs into difficulties at stage ω, as it turns

out that Vω =
⋃
n<ω Vn is not a model of ZFC. (Since a new subset of ℵω is

adjoined at every step of the iteration, it follows that

Vω 2 (∃x)(∀y)(y ∈ x↔ y ⊆ ℵω).

Hence the Powerset Axiom fails in Vω.) For this reason, it is necessary to take a

completely different approach to iterated forcing.

We shall begin by reconsidering a typical 2-stage iteration

V = V0 ⊂ V1 = V P0
0 ⊂ V2 = V P1

1 = (V P0
0 )P1 ,

where P0 ∈ V0 and P1 ∈ V1. Our first target is to find a single notion of forcing

Q ∈ V0 such that

(V P0
0 )P1 = V Q

0 .

If P1 ∈ V0, then it is relatively straightforward to show that Q = P0 × P1 satisfies

our requirements. (For example, see Section VIII.1 of Kunen [26].) Unfortunately,

in most examples, we have that P1 ∈ V1rV0. However, even in this case, V0 always

contains a P0-name for the notion of forcing P1. In more detail, let V P0
0 = V0[G0],

where G0 is a P0-generic filter over V0. Then there exists a P0-name τ and a

condition p ∈ G0 such that τG0
= P1 and

p  τ is a partially ordered set with greatest element.

In fact, as explained in Section VIII.5 of Kunen [26], the P0-name τ can be chosen

so that p = 1P0 .

Definition 6.8.1. Suppose that P is a notion of forcing. Then a P-name for

a notion of forcing is a triple of P-names 〈Q̃,≤Q̃, 1Q̃〉 such that

1P  〈Q̃,≤Q̃〉 is a partial order with largest element 1Q̃.

Slightly abusing notation, we shall usually say that Q̃ is a P-name for a notion

of forcing.
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Definition 6.8.2. Suppose that P is a notion of forcing and that Q̃ is a P-name

for a notion of forcing. Then P ∗ Q̃ is the notion of forcing with underlying set

{〈p, q̃〉 | p ∈ P and 1P  q̃ ∈ Q̃},

partially ordered by

〈p1, q̃1〉 ≤ 〈p2, q̃2〉 iff p1 ≤P p2 and p1  q̃1 ≤Q̃ q̃2.

(Strictly speaking, we should identify those conditions 〈p1, q̃1〉 and 〈p2, q̃2〉 such

that 〈p1, q̃1〉 ≤ 〈p2, q̃2〉 and 〈p2, q̃2〉 ≤ 〈p1, q̃1〉. Of course, this occurs iff p1 = p2 and

p1  q̃1 = q̃2.)

The next result shows that P ∗ Q̃ satisfies our requirements; i.e. that forcing

with P ∗ Q̃ is equivalent to first forcing with P and then forcing with Q̃G over

V P = V [G]. (While the notion of forcing P ∗ Q̃ was primarily introduced in order

to be able to define iterated forcing constructions of transfinite length, it should be

mentioned that P ∗ Q̃ often plays a crucial role in understanding the properties of

2-stage iterations. For example, see the proof of Theorem 8.3.1.)

Theorem 6.8.3. Let P ∈ V be a notion of forcing and let Q̃ ∈ V be a P-name

for a notion of forcing.

(a) Suppose that G is a P-generic filter over V and that H is a Q̃G-generic

filter over V [G]. Then

G ∗H = {〈p, q̃〉 ∈ P ∗ Q̃ | p ∈ G and q̃G ∈ H}

is a P ∗ Q̃-generic filter over V and V [G ∗H] = V [G][H].

(b) Conversely, suppose that K is a P ∗ Q̃-generic filter over V . Then

G = {p ∈ P | There exists q̃ such that 〈p, q̃〉 ∈ K}

is a P-generic filter over V ,

H = {q̃G | There exists p such that 〈p, q̃〉 ∈ K}

is a Q̃G-generic filter over V [G] and K = G ∗H.

Proof. This is Theorem 1.1 of Baumgartner [2]. �

The next result confirms that P∗ Q̃ satisfies the expected chain conditions, etc.
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Theorem 6.8.4. Let P be a notion of forcing and let Q̃ be a P-name for a

notion of forcing. Let λ be a regular uncountable cardinal and let θ be a cardinal

such that θµ = θ for all µ < λ.

(a) If P has the λ-c.c. and 1P  Q̃ has the λ-c.c. , then P ∗ Q̃ has the λ-c.c.

(b) If P is λ-closed and 1P  Q̃ is λ-closed , then P ∗ Q̃ is λ-closed.

(c) Suppose that P has the λ-c.c. and that |P| ≤ θ. If 1P  |Q̃| ≤ θ, then

|P ∗ Q̃| ≤ θ.

Proof. This combines Theorem 2.1, Corollary 2.6 and Lemma 3.2 of Baum-

gartner [2]. �

It is now relatively straightforward to define iterated forcing constructions of

arbitrary transfinite length.

Definition 6.8.5. Let α ≥ 0. Then an α-stage iteration is a sequence of forcing

notions 〈Pβ | β ≤ α〉 which satisfies the following conditions.

(a) If β ≤ α and p ∈ Pβ , then p = 〈p(γ) | γ < β〉 is a β-sequence.

(b) If β = 0, then P0 = {∅} is the trivial notion of forcing.

(c) If β = γ + 1, then there exists a Pγ-name Q̃γ for a notion of forcing such

that

(i) p ∈ Pβ iff p � γ ∈ Pγ and 1Pγ Pγ p(γ) ∈ Q̃γ ; and

(ii) p ≤Pβ q iff p � γ ≤Pγ q � γ and p � γ Pγ p(γ) ≤Pγ q(γ).

Thus Pβ ' Pγ ∗ Q̃γ .

(c) If β is a limit ordinal, then

(i) if p ∈ Pβ , then p � γ ∈ Pγ for all γ < β; and

(ii) p ≤Pβ q iff p � γ ≤Pγ q � γ for all γ < β.

Furthermore, Pβ satisfies the following closure properties:

(iii) 1Pβ = 〈1Q̃γ | γ < β〉 ∈ Pβ ; and

(iv) if γ < β, p ∈ Pβ , q ∈ Pγ and q ≤Pγ p � γ, then r ∈ Pβ , where

r � γ = q and r(ξ) = p(ξ) for all γ ≤ ξ < β.

If β is a limit ordinal, then clause 6.8.5(c) is not enough to completely determine

the notion of forcing Pβ . While there are other possibilities, in this book, we shall

always take Pβ to be either the direct limit or the inverse limit of 〈Pγ | γ < β〉.
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Definition 6.8.6. Suppose that β is a limit ordinal and that 〈Pγ | γ ≤ β〉 is a

β-stage iteration.

(a) Pβ is the direct limit of 〈Pγ | γ < β〉 if p ∈ Pβ iff there exists γ < β such

that p � γ ∈ Pγ and p(ξ) = 1Q̃ξ for all γ ≤ ξ < β.

(b) Pβ is the inverse limit of 〈Pγ | γ < β〉 if p ∈ Pβ iff p � γ ∈ Pγ for all γ < β.

Example 6.8.7. Suppose that the α-stage iteration 〈Pβ | β ≤ α〉 satisfies the

following conditions.

(a) If β is a limit ordinal such that cf(β) > ω, then Pβ is the direct limit of

〈Pγ | γ < β〉.

(b) If β is a limit ordinal such that cf(β) = ω, then Pβ is the inverse limit of

〈Pγ | γ < β〉.

Then for each p ∈ Pα, the set {ξ < α | p(ξ) 6= 1Q̃ξ} is countable. In this case, we

say that 〈Pβ | β ≤ α〉 is a countable support iteration.

If 〈Pβ | β ≤ α〉 is an α-stage iteration and β < α, then we shall often identify

each condition p ∈ Pβ with the corresponding condition p′ ∈ Pα defined by

p′(γ) =

p(γ), if γ < β;

1Q̃γ , if β ≤ γ < α.

With this convention, we have then that

P0 ⊆ P1 ⊆ · · · ⊆ Pβ ⊆ · · · ⊆ Pα.

Furthermore, if β ≤ α is a limit ordinal, then Pβ is the direct limit of 〈Pγ | γ ≤ β〉

iff Pβ =
⋃
γ<β Pγ .

Suppose that 〈Pβ | β ≤ α〉 is an α-stage iteration and that β < α. Then the

basic idea is that forcing with Pα should be equivalent to first forcing with Pβ and

then later forcing with the notions of forcing corresponding to Q̃γ for β ≤ γ < α.

To state this result precisely, for each p ∈ Pα, let

pβ = 〈p(γ) | β ≤ γ < α〉,

so that p = (p � β)̂pβ ; and let

Pβα = {pβ | p ∈ Pα}.
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If Gβ is a Pβ-generic filter over V , then we can define a partial ordering ≤Pβα,Gβ of

Pβα in V [Gβ ] by

r ≤Pβα,Gβ s iff (∃p ∈ Gβ)p̂r ≤Pα p̂s.
Let P̃βα be the canonically chosen Pβ-name for the notion of forcing

〈Pβα,≤Pβα,Gβ 〉 ∈ V [Gβ ].

Theorem 6.8.8. With the above notation, Pα is isomorphic to a dense sub-

order of Pβ ∗ P̃βα. Furthermore, if Gα is a Pα-generic filter over V , then

Gβ = {p � β | p ∈ Gα}

is a Pβ-generic filter over V .

Proof. This combines Theorems 1.2 and 5.1 of Baumgartner [2]. �

Hence, by Theorem 6.5.5, forcing with Pα is equivalent to first forcing with Pβ
and then with the notion of forcing

〈Pβα,≤Pβα,Gβ 〉 ∈ V Pβ = V [Gβ ].

Also notice that if we identify Pβ with the corresponding sub-order of Pα, then

Gβ = Gα ∩ Pβ .

As we mentioned earlier, in Section 7.4, beginning with a ground model V

satisfying GCH, we shall construct a generic extension M in which the following

statements are true:

(a) GCH holds.

(b) For each regular uncountable cardinal κ, there exists a centreless group T

of cardinality κ such that τ(T ) = κ+.

Here the generic extension M will have the form V P∞ , where P∞ is a notion of

forcing which iteratively adjoins a suitable group T for each regular uncountable

cardinal κ. In other words, P∞ is the limit of an iteration 〈Pβ | β ∈ On〉 along

the entire class On of ordinals of V . In particular, P∞ will be a proper class of V .

In the remainder of this section, we shall discuss some of the basic properties of

proper class forcing.
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Let V be a c.t.m. of ZFC. Recall that C ⊆ V is said to be a class of V iff

there exists a formula ϕ(x, y1, · · · , yn) with free variables x, y1, · · · , yn and elements

a1, · · · , an ∈ V such that

C = {c ∈ V | V � ϕ(c, a1, · · · , an)}.

In particular, every set a ∈ V is a class of V . The class C is said to be a proper

class of V iff C /∈ V . Notice that, from the viewpoint of the actual set-theoretic

universe, V has only countably many classes.

Now suppose that P, ≤ are classes of V such that 〈P,≤〉 is a partial order with

greatest element 1. Then a filter G ⊆ P is said to be P-generic over V iff G∩D 6= ∅

whenever D is a class of V which is dense in P. Since V really has only countably

many classes, the proof of Lemma 6.2.6 shows that for each p ∈ P, there exists a P-

generic filter G over V such that p ∈ G. We can now define the notion of a P-name

τ ∈ V and its interpretation τG exactly as in Definitions 6.2.9 and 6.2.10. Finally

if G is a P-generic filter G over V , then we once again define the corresponding

generic extension by

V [G] = {τG | τ ∈ V is a P-name }.

While much of the theory of forcing generalises in a routine fashion to the broader

context of class forcing, there are some significant differences. For example, the

obvious candidate for a P-name for G is

Γ = {〈p̌, p〉 | p ∈ P}.

However, if P is a proper class of V , then Γ is also a proper class of V and so

Γ /∈ V . In fact, G /∈ V [G] for most proper class forcing notions. A much more

serious difference is that V [G] may not be a model of ZFC. For example, the

proper class forcing notion P = Fn(On × ω, 2) adjoins a proper class of subsets of

ω and hence the Powerset Axiom fails in the corresponding generic extension V P.

In this book, we shall only need to consider some very well-behaved proper

class forcing notions, known as reverse Easton iterations. (This name is especially

misleading: reverse Easton iterated forcing was introduced by Silver and the it-

eration proceeds in the usual direction rather than in the reverse direction. Clear

introductions to reverse Easton forcing can be found in Baumgartner [2] and Menas
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[32].) For example, in Chapters 7 and 8, we shall make use of proper class iterated

forcing notions which fit into the following framework.

Hypothesis 6.8.9. V is a c.t.m. satisfying ZFC +GCH and 〈Pβ | β ∈ On〉 is

a sequence of forcing notions satisfying the following conditions.

(1) If β = 0, then P0 = {∅} is the trivial notion of forcing.

(2) If β is a limit ordinal which is not inaccessible, then Pβ is the inverse limit

of 〈Pγ | γ < β〉.

(3) If β is an inaccessible cardinal, then Pβ is the direct limit of 〈Pγ | γ < β〉.

(4) If β = γ + 1 is a successor ordinal, then exists a possibly trivial notion of

forcing Qγ ∈ V Pγ such that Pβ ' Pγ ∗ Q̃γ . (Here Q̃γ denotes a Pγ-name

of the notion of forcing Qγ ∈ V Pγ .) Furthermore, Qγ is chosen so that

the following conditions hold.

(a) If γ is not a regular uncountable cardinal, then Qγ = P0 is the trivial

notion of forcing.

(b) If γ = κ is a regular uncountable cardinal, then Qγ ∈ V Pγ is a notion

of forcing of cardinality at most κ+ such that

V Pκ � Qκ is κ-closed and has the κ+ -c.c.

Let P∞ be the direct limit of 〈Pβ | β ∈ On〉; and for each β ∈ On, let P̃β∞ be the

canonically chosen Pβ-name for a proper class notion of forcing such that P∞ is

isomorphic to a dense sub-order of Pβ ∗ P̃β∞. As usual, if β ∈ On, then we identify

Pβ with the corresponding sub-order of P∞.

Let G be a P∞-generic filter over V and let V [G] be the corresponding generic

extension. For each β ∈ On, let Gβ = G ∩ Pβ and let Pβ∞ = (P̃β∞)Gβ ∈ V [Gβ ].

Theorem 6.8.10. With the above hypotheses, the following hold.

(a) P∞ preserves cofinalities and cardinals.

(b) For all β ∈ On, V [Gβ ] is a model of ZFC +GCH.

(c) If κ is a regular uncountable cardinal, then V [Gκ+1] � Pκ+1∞ is κ+-closed.

(d) V [G] =
⋃

β∈On
V [Gβ ].

(e) V [G] is a model of ZFC +GCH.

Proof. This follows easily from Menas [32]. �
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In particular, if the proper class iteration 〈Pβ | β ∈ On〉 satisfies Hypothesis

6.8.9, then V Pβ � GCH for all β ∈ On. Consequently, in the successor stages

β = γ + 1 of the construction of such an iteration, we can assume inductively that

V Pγ � GCH. (Of course, any reader who is already familiar with the theory of

iterated forcing can simply perform this induction himself. This remark is only

included for those readers who do not yet fit into this category.)

6.9. Notes

The account of set-theoretic forcing in Sections 6.1 to 6.5 is closely based on

Kunen’s textbook [26]. The results in Sections 6.6 and 6.7 first appeared in Thomas

[50]. The accounts of iterated forcing and reverse Easton forcing in Section 6.8

follow Baumgartner [2] and Menas [32].





CHAPTER 7

Forcing Long Automorphism Towers

In Chapter 3, we proved that if G is a centreless group of infinite cardinality

κ, then the automorphism tower of G terminates after less than (2κ)
+

steps; and

we also pointed out that τκ < (2κ)
+

, so that (2κ)
+

is not the best possible upper

bound for τ(G). The main result of this chapter says that if κ > ω, then it is

impossible in ZFC to prove a better upper bound for τ(G) than (2κ)
+

. (It remains

an open question whether a better upper bound can be found in the case when

κ = ω.) During the proof of our main result, we shall prove two other theorems

which are of some interest in their own right.

In Section 7.2, we shall study the question of which groups G can be embedded

in the quotient group Sym(κ)/ Symκ(κ). Of course, such a group G must satisfy

|G| ≤ 2κ. But this is not really a restriction on the structure of G, since 2κ can be

made arbitrarily large in generic extensions of the ground model V . In Section 7.2,

we shall prove that if κ is a regular uncountable cardinal such that κ<κ = κ and

G is an arbitrary group, then there exists a cardinal-preserving notion of forcing Q

such that G is embeddable in Sym(κ)/ Symκ(κ) within the generic extension V Q.

On the other hand, the analogous result is false if we consider the question of which

groups can be embedded in Sym(κ). For example, in Section 7.1, we shall prove

that the alternating group Alt(κ+) cannot be embedded in Sym(κ).

In Section 7.3, we shall study the question of which groups G can be realised up

to isomorphism as the automorphism groups of first-order structuresM of cardinal-

ity κ. There is one obvious constraint on the structure of such a group G; namely,

since G acts on a structure M of cardinality κ, it follows that G is embeddable

in Sym(κ). (For example, the alternating group Alt(κ+) cannot be isomorphic to

the automorphism group of a structure of cardinalty κ.) It turns out that if κ is

a regular uncountable cardinal such that κ<κ = κ, then this is the only constraint

on the structure of G. In Section 7.3, we shall prove that if κ is such a cardinal

151
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and G is an arbitrary subgroup of Sym(κ), then there exists a cardinal-preserving

notion of forcing P such that in the generic extension V P, there exists a first-order

structure M of cardinality κ such that G ' Aut(M). (A theorem of Dudley [5]

and Solecki [47] shows that the analogous result is false for κ = ω and this is the

point where the proof of our main result breaks down in the case when κ = ω.)

In the final three sections of this chapter, we shall present some further appli-

cations of our main theorems and shall discuss some of the many remaining open

problems.

7.1. The nonexistence of a better upper bound

In Chapter 3, we proved that if κ is an infinite cardinal, then τκ < (2κ)
+

. In this

section, we shall sketch the proof of the following result, which can be interpreted

as saying that if κ > ω, then it is impossible to prove a better upper bound for τκ

in ZFC.

Theorem 7.1.1. Let V � GCH and let κ, λ ∈ V be uncountable cardinals such

that κ < cf(λ). Let α be any ordinal such that α < λ+. Then there exists a no-

tion of forcing P, which preserves cofinalities and cardinals, such that the following

statements are true in the corresponding generic extension V P.

(a) 2κ = λ.

(b) There exists a centreless group T of cardinality κ such that τ(T ) = α.

Our methods do not enable us to deal with the case when κ = ω and the

following question remains open.

Question 7.1.2. Is it true, or even consistent, that there exists a countable

centreless group G such that τ(G) ≥ ω1?

Initially we shall only consider the case when κ is a regular uncountable cardi-

nal. We do not need to assume the full GCH, but rather only that κ<κ = κ. From

now on, fix such a regular uncountable cardinal κ. Let λ be any candidate for 2κ;

i.e. λ is a cardinal such that λκ = λ. And let α be any ordinal such that α < λ+.

We shall describe how to construct a cardinal-preserving notion of forcing P such

that the following statements are true in the corresponding generic extension V P.

(a) 2κ = λ.
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(b) There exists a centreless group T of cardinality κ such that τ(T ) = α.

By Theorem 4.1.9, it is enough to produce a structure M ∈ V P for a first-order

language L and a subgroup H of Aut(M) such that the following conditions are

satisfied:

(i) |M| = |L| = κ;

(ii) |H| ≤ κ; and

(iii) the normaliser tower of H in Aut(M) terminates after exactly α steps.

Roughly speaking, our strategy will be to

(1) first construct a pair of groups, H 6 G, such that |H| ≤ κ and the

normaliser tower of H in G terminates after exactly α steps; and

(2) then attempt to find a cardinal-preserving notion of forcing P which ad-

joins a structure M of cardinality κ such that G ' Aut(M).

Of course, there are many groups G for which such a notion of forcing P cannot

possibly exist. For example, de Bruijn [3] has shown that the alternating group

Alt(κ+) cannot be embedded in Sym(κ). Since Alt(κ+) cannot act on a set of

cardinality κ, there is certainly no cardinal-preserving notion of forcing P which

adjoins a structure M of cardinality κ such that Alt(κ+) ' Aut(M).

Our next definition singles out a combinatorial condition which is satisfied by all

those groups which are embeddable in Sym(κ). (See Proposition 7.1.5.) Conversely,

in Theorem 7.1.6, we shall show that if a group G satisfies this combinatorial

condition, then there exists a cardinal-preserving notion of forcing P which adjoins

a structure M of cardinality κ such that G ' Aut(M).

Definition 7.1.3. Suppose that κ is a regular uncountable cardinal such that

κ<κ = κ. Then a group G is said to satisfy the κ+-compatibility condition if it has

the following property. Suppose that H is a group such that |H| < κ. Suppose

that 〈fi | i < κ+〉 is a sequence of embeddings fi : H → G and let Hi = fi[H] for

each i < κ+. Then there exist ordinals i < j < κ+ and a surjective homomorphism

ϕ : 〈Hi, Hj〉 → Hi such that

(a) ϕ ◦ fj = fi; and

(b) ϕ � Hi = idHi .
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Of course, if i < j < κ+, then there can exist at most one homomorphism

ϕ : 〈Hi, Hj〉 → Hi satisfying conditions 7.1.3(a) and 7.1.3(b). For we must define

the restriction ϕ � Hi ∪Hj by

ϕ(h) =

h if h ∈ Hi;

(fi ◦ f−1
j )(h) if h ∈ Hj .

By the ∆-System Lemma, we can assume that there exists a fixed subgroup K 6 G

such that Hi ∩Hj = K for all i < j < κ+; and an easy counting argument allows

us to also assume that there exists a fixed homomorphism θ : K → H such that

f−1
i � K = θ for all i < κ+. This implies that the partial mapping ϕ � Hi ∪ Hj

is well-defined for all i < j < κ+. However, there still remains the question of

finding a pair of ordinals i < j < κ+ such that this partial mapping extends to a

well-defined homomorphism ϕ : 〈Hi, Hj〉 → Hi.

Example 7.1.4. In order to get an better understanding of Definition 7.1.3,

it will probably be helpful to see an example of a group which fails to satisfy the

κ+-compatibility condition. So we shall show that Alt(κ+) does not satisfy the κ+-

compatibility condition. Let H = Alt(4). For each 3 ≤ i < κ+, let ∆i = {0, 1, 2, i}

and let fi : Alt(4)→ Alt(∆i) be an isomorphism. If 3 ≤ i < j < κ+, then

〈Alt(∆i),Alt(∆j)〉 = Alt(∆i ∪∆j) ' Alt(5).

Since Alt(5) is a simple group, there does not exist a surjective homomorphism

from 〈Alt(∆i),Alt(∆j)〉 onto Alt(∆i).

Proposition 7.1.5. Let κ be a regular uncountable cardinal such that κ<κ = κ

and let G 6 Sym(κ). Then G satisfies the κ+-compatibility condition.

Proof. Let H be a group such that |H| < κ and let 〈fi | i < κ+〉 be a sequence

of embeddings fi : H → G. For each i < κ+, let Hi = fi[H] and let Zi be a subset

of κ chosen so that

(a) |Zi| < κ;

(b) Zi is Hi-invariant; and

(c) g � Zi 6= idZi for all 1 6= g ∈ Hi.

Since there are only κ<κ = κ possibilities for Zi, after passing to a suitable subse-

quence if necessary, we can suppose that
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(1) there exists a fixed subset Z such that Zi = Z for all i < κ+.

Similarly we can suppose that the following condition holds.

(2) For each ordinal i < κ+, let ri : Hi → Sym(Z) be the restriction mapping,

g 7→ g � Z. Then ri ◦ fi = rj ◦ fj for all i < j < κ+.

Fix any pair of ordinals i, j such that i < j < κ+. Let ρ : 〈Hi, Hj〉 → Sym(Z)

be the restriction mapping, g 7→ g � Z. Then ρ [〈Hi, Hj〉] = ri [Hi] and so we can

define a surjective homomorphism ϕ : 〈Hi, Hj〉 → Hi by ϕ = r−1
i ◦ ρ. Clearly

ϕ � Hi = idHi . By condition (2), if h ∈ H, then

(ρ ◦ fj)(h) = (rj ◦ fj)(h) = (ri ◦ fi)(h)

and so

(ϕ ◦ fj)(h) = (r−1
i ◦ ρ ◦ fj)(h) = fi(h).

Hence ϕ ◦ fj = fi. �

If the group H in the proof of Proposition 7.1.5 happens to be finite, then

the assumption that κ<κ = κ is not needed. So combining Proposition 7.1.5 and

Example 7.1.4, we obtain an alternative proof of de Bruijn’s theorem that Alt(κ+)

does not embed into Sym(κ).

We shall prove the following theorem in Section 7.3.

Theorem 7.1.6. Let κ be a regular uncountable cardinal such that κ<κ = κ

and let G be a group which satisfies the κ+-compatibility condition. Let L be a

first-order language consisting of κ binary relation symbols. Then there exists a

notion of forcing P such that

(a) P is κ-closed;

(b) P has the κ+- c.c.; and

(c) P adjoins an L-structure M of cardinality κ such that G ' Aut(M).

Furthermore, if |G| = θ, then |P| = max{κ, θ<κ}.

Combining Proposition 7.1.5 and Theorem 7.1.6, we see that if κ is an uncount-

able cardinal such that κ<κ = κ and G is an arbitrary subgroup of Sym(κ), then

there exists a cardinal-preserving notion of forcing P and a structure M ∈ V P of

cardinality κ such that G ' Aut(M). This is the point at which our proof breaks

down in the case when κ = ω, since the analogue of Theorem 7.1.6 is false for κ = ω.
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For example, let A be a free abelian group such that ω < |A| ≤ 2ω. Then it is an

easy exercise to show that A is embeddable in Sym(ω). However, Dudley [5] has

shown that the automorphism group of a countable first-order structure is never

an uncountable free abelian group. (This result was independently rediscovered by

Solecki [47].)

We have now reduced our problem to that of finding a pair of subgroups

H 6 G < Sym(κ)

such that |H| ≤ κ and the normaliser tower of H in G terminates after exactly α

steps. We cannot expect to always find such a pair in the ground model V . For

example, we might have chosen α > 2κ. However, such a pair always exists in a

suitably chosen generic extension of V . In Section 7.2, we shall prove that there is

a notion of forcing Q such that

(1) Q is κ-closed;

(2) Q has the κ+- c.c..

and such that the following statements are true in the generic extension V Q.

(a) 2κ = λ.

(b) There exists a pair of subgroups H 6 G < Sym(κ) such that |H| = κ and

the normaliser tower of H in G terminates after exactly α steps.

Working within V Q, we have that G satisfies the κ+-compatibility condition;

and since Q is κ-closed, we still have that κ<κ = κ. Hence we can use Theorem 7.1.6

to generically adjoin a structureM∈ V Q∗P̃ of cardinality κ such that G ' Aut(M).

Since the normaliser tower of H in G is an upwards absolute notion, we can now

use Theorem 4.1.9 in V Q∗P̃ to obtain a centreless group T of cardinality κ such that

τ(T ) = α. (Here P̃ denotes a Q-name of the notion of forcing P ∈ V Q, which is

given by Theorem 7.1.6.)

Finally suppose that κ is a singular cardinal. Once again, let λ be any cardinal

such that λκ = λ and let α be any ordinal such that α < λ+. Then we also have

that λω1 = λ. By the above argument, there is a generic extension V Q∗P̃ in which

the following statements are true.

(i) 2ω1 = 2κ = λ.

(ii) There exists a centreless group T of cardinality ω1 such that τ(T ) = α.
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First suppose that α ≥ 1. Then G = T ×Alt(κ) is a centreless group of cardinality

κ; and by Theorem 3.2.1, τ(G) = τ(T ) = α. On the other hand, if α = 0, then

we can let G be any complete group of cardinality κ. For example, we could let

G = PGL(2,K), where K is a rigid field of cardinality κ. (The existence of such a

field follows from Theorems 4.1.8 and 4.1.7.)

Some readers may feel dissatisfied with the proof in the case when κ is singular;

and it has to be admitted that the argument does avoid confronting the difficulties

in this case. In particular, all problems of the following type remain open.

Conjecture 7.1.7. It is consistent that

(a) 2ℵn = ℵn+1 for all n ∈ ω; and

(b) there exists a centreless group G of cardinality ℵω such that τ(G) ≥ ℵω+1.

In the remainder of this section, we shall reconsider the question of whether

it is possible to find a better upper bound for τ(G) when G is an arbitrary (not

necessarily centreless) group. Recall that, in Section 5.1, we were only able to prove

that if κ is the least inaccessible cardinal such that κ > |G|, then τ(G) < κ. It

is natural to ask whether there exists an analogue of Theorem 7.1.1, which would

show that it is impossible to prove a better upper bound in ZFC. Of course, in

this case, we would also have to rule out such upper bounds as i|G|(|G|), etc. For

example, the following conjecture would serve our purpose.

Conjecture 7.1.8. Let V � GCH and let κ ∈ V be an infinite cardinal. Let

λ ∈ V be the least inaccessible cardinal such that λ > κ and let α be any ordinal

such that α < λ. Then there exists a notion of forcing P, which preserves cofinalities

and cardinals, such that the following statements are true in the corresponding

generic extension V P.

(a) GCH holds.

(b) There exists a group G of cardinality κ such that τ(G) = α.

It is even conceivable that the corresponding conjecture might hold for finite

groups. In other words, if V � GCH and α is less than the first inaccessible

cardinal, then there exists a notion of forcing P, which preserves cofinalities and

cardinals, such that the following statements are true in the corresponding generic

extension V P.
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(a) GCH holds.

(b) There exists a finite group G such that τ(G) = α.

Of course, in this case, the finite group G would already exist in the ground model

V . But this is not a contradiction, since there is no reason to expect that the

automorphism tower of a finite group G should be an absolute notion. (For example,

it could be that Gω is an infinite group and then the rest of the automorphism tower

could perhaps be manipulated via suitable notions of forcing.) However, this would

mean that there exists a fixed finite group G such that for cofinally many ordinals

α less than the first inaccessible cardinal, it is consistent that τ(G) = α. When I

raised this possibility in a recent talk, Leo Harrington asked me whether I had a

specific candidate in mind for such a group!

7.2. Realising normaliser towers within infinite symmetric groups

Let κ be a regular uncountable cardinal such that κ<κ = κ. In this section, we

shall study the problem of realising long normaliser towers within Sym(κ). In par-

ticular, we shall prove that if α is any ordinal, then there exists a generic extension

V Q such that a normaliser tower of height α can be realised in SymV Q
(κ).

We shall make use of the ascending chain of groups 〈Wα | α ∈ On〉 which we

defined in Section 4.1. For the reader’s convenience, we repeat the definition here.

Definition 7.2.1. The ascending chain of groups

W0 6W1 6 · · · 6Wα 6Wα+1 6 . . .

is defined inductively as follows.

(a) W0 = C2, the cyclic group of order 2.

(b) Suppose that α = β + 1. Then

Wβ = Wβ ⊕ 1 6
[
Wβ ⊕W ∗β

]
o 〈σβ+1〉 = Wβ+1.

Here W ∗β is an isomorphic copy of Wβ ; and σβ+1 is an element of order

2 which interchanges the factors Wβ ⊕ 1 and 1 ⊕W ∗β of the direct sum

Wβ⊕W ∗β via conjugation. Thus Wβ+1 is isomorphic to the wreath product

Wβ Wr C2.

(c) If α is a limit ordinal, then Wα =
⋃
β<α

Wβ .
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By Lemmas 4.1.11 and 4.1.12, the groups 〈Wα | α ∈ On〉 satisfy the following

properties.

(i) If 1 ≤ n < ω, then the normaliser tower of W0 in Wn terminates after

exactly n+ 1 steps.

(ii) If α ≥ ω, then the normaliser tower of W0 in Wα terminates after exactly

α steps.

(iii) |Wα| ≤ max{|α|, ω} for all ordinals α.

Unfortunately, the group Wκ+ does not satisfy the κ+-compatibility condition.

To see this, let

H = C2 Wr C2 = [〈a〉 ⊕ 〈b〉]o 〈c〉,

where the involution c interchanges a and b via conjugation; and for each limit

ordinal i < κ+, let fi : H → Wκ+ be the embedding such that fi(a) = σi+1 and

fi(c) = σi+2. (Here we are using the notation which was introduced in Definition

7.2.1.) Let i, j be any limit ordinals such that i < j < κ+. Then

〈Hi, Hj〉 ' ((C2 Wr C2) Wr C2) Wr C2.

Suppose that there exists a surjective homomorphism ϕ : 〈Hi, Hj〉 → Hi such that

(a) ϕ ◦ fj = fi and

(b) ϕ � Hi = idHi .

Then ϕ(σj+1) = ϕ(σi+1) = σi+1 and ϕ(σj+2) = ϕ(σi+2) = σi+2. Consider the

element x = σj+1σj+2σj+1σj+2 ∈ Hj . Then it is easily checked that

(1) x lies in the centre of Hj and

(2) σj+1yσ
−1
j+1 = xyx−1 for all y ∈ Hi.

Thus z = ϕ(x) lies in the centre of Hi. Since ϕ(σj+1) = σi+1, we find that

σi+1yσ
−1
i+1 = zyz−1 = y

for all y ∈ Hi. But this contradicts the fact that σi+1 is a noncentral element of

Hi.

Thus if α ≥ κ+, then Wα is not embeddable in Sym(κ). However, the above

argument does not rule out the possibility that Wα is embeddable in the quotient

group Sym(κ)/Symκ(κ); and this is enough for our purposes. (Recall that Symκ(κ)
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denotes the normal subgroup of Sym(κ) consisting of all those permutations ϕ such

that | supp(ϕ)| < κ.)

Lemma 7.2.2. Let κ be an infinite cardinal such that κ<κ = κ. Suppose that γ

is an ordinal and that there exists an embedding

f : Wγ → Sym(κ)/ Symκ(κ).

Then for each ordinal α ≤ γ, there exist groups H 6 G 6 Sym(κ) such that |H| = κ

and the normaliser tower of H in G terminates after exactly α steps.

Proof. For each ordinal α ≤ γ, let Hα be the subgroup of Sym(κ) such that

f [Wα] = Hα/ Symκ(κ). Since |Symκ(κ)| = κ<κ = κ, it follows that |H0| = κ.

Claim 7.2.3. For each ordinal β,

f [Nβ(W0,Wα)] = Nβ(H0, Hα)/ Symκ(κ).

Proof. We will argue by induction on β. The result is clear when β = 0 and

no difficulties arise when β is a limit ordinal. Suppose that β = ξ + 1 and that

the result holds for ξ. Let R = Nξ(H
0, Hα) and for each subgroup K such that

Symκ(κ) 6 K 6 Hα, let K = K/Symκ(κ). Then

f [Nξ+1(W0,Wα)] = NHα(R)

and so we must show that

NHα(R) = NHα(R).

But this is an immediate consequence of the Correspondence Theorem for sub-

groups of quotient groups, together with the observation that the normaliser of any

subgroup L is the largest subgroup M such that L EM . �

It is now easy to complete the proof of Lemma 7.2.2. Applying Claim 7.2.3, we

see that if α ≥ ω, then the normaliser tower of H0 in Hα terminates after exactly

α steps; and that if 2 ≤ α = n < ω, then the normaliser tower of H0 in Hn−1

terminates after exactly n steps. This just leaves the cases when α = 0, 1. When

α = 0, we can take H = G = Alt(κ); and when α = 1, we can take H = Alt(κ) and

G = Sym(κ). �
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The next result implies that if ω < κ<κ = κ and W is any group, then there

exists a cardinal-preserving notion of forcing Q such that in V Q, the group W is

embeddable in Sym(κ)/ Symκ(κ).

Lemma 7.2.4. Suppose that κ ∈ V is a regular uncountable cardinal such that

κ<κ = κ. If W is any group, then there exists a notion of forcing Q such that

(1) Q is κ-closed;

(2) Q has the κ+- c.c.; and

(3) in the generic extension V Q, there exists an isomorphic embedding

f : W → (Sym(κ)/Symκ(κ))
V Q
.

Furthermore, if |W | = θ, then |Q| = max{κ, θ<κ}.

Proof. Let Ω =
⋃
α<κ{α} × α. We will work with the symmetric group

Sym(Ω) rather than with Sym(κ). Let Q be the notion of forcing consisting of the

conditions

p = (δp, Hp, Ep)

such that the following hold.

(a) ω ≤ δp < κ.

(b) Hp is a subgroup of W such that |Hp| ≤ |δp|.

(c) Ep is a function which assigns a permutation epπ,ξ ∈ Sym({ξ}× ξ) to each

pair (π, ξ) ∈ Hp × δp.

We set q = (δq, Hq, Eq) ≤ p = (δp, Hp, Ep) iff

(1) δp ≤ δq;

(2) Hp 6 Hq;

(3) Ep ⊆ Eq; and

(4) if δp ≤ ξ < δq, then the restriction to Hp of the function, π 7→ eqπ,ξ, is an

isomorphic embedding of Hp into Sym({ξ} × ξ).

Claim 7.2.5. Q is κ-closed.

Proof of Claim 7.2.5. This is clear. �

Claim 7.2.6. Q has the κ+- c.c..
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Proof of Claim 7.2.6. Suppose that pi = (δpi , Hpi , Epi) ∈ Q for i < κ+.

Then, after passing to a suitable subsequence of 〈pi | i < κ+〉, we can suppose that

the following condition holds.

(i) There exists a fixed ordinal δ such that δpi = δ for all i < κ+.

Now consider the family {Hpi | i < κ+} of subgroups of W . Since κ<κ = κ, the

∆-System Lemma says that there exists a fixed subgroup H and a subset I ⊂ κ+

of cardinality κ+ such that Hpi ∩Hpj = H for all pairs of distinct elements i, j ∈ I.

Hence we can also suppose that the following condition holds.

(ii) There exists a fixed subgroup H such that

Hpi ∩Hpj = H

for all i < j < κ+.

Finally since |H| < κ and κ<κ = κ, there are at most κ many functions

E : H × δ →
⋃
ξ<δ

Sym({ξ} × ξ).

Hence we can also suppose that the following condition holds.

(iii) There exists a fixed function E such that Epi � H × δ = E for all i < κ+.

Now fix any two ordinals i < j < κ+. Let H+ = 〈Hpi , Hpj 〉 be the subgroup

generated by Hpi ∪Hpj and let E+ : H+×δ →
⋃
ξ<δ Sym({ξ}×ξ) be any extension

of Epi ∪Epj which satisfies condition (c). Then q = (δ,H+, E+) is a common lower

bound of pi and pj . �

Claim 7.2.7. For each α < κ, the set Cα = {q ∈ Q | δq ≥ α} is dense in Q.

Proof of Claim 7.2.7. Let p = (δp, Hp, Ep) ∈ Q. Then we can suppose that

δp < α. We can define an isomorphic embedding ϕ : Hp → Sym(Hp) by setting

ϕ(h)(x) = hx for all x ∈ Hp. Since |Hp| ≤ |δp|, it follows that there exists an

isomorphic embedding ϕξ : Hp → Sym({ξ} × ξ) for each δp ≤ ξ < α. Hence there

exists a condition q = (δq, Hq, Eq) ≤ p such that Hq = Hp and δq = α. �

Claim 7.2.8. For each π ∈W , the set Dπ = {q ∈ Q | π ∈ Hq} is dense in Q.

Proof of Claim 7.2.8. Let p = (δp, Hp, Ep) ∈ Q. Then we can suppose that

π /∈ Hp. Let H+ = 〈Hp, π〉 be the subgroup generated by Hp ∪ {π}. Let δ = δp
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and let E+ : H+ × δ →
⋃
ξ<δ Sym({ξ} × ξ) be any extension of Ep which satisfies

condition (c). Then q = (δ,H+, E+) ≤ p. �

Let F be a Q-generic filter over V and let V Q = V [F ] be the corresponding

generic extension. Working within V Q, for each π ∈W , let

e(π) =
⋃
{epπ,ξ | There exists p ∈ F such that π ∈ Hp and ξ < δp}.

Then e(π) ∈ Sym(Ω). Let Symκ(Ω) = {ψ ∈ Sym(Ω) | | supp(ψ)| < κ} and define

the function

f : W → Sym(Ω)/ Symκ(Ω)

by f(π) = e(π) Symκ(Ω). Then it is enough to show that f is an isomorphic

embedding.

Claim 7.2.9. If 1 6= π ∈W , then f(π) 6= 1.

Proof of Claim 7.2.9. Choose a condition p = (δp, Hp, Ep) ∈ F such that

π ∈ Hp. If ξ is any ordinal such that δp ≤ ξ < κ, then e(π) � {ξ} × ξ 6= id{ξ}×ξ.

Hence e(π) /∈ Symκ(Ω). �

Claim 7.2.10. f is a group homomorphism.

Proof of Claim 7.2.10. Let π1, π2 ∈ W . Let p = (δp, Hp, Ep) ∈ F be a

condition such that π1, π2 ∈ Hp. Let ξ be any ordinal such that δp ≤ ξ < κ and let

q ∈ F be a condition such that q ≤ p and ξ < δq. Then

eqπ1,ξ
◦ eqπ2,ξ

= eqπ1◦π2,ξ

and it follows that

e(π1) Symκ(Ω) ◦ e(π2) Symκ(Ω) = e(π1 ◦ π2) Symκ(Ω).

�

Finally it is easily checked that |Q| = max{κ, θ<κ}. This completes the proof

of Lemma 7.2.4. �

Summing up our work in this section, we can now easily obtain the following

result, which was promised in Section 7.1. (The final observation in the statement

of Theorem 7.2.11 will be required in Section 7.4.)
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Theorem 7.2.11. Suppose that κ, λ ∈ V are cardinals such that ω < κ<κ =

κ < λ = λκ. Let α be any ordinal such that α < λ+. Then there exists a notion of

forcing Q such that

(1) Q is κ-closed;

(2) Q has the κ+- c.c.;

and such that the following statements are true in the generic extension V Q.

(a) 2κ = λ.

(b) There exist groups H 6 G < Sym(κ) such that |H| = κ and the normaliser

tower of H in G terminates after exactly α steps.

Furthermore, if V � GCH and λ = κ+, then V Q � GCH.

Proof. Let γ be an ordinal such that max{α, λ} ≤ γ < λ+ and let Q be the

notion of forcing obtained by applying Lemma 7.2.4 to W = Wγ . Then |Wγ | = λ

and so |Q| = λ<κ = λ. Since Wγ embeds in Sym(κ)/ Symκ(κ) in V Q, it follows that

V Q � 2κ ≥ λ. On the other hand, since |Q| = λ and Q has the κ+-c.c., it follows

that there are at most λκ = λ nice names for subsets of κ. Hence Lemma 6.4.2(b)

implies that V Q � 2κ ≤ λ. (If V � GCH and λ = κ+, then a similar argument

shows that V Q � 2µ = µ+ for all cardinals µ ≥ κ. Since Q is κ-closed, if µ < κ,

then ( µ2)V
Q

= ( µ2)V and hence V Q � 2µ = µ+.) Finally Lemma 7.2.2 implies that

there exist groups H 6 G < Sym(κ) in V Q such that |H| = κ and the normaliser

tower of H in G terminates after exactly α steps. �

7.3. Closed groups of uncountable degree

In this section, we shall prove Theorem 7.1.6. Let κ be a regular uncountable

cardinal such that κ<κ = κ and let G be a group of cardinality θ which satisfies the

κ+-compatibility condition. Let L be a first-order language consisting of κ binary

relation symbols. The following notion of forcing P is designed to adjoin a structure

M of cardinality κ for the language L such that G ' Aut(M).

Definition 7.3.1. Suppose that L0 ⊆ L and that N is a structure for the

language L0. Then a restricted atomic type in the free variable v for the language

L0 using parameters from N is a set t of formulas of the form R(v, a), where R ∈ L0

and a ∈ N . An element c ∈ N is said to realise t if N � ϕ[c] for every formula
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ϕ(v) ∈ t. If no element of N realises t, then t is said to be omitted in N . Notice

that every element of N realises the trivial restricted atomic type ∅. Hence if t is

omitted in N , then t 6= ∅.

Definition 7.3.2. Let P be the notion of forcing consisting of the conditions

p = (H,π,N , T )

such that the following hold.

(a) H is a subgroup of G such that |H| < κ.

(b) There exists an ordinal 0 < δ < κ and a subset L(N ) ∈ [L]<κ such that

N is a structure with universe δ for the language L(N ).

(c) π : H → Aut(N ) is a group homomorphism.

(d) T is a set of restricted atomic types in the free variable v for the language

L(N ) using parameters from N . Furthermore, |T | < κ and each t ∈ T is

omitted in N .

We set (H2, π2,N2, T2) ≤ (H1, π1,N1, T1) if and only if

(1) H1 6 H2.

(2) N1 is a substructure of N2.

(3) For all h ∈ H1 and α ∈ N1, π2(h)(α) = π1(h)(α).

(4) T1 ⊆ T2.

It should be clear that the components (H,π,N ) in each condition p ∈ P are

designed to generically adjoin a structure M of cardinality κ for the language L,

together with an embedding π∗ of G into Aut(M). The set T of restricted atomic

types is needed to kill off potential extra automorphisms g ∈ Aut(M)r π∗[G] and

thus ensure that π∗ is surjective.

Lemma 7.3.3. For each p = (H,π,N , T ) ∈ P, there exists a condition

p+ =
(
H,π+,N+, T

)
≤ p

such that π+ : H → Aut(N+) is an embedding.

Proof. Let N+ be the structure for the language L(N ) such that

(a) the universe of N+ is the disjoint union N tH;
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(b) for each relation R ∈ L(N ), RN
+

= RN .

Clearly none of the restricted atomic types in T is realised in N+. Let π+ : H →

Aut(N+) be the embedding such that for each h ∈ H,

(i) π+(h)(x) = π(h)(x) for all x ∈ N ; and

(ii) π+(h)(x) = hx for all x ∈ H.

Then p+ = (H,π+,N+, T ) ≤ p. �

There is a slight inaccuracy in the proof of Lemma 7.3.3, as the universe of

N+ should really be an ordinal δ < κ. However, the proof can easily be repaired:

simply replace N+ by a suitable isomorphic structure. Similar remarks apply to

the proofs of Lemmas 7.3.6 and 7.3.8.

Lemma 7.3.4. P is κ-closed.

Proof. Suppose that δ < κ and that

p0 ≥ p1 ≥ · · · ≥ pξ ≥ · · ·

is a descending δ-sequence of elements of P. Then {pξ | ξ < δ} has a greatest

lower bound in P. To see this, let pξ = (Hξ, πξ,Nξ, Tξ) for each ξ < δ and define

H =
⋃
ξ<δHξ, π =

⋃
ξ<δ πξ, N =

⋃
ξ<δNξ, and T =

⋃
ξ<δ Tξ. Since each t ∈ T

is a restricted atomic type, it follows that each t ∈ T is also omitted in N . Thus

p = (H,π,N , T ) ∈ P and clearly p is the greatest lower bound of {pξ | ξ < δ} in

P. �

Lemma 7.3.5. P has the κ+- c.c.

Proof. Suppose that pi = (Hi, πi,Ni, Ti) ∈ P for i < κ+. By Lemma 7.3.3,

we can assume that πi : Hi → Aut(Ni) is an embedding for each i < κ. Clearly

there is a cardinal λ < κ and a subset I ∈ [κ+]
κ+

such that |Hi| = λ for all i ∈ I.

Since there are only 2λ groups of cardinality λ up to isomorphism and 2λ ≤ κ, there

exists a subset J ∈ [I]
κ+

such that Hi ' Hj for all i, j ∈ J . Thus, after passing to

a suitable subsequence of 〈pi | i < κ+〉, we can suppose that the following condition

holds.

(1) There is a fixed group H such that for each i < κ+, there exists an

isomorphism fi : H ' Hi.
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Similarly, we can suppose that the following conditions also hold.

(2) There exists a fixed structure N such that Ni = N for all i < κ+.

(3) There exists a fixed set of restricted atomic types T such that Ti = T for

all i < κ+.

(4) For each i < κ+, let ψi : H → Aut(N ) be the embedding defined by

ψi = πi ◦ fi. Then ψi = ψj for all i < j < κ+.

Since G satisfies the κ+-compatibility condition, there exist ordinals i < j < κ+

and a surjective homomorphism ϕ : 〈Hi, Hj〉 → Hi such that

(a) ϕ ◦ fj = fi; and

(b) ϕ � Hi = idHi .

Let 〈Hi, Hj〉 → Aut(N ) be the homomorphism defined by π = πi ◦ ϕ. Clearly

πi ⊆ π. Note that if x ∈ Hj , then

πi ◦ ϕ(x) = πi ◦ (ϕ ◦ fj) ◦ f−1
j (x)

= πi ◦ fi ◦ f−1
j (x)

= πj ◦ fj ◦ f−1
j (x)

= πj(x).

Thus we also have that πj ⊆ π. Consequently, we can define a condition p ≤ pi, pj
by

p = (〈Hi, Hj〉, π,N , T ) .

�

Lemma 7.3.6. For each a ∈ G,

Da = {(H,π,N , T ) | a ∈ H}

is a dense subset of P.

Proof. Let a ∈ G and p = (H,π,N , T ) ∈ P. We can suppose that a /∈ H.

Let H+ = 〈H, a〉. Let C = {gi | i ∈ I} be a set of left coset representatives for H

in H+, chosen so that 1 ∈ C. Let N+ be the structure for the language L(N ) such

that

(a) the universe of N+ is the cartesian product C ×N ; and
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(b) for each relation R ∈ L(N ),

((gi, x), (gj , y)) ∈ RN
+

iff i = j and (x, y) ∈ RN .

By identifying each x ∈ N with the element (1, x) ∈ N+, we can regard N as a

substructure of N+. Again it is clear that none of the restricted atomic types in T

is realised in N+.

Define an action of H+ on N+ as follows. If g ∈ H+ and (gi, x) ∈ N+, then

g(gi, x) = (gj , π(h)(x)),

where j ∈ I and h ∈ H are such that ggi = gjh. It is easily checked that this action

yields a homomorphism π+ : H+ → Aut(N+) and that (H+, π+,N+, T ) ≤ p. �

Lemma 7.3.7. For each α < κ,

Eα = {(H,π,N , T ) | α ∈ N}

is a dense subset of P.

Proof. Left to the reader. �

Let F be a P-generic filter over V and let V P = V [F ] be the corresponding

generic extension. Working within V P, define

M =
⋃
{N | There exists p = (H,π,N , T ) ∈ F}

and

π∗ =
⋃
{π | There exists p = (H,π,N , T ) ∈ F}.

Then the above lemmas imply thatM is a structure for L of cardinality κ and that

π∗ is an embedding of G into Aut(M). So the following lemma completes the proof

of Theorem 7.1.6.

Lemma 7.3.8. π∗ : G→ Aut(M) is a surjective homomorphism.

Proof. Suppose that g ∈ Aut(M) r π∗[G]. Let M̃, π̃ be the canonical P-

names for M, π∗ respectively and let g̃ be a P-name for g. Then there exists a

condition p ∈ F such that

p  g̃ ∈ Aut(M̃) and g̃ 6= π̃(h) for all h ∈ G.



7.3. CLOSED GROUPS OF UNCOUNTABLE DEGREE 169

Let p′ ≤ p. We shall inductively construct a descending sequence of conditions

pm = (Hm, πm,Nm, Tm) for m ∈ ω such that the following hold.

(a) p0 = p′.

(b) For all x ∈ Nm, there exists y ∈ Nm+1 such that pm+1  g̃(x) = y.

(c) For all h ∈ Hm, there exists z ∈ Nm+1 such that

pm+1  g̃(z) 6= πm+1(h)(z).

Suppose that m ≥ 0 and that pm = (Hm, πm,Nm, Tm) has been constructed. Let

Nm = {xξ | ξ < λ}. Using the fact that P is κ-closed, we can inductively construct

an auxillary descending sequence of conditions rξ =
(
H ′ξ, π

′
ξ,N ′ξ, T ′ξ

)
for ξ ≤ λ such

that the following hold.

(i) r0 = pm.

(ii) There exists yξ ∈ N ′ξ+1 such that rξ+1  g̃(xξ) = yξ.

(iii) If δ is a limit ordinal, then rδ is the greatest lower bound of {rξ | ξ < δ}.

Note that for each x ∈ Nm, there exists y ∈ N ′λ such that rλ  g̃(x) = y. Using a

similar argument, we can construct a condition

pm+1 = (Hm+1, πm+1,Nm+1, Tm+1) ≤ rλ

such that for all h ∈ Hm, there exists an element z ∈ Nm+1 such that

pm+1  g̃(z) 6= πm+1(h)(z).

Clearly pm+1 satisfies our requirements.

Now let q = (H,π,N , T ) be the greatest lower bound of {pm | m ∈ ω} in P.

Then q ≤ p′ and there exists g∗ ∈ Aut(N ) r π[H] such that q  g̃ � N = g∗. (In

the remainder of this book, we shall refer to the above argument as the bootstrap

argument .) Let N+ be the structure defined as follows.

(1) The universe of N+ is the disjoint union N tH.

(2) For each relation R ∈ L(N ), RN
+

= RN .

(3) For each x ∈ N , let Rx ∈ L r L(N ) be a new binary relation symbol.

Then we set (h, y) ∈ RN+

x iff h ∈ H, y ∈ N and π(h)(x) = y.

Once again, it is clear that none of the restricted atomic types in T is realised in

N+. Let π+ : H → SymN+ be the embedding such that

(i) π+(h)(x) = π(h)(x) for all x ∈ N ; and
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(ii) π+(h)(x) = hx for all x ∈ H.

Then it is easily checked that π+[H] 6 Aut(N+). Finally let t be the partial type

defined by

t = {Rx(v, g∗(x)) | x ∈ N}

and let T+ = T ∪ {t}.

Claim 7.3.9. t is omitted in N+.

Proof of Claim 7.3.9. Suppose that h ∈ N+ realises t. Then we must have

that h ∈ H. Since N+ � Rx(h, g∗(x)) for all x ∈ N , it follows that π(h)(x) = g∗(x)

for all x ∈ N . But this contradicts the fact that g∗ ∈ Aut(N )r π[H]. �

Thus q+ = (H,π+,N+, T+) ∈ P and q+ ≤ p′. We have just shown that for

each condition p′ ≤ p, there exists a corresponding strengthening q+ ≤ p′. In other

words, the set of such conditions is dense below p. By Lemma 6.3.1, we can suppose

that q+ ∈ F and hence that that g∗ ⊆ g. Clearly M � Rx(1, x) for each x ∈ N .

So applying the automorphism g ∈ Aut(M), we obtain that M � Rx(g(1), g∗(x))

for each x ∈ N . But this means that g(1) ∈ M realises t, which is the final

contradiction. �

7.4. τκ can be strictly increasing

In this section, we shall prove that it is consistent that τκ is a strictly increasing

function of κ. Beginning with a ground model V which satisfies GCH, we shall use

a suitable reverse Easton forcing to construct a generic extension M in which the

following statements are true.

(a) GCH holds.

(b) For each regular uncountable cardinal κ, there exists a centreless group T

of cardinality κ such that τ(T ) = κ+.

As we explained at the beginning of Section 6.8, it follows easily that τκ is strictly

increasing in M . During our iteration, for each regular uncountable cardinal κ, we

shall use the following result to adjoin a centreless group T of cardinality κ such

that τ(T ) = κ+.

Lemma 7.4.1. Assume GCH. If κ is a regular uncountable cardinal, then there

exists a notion of forcing Rκ of cardinality κ+ such that
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(a) Rκ is κ-closed and has the κ+- c.c.; and

(b) Rκ adjoins a centreless group T of cardinality κ such that τ(T ) = κ+.

Proof. Throughout this proof, the ground model will be denoted by N . By

Theorem 7.2.11, there exists a notion of forcing Q of cardinality κ+ such that

(1) Q is κ-closed and has the κ+- c.c.; and

(2) in the generic extension NQ, there exist groups H 6 G < Sym(κ) such

that |H| = κ and the normaliser tower of H in G terminates after exactly

κ+ steps.

It is easily checked that NQ � GCH. By Proposition 7.1.5, G ∈ NQ satisfies the

κ+-compatibility condition.

Let L be a first order language consisting of κ binary relation symbols. By

Theorem 7.1.6, there exists a notion of forcing P ∈ NQ of cardinality κ+ such that

(i) P is κ-closed and has the κ+- c.c.; and

(ii) P adjoins an L-structure M of cardinality κ such that G ' Aut(M).

By Theorem 4.1.9, there exists a centreless group T ∈ (NQ)P of cardinality κ such

that τ(T ) = κ+. Applying Theorem 6.8.4, it follows easily that if P̃ is a Q-name of

the notion of forcing P ∈ NQ, then Rκ = Q ∗ P̃ satisfies our requirements. �

Now let V � GCH. We shall inductively construct a sequence 〈Qβ | β ∈ On〉

of forcing notions satisfying Hypothesis 6.8.9. By the remark following Theorem

6.8.10, at successor stages β of the construction, we can assume inductively that

V Qβ−1 � GCH.

Case 1. If β = 0, then Q0 = {∅} is the trivial notion of forcing.

Case 2. If β is a limit ordinal which is not inaccessible, then Qβ is the inverse

limit of 〈Qγ | γ < β〉.

Case 3. If β is inaccessible, then Qβ is the direct limit of 〈Qγ | γ < β〉.

Case 4. Finally suppose that β = γ + 1 is a successor ordinal. First suppose

that γ = κ is a regular uncountable cardinal. Then we can assume inductively

that V Qκ � GCH. Let Rκ ∈ V Qκ be the notion of forcing, given by Lemma

7.4.1, which adjoins a centreless group T of cardinality κ such that τ(T ) = κ+.

Then we set Qκ+1 = Qκ ∗ R̃κ. (As usual, R̃κ denotes a Qκ-name of the notion of
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forcing Rκ ∈ V Qκ .) Finally if γ is not a regular uncountable cardinal, then we set

Qγ+1 = Qγ ∗ Q̌0.

Let Q∞ be the direct limit of 〈Qβ | β ∈ On〉; and for each β ∈ On, let Q̃β∞ be

the canonically chosen Qβ-name for a proper class notion of forcing such that Q∞
is isomorphic to a dense sub-order of Qβ ∗ Q̃β∞. Let H be a Q∞-generic filter over

V and let M = V [H] be the corresponding generic extension. For each β ∈ On, let

Hβ = H ∩Qβ and let Qβ∞ = (Q̃β∞)Hβ . Then the following result is an immediate

consequence of Theorem 6.8.10.

Lemma 7.4.2. (a) Q∞ preserves cofinalities and cardinals.

(b) If κ is a regular uncountable cardinal, then V [Hκ+1] � Qκ+1∞ is κ+-closed.

(c) M is a model of ZFC +GCH.

�

Now let κ ∈ M be any regular uncountable cardinal. By construction, there

exists a centreless group T ∈ V Qκ+1 of cardinality κ such that V Qκ+1 � τ(T ) = κ+.

Since V [Hκ+1] � Qκ+1∞ is κ+-closed, Theorem 6.7.1 implies that M � τ(T ) = κ+.

This completes the proof of the following result.

Theorem 7.4.3. It is consistent with ZFC that τκ is a strictly increasing

function of κ.

�

It seems almost certain that it is also consistent that τκ is not a strictly in-

creasing function of κ. However, as we shall explain in Section 7.6, this seems to

be a much more difficult problem.

Conjecture 7.4.4. It is consistent with ZFC that τω1
= τω2

.

7.5. Two more applications

In this section, we shall present two more applications of Theorem 7.1.6. In

both applications, we shall be working with a group G ∈ V which satisfies the κ+-

compatibility condition for some uncountable regular cardinal such that κ<κ = κ

and we shall use Theorem 7.1.6 to generically adjoin a graph Γ ∈ V P of cardinality

κ such that G ' Aut(Γ). Of course, the actual statement of Theorem 7.1.6 only



7.5. TWO MORE APPLICATIONS 173

gives a structure M ∈ V P of cardinality κ for a binary relational language L of

cardinality κ such that G ' Aut(M). But this is no problem. For then we can use

Theorem 4.1.8 to find a graph Γ ∈ V P of cardinality κ such that Aut(M) ' Aut(Γ).

Application 7.5.1. In 1961, Dudley [5] proved that there does not exist an

uncountable free Polish group. Consequently, since the automorphism group of a

countable structure is a Polish group, it follows that there does not exist a countable

structureM such that Aut(M) is the free group on 2ω generators. (This result was

independently rediscovered by Shelah [45].) In contrast, using Theorem 7.1.6, it is

easy to establish the consistency of the existence of a structure N of cardinality ω1

such that Aut(N ) is the free group on 2ω1 generators. It is not known whether the

existence of such a structure can be proved in ZFC.

Theorem 7.5.2. Suppose that κ, λ, θ ∈ V are uncountable cardinals such that

κ<κ = κ < λ ≤ θ = θκ. Then there exists a notion of forcing P, which preserves

cofinalities and cardinals, such that the following statements are true in V P.

(a) 2κ = θ; and

(b) there exists a graph Γ of cardinality κ such that Aut(Γ) is the free group

on λ generators.

We shall make use of the following result, which is due to de Bruijn [3].

Lemma 7.5.3. Let κ be an infinite cardinal and let F2κ be the free group on 2κ

generators. Then there exists an embedding of F2κ into Sym(κ).

Proof. First let
∏
α<κ Sym(κ) be the full direct product of κ copies of Sym(κ).

Then
∏
α<κ Sym(κ) embeds into Sym(κ). To see this, express κ =

⊔
α<κ ∆α as a

disjoint union such that |∆α| = κ for all α < κ and note that the full direct product∏
α<κ Sym(∆α) can be regarded as a subgroup of Sym(κ).

Clearly the free group Fκ on κ generators embeds into Sym(Fκ) ' Sym(κ).

So
∏
α<κ Fκ embeds into

∏
α<κ Sym(κ) and hence into Sym(κ). Thus it is enough

to show that F2κ embeds into
∏
α<κ Fκ. To accomplish this, we shall show that

there exists a set {ϕα | α < κ} of homomorphisms ϕα : F2κ → Fκ such that⋂
{kerϕα | α < κ} = 1. Then we can define an embedding ϕ : F2κ →

∏
α<κ Fκ by

ϕ(w) = 〈ϕα(w) | α < κ〉.
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Let F be the group which is freely generated by the set {xA | A ⊆ κ} and let G

be the group which is freely generated by the set {yB | B ∈ [κ]<ω}. Then F ' F2κ

and G ' Fκ. For each C ∈ [κ]<ω, let πC : F → G be the homomorphism such

that πC(xA) = yA∩C for all A ⊆ κ. By the previous paragraph , it is enough to

show that
⋂
{kerπC | C ∈ [κ]<ω} = 1. To see this, suppose that 1 6= w ∈ F ; say,

w ∈ 〈xA1
, . . . , xAn〉. Then there exists C ∈ [κ]<ω such that Ai ∩C 6= Aj ∩C for all

1 ≤ i < j ≤ n. Clearly πC � 〈xA1
, . . . , xAn〉 is an embedding and so πC(w) 6= 1. �

Proof of Theorem 7.5.2. First we shall perform a preliminary forcing to

obtain a c.t.m. M in which κ<κ = κ and 2κ = θ. Let R = Fn(θ × κ, 2, κ). By

Theorem 6.4.4, R is κ-closed and has the κ+-c.c. Thus R preserves cofinalities

and cardinals. Let H be an R-generic filter over V and let M = V [H] be the

corresponding generic extension. By Theorem 6.4.4, M � 2κ = θ. Since R is κ-

closed, it follows that R does not adjoin any new subsets S of κ with |S| < κ and

so M � κ<κ = κ.

From now on, we shall work within M . Let G be the free group on λ generators.

By Lemma 7.5.3, there exists an embedding of G into Sym(κ) and so F satisfies

the κ+-compatibility condition. Let P be the notion of forcing, given by Theorem

7.1.6, which adjoins a graph Γ of cardinality κ such that G ' Aut(Γ). Then the

notion of forcing R ∗ P̃ ∈ V satisfies our requirements. (Here P̃ denotes an R-name

of the notion of forcing P ∈M = V R.) �

Application 7.5.4. Theorem 3.4.1 says that if G is a finitely generated cen-

treless group, then the automorphism tower of G terminates after countably many

steps. It is conceivable that a much more general result holds; namely, that the

automorphism tower of G terminates after countably many steps, whenever G is

a countable centreless group such that Aut(G) is also countable. To see why this

might be true, let G be such a group. Then, by Kueker [24], there exists a finite

subset F ⊆ G such that each automorphism π ∈ Aut(G) is uniquely determined

by its restriction π � F . In terms of the automorphism tower of G, this says that

there is a finite subset F ⊆ G such that CG1
(F ) = 1. Suppose that the “rigidity”

of F within G = G0 is propagated along the automorphism tower of G; i.e. that

CGα(F ) = 1 for all ordinals α. Then a routine modification of the proof of Theorem

3.4.1 shows that the automorphism tower of G terminates in countably many steps.
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Question 7.5.5. Let G be a centreless group such that |Aut(G)| = ω. Does

there exist a finite subset F ⊆ G such that CGα(F ) = 1 for all ordinals α?

The following weak form of Question 7.5.5 is also open.

Question 7.5.6. Does there exist a centreless group G such that |Aut(G)| = ω

and |Aut(Aut(G))| = 2ω?

Of course, a positive answer to Question 7.5.5 implies a negative answer to

Question 7.5.6. Using Theorem 7.1.6, it is easy to establish the consistency of the

existence of a centreless group G of uncountable cardinality κ such that |Aut(G)| =

κ and |Aut(Aut(G))| = 2κ. Once again, it is not known whether the existence of

such a group can be proved in ZFC.

Theorem 7.5.7. Suppose that κ ∈ V is a regular uncountable cardinal such

that κ<κ = κ. Then there exists a notion of forcing P, which preserves cofinalities

and cardinals, which adjoins a centreless group G of cardinality κ such that

(a) |Aut(G)| = κ; and

(b) |Aut(Aut(G))| = 2κ.

Proof. For each α, ξ < κ, let Zαξ = 〈zαξ 〉 be an infinite cyclic group. For each

ξ < κ, let Aξ =
⊕

α<κ Z
α
ξ and let B =

⊕
ξ<κAξ. Define an action of Sym(κ) on B

by πzαξ π
−1 = zαπ(ξ) for all α, ξ < κ and let W = B o Sym(κ) be the corresponding

semidirect product. Let H =
⊕

ξ<κ Z
ξ
ξ . Then the members of the normaliser tower

of H in W are

(a) N0(H) = H;

(b) N1(H) = B;

(c) N2(H) = W .

Clearly W is embeddable in Sym(κ) and so W satisfies the κ+-compatibility condi-

tion. Let P be the notion of forcing, given by Theorem 7.1.6, which adjoins a graph

Γ of cardinality κ such that W ' Aut(Γ). Let KΓ ∈ V P be the corresponding field,

which is given by Theorem 4.1.7. Then G = PGL(2,KΓ)oH ∈ V P is a group such

that

|Aut(G)| = |PGL(2,KΓ)oB| = κ



176 7. FORCING LONG AUTOMORPHISM TOWERS

and

|Aut(Aut(G))| = |PGL(2,KΓ)oW | = 2κ.

�

7.6. The main gap

A common feature of the consistency results in this chapter was that, in each

case, it was only necessary to generically adjoin a single centreless group. For

example, to prove the consistency of τω1
< τω2

, it was enough to adjoin a centreless

group G of cardinality ω2 such that τ(G) ≥ (2ω1)
+

. On the other hand, if we

wish to prove the consistency of τω1
= τω2

, then we must construct a generic

extension in which we have some understanding of every centreless group G such

that ω1 ≤ |G| ≤ ω2. (Of course, a similar remark applies to the problem of proving

the consistency of a statement such as τω1 = ω3, etc.)

In order to understand the difficulties involved, consider the following plau-

sible approach to proving the consistency of τω1
= τω2

. Let V � GCH and let

(Pβ | β ≤ ω4) be the countable support iteration such that

• if β = α + 1 is a successor ordinal, then Pβ = Pα ∗ Q̃α, where Qα ∈ V Pα

is the obvious notion of forcing which adjoins a centreless group G(α) of

cardinality ω1 such that τ(G(α)) = α.

(I.e., Qα is the notion of forcing obtained by iterating those introduced in Sections

7.2 and 7.3.) Then it can be shown that the following statements hold in the

resulting generic extension M = V Pω4 .

(a) 2ω1 = 2ω2 = ω4.

(b) For each α < ω4, τ(G(α)) = α.

It is natural to conjecture that M � τω1
= τω2

= ω4. Consider an arbitrary

centreless group G ∈ M such that ω1 ≤ |G| ≤ ω2. Then there exists an ordinal

β < ω4 such that G ∈ V Pβ ; and since V Pβ � 2ω2 = ω3, we have that

V Pβ � τ(G) < (2ω2)
+

= ω4.

Unfortunately, in Section 6.7, we saw that the height τ(G) is not an upwards

absolute concept and so it remains conceivable that M � τ(G) ≥ ω4.
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In Chapter 8, we shall prove that if G is an infinite centreless group, then it

is impossible to prove any nontrivial results concerning the relationship between

the values of τ(G) in the ground model and an arbitrary generic extension. More

precisely, we shall prove that it is consistent that for every infinite cardinal λ and

every ordinal α < λ, there exists a centreless group G with the following properties.

(a) τ(G) = α.

(b) If β is any ordinal such that 1 ≤ β < λ, then there exists a notion of forcing

P, which preserves cofinalities and cardinals, such that τV
P
(G) = β.

However, as the reader might expect, both the groups G and the notions of forcing

P are specifically designed to witness the extreme nonabsoluteness of the height

function. It should also be stressed that the main theorem of Chapter 8 is a consis-

tency result and it is open whether such groups and notions of forcing can be proved

to exist in ZFC. In particular, it remains unclear whether “naturally occurring”

notions of forcing can significantly change the heights of pre-existing centreless

groups. In Chapter 9, we shall study this question for the very simplest notions of

forcing. More specifically, suppose that V � GCH and that κ ≤ λ < θ are regular

cardinals. Then we shall show that if P = Fn(θ, 2, κ) and Q = Fn(λ+, 2, κ), then

for every centreless group G ∈ V of cardinality λ,

τV
P
(G) = τV

Q
(G).

Since V Q � 2λ = λ+, this implies that

V P � τ(G) < λ++

for every centreless group G ∈ V of cardinality λ. Hence if we choose θ ≥ λ++,

then we obtain that

V P � τ(G) < λ++ ≤ θ = 2λ

for every centreless group G ∈ V of cardinality λ. With a little more effort, we

shall then prove that it is consistent that τλ < 2λ for all regular cardinals λ.

7.7. Notes

The material in this chapter first appeared in Just-Shelah-Thomas [22]. The

problem of determining which groups embed into Sym(κ) and its homomorphic

images has been studied by many authors, including de Bruijn [3], McKenzie [30],
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Shelah [43], Clare [4], Rabinovič [37] and Felgner-Haug [8]. In particular, Felgner-

Haug [8] proved in ZFC that if κ is a regular cardinal, then Symκ+(κ+) can be

embedded in Sym(κ)/ Symκ(κ). Of course, this implies that both Alt(κ+) and Wκ+

can be embedded in Sym(κ)/Symκ(κ).



CHAPTER 8

Changing The Heights Of Automorphism Towers

In Section 6.7, we saw that the height τ(G) of the automorphism tower of

an infinite centreless group G is not an absolute concept. For example, if U is a

nonprincipal ultrafilter on ω, then the setwise stabiliser SU is a complete group,

but there exists a c.c.c. notion of forcing P which adjoins an outer automorphism

to SU . Thus 0 = τ(SU ) < τV
P
(SU ). Perhaps more surprisingly, there also exists

an infinite centreless group G such that τ(G) = 2 and such that if Q is any notion

of forcing which adjoins a new real, then τV
Q
(G) = 1. Thus the height τ(G) of

the automorphism tower of an infinite centreless group G may either increase or

decrease in a generic extension. In fact, if G is an infinite centreless group and P is a

notion of forcing, then it is difficult to think of any nontrivial statement concerning

the relationship between τ(G) and τV
P
(G). Of course, there is a trivial observation

which can be made; namely, that since an outer automorphism of G remains an

outer automorphism in V P, τ(G) ≥ 1 implies that τV
P
(G) ≥ 1. In this chapter, we

shall prove that it is consistent that for every infinite cardinal λ and every ordinal

α < λ, there exists a centreless group G with the following properties.

(a) τ(G) = α.

(b) If β is any ordinal such that 1 ≤ β < λ, then there exists a notion of forcing

P, which preserves cofinalities and cardinals, such that τV
P
(G) = β.

This result suggests that no nontrivial results concerning the relationship between

τ(G) and τV
P
(G) are provable in ZFC. However, it should be pointed out that

the cardinality of G depends on λ; and it remains an open question whether it is

consistent that there exists a fixed centreless group G such that for unboundedly

many ordinals α, there exists a cardinal-preserving notion of forcing P such that

τV
P
(G) = α.

179
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8.1. Changing the heights of automorphism towers

In Sections 8.2 and 8.3, we shall present a proof of the following theorem.

Theorem 8.1.1. It is consistent that for every infinite cardinal λ and every

ordinal α < λ, there exists a centreless group G with the following properties.

(a) τ(G) = α.

(b) If β is any ordinal such that 1 ≤ β < λ, then there exists a notion of

forcing P, which preserves cofinalities and cardinals, such that τV
P
(G) =

β.

In this section, we shall give a heuristic account of the main ideas of the proof

of Theorem 8.1.1. For the sake of concreteness, suppose that we wish to construct

a centreless group G with the following properties.

(a) τ(G) = 3.

(b) There exists a notion of forcing P, which preserves cofinalities and cardi-

nals, such that τV
P
(G) = 4.

(c) There exists a notion of forcing Q, which preserves cofinalities and cardi-

nals, such that τV
Q
(G) = 2.

Applying Theorems 4.1.6 and 6.6.18, it is enough to find a graph Γ, together with

a subgroup H 6 Aut(Γ), such that the following conditions hold. (We shall spell

out the details of this reduction in the proof of Corollary 8.2.3.)

(a)′ The normaliser tower of H in Aut(Γ) terminates after exactly 3 steps.

(b)′ There exists a notion of forcing P, which preserves cofinalities and cardi-

nals, such that the normaliser tower of H in AutV
P
(Γ) terminates after

exactly 4 steps.

(c)′ There exists a notion of forcing Q, which preserves cofinalities and cardi-

nals, such that the normaliser tower of H in AutV
Q
(Γ) terminates after

exactly 2 steps.

Let P , Q and R be unary relation symbols and let L be the first-order language

{P,Q,R}. As a first approximation to the graph Γ, we shall take the structure

N = 〈N ;NP ,NQ,NR〉
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for the language L such that |NP | = |NQ| = |NR| = 8. Thus

Aut(N ) = Sym(NP )× Sym(NQ)× Sym(NR).

(At first glance, it might seem strange to approximate the desired graph Γ by

the finite structure N , since the automorphism group of N will obviously remain

unchanged in every generic extension of the universe. However, this objection only

applies if we intend to code N within a finite graph. Instead we shall take Γ

to be a suitable infinite graph which encodes N .) We shall define the subgroup

H 6 Aut(N ) to be a suitable product of iterated wreath products. But first we

need to define the general notion of the direct product of a collection of permutation

groups.

Definition 8.1.2. Suppose that Gi 6 Sym(Ωi) for each i ∈ I. Then the

direct product of the permutation groups {(Gi,Ωi) | i ∈ I} is defined to be the

permutation group ∏
i∈I

(Gi,Ωi) =

(∏
i∈I

Gi,
⊔
i∈I

Ωi

)
.

Here
⊔
i∈I Ωi denotes the disjoint union of the sets {Ωi | i ∈ I} and

∏
i∈I Gi acts

on
⊔
i∈I Ωi in the natural manner; i.e. if π = (gi) ∈

∏
i∈I Gi, then π � Ωi = gi for

each i ∈ I. If I = {1, 2}, then we write∏
i∈I

(Gi,Ωi) = (G1,Ω1)× (G2,Ω2) = (G1 ×G2,Ω1 t Ω2) .

Next we define the natural action of the nth iterated wreath product

Pn = (. . . (C2 Wr C2) Wr C2) Wr · · ·Wr C2) . . .)︸ ︷︷ ︸
n times

on the set Σn = {` | 0 ≤ ` < 2n} inductively as follows.

• P0 = 1 acts trivially on Σ0 = {0}.

• Suppose that the permutation group (Pn,Σn) has been defined. Then

Pn+1 = [Pn×Pn]o 〈σn〉 is the wreath product Pn Wr C2 acting naturally

on Σn+1 = Σn t Σ′n, where Σ′n = {` | 2n ≤ ` < 2n+1}. More explicitly,

(Pn × Pn,Σn t Σ′n) ' (Pn,Σn)× (Pn,Σn)

and σn is an involution which interchanges the sets Σn and Σ′n.
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An easy induction shows that if n ≥ 1, then |Pn| = 22n−1 and that 22n−1

is the highest power of 2 which divides (2n)! = |Sym(Σn)|. Thus Pn is a Sylow

2-subgroup of Sym(Σn). It is also reasonably straightforward to show that Pn is

self-normalising in Sym(Σn). (A generalisation of this result is included within the

proof of Lemma 8.2.6.)

We are now ready to begin the definition of the subgroup

H 6 Aut(N ) = Sym(NP )× Sym(NQ)× Sym(NR).

First let (
HP ,NP

)
' (P0,Σ0)× (P0,Σ0)× (P1,Σ1)× (P2,Σ2)(

HQ,NQ
)
' (P3,Σ3)(

HR,NR
)
' (P2,Σ2)× (P2,Σ2) .

Then we define(
H,NP tNQ tNR

)
'
(
HP ,NP

)
×
(
HQ,NQ

)
×
(
HR,NR

)
.

At this point, it is helpful to introduce a pictorial representation of the above

permutation groups and the groups which occur in their normaliser towers. It will

be much clearer if we illustrate the representation with a couple of examples, instead

of attempting to give a formal definition. As a first example, the permutation group(
HP ,NP

)
will be represented by the diagram:

N N NN NNNN

Here the triangles represent the elements of NP ; and the 4 boxes represent the

4 orbits of HP on NP , on each of which HP acts as a suitable iterated wreath

product. By Lemma 1.3.15, if (G,Ω) is a permutation group and π ∈ Sym(Ω)

normalises G, then π permutes the orbits of G. Using this observation, together

with the fact that Pn is self-normalising in Sym(Σn) for each 0 ≤ n ≤ 3, we see that

the normaliser tower of HP of Sym(NP ) is represented by the following sequence

of diagrams:

N N NN NNNN

NN NN NNNN

NNNN NNNN
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NNNNNNNN

In order to indicate that each of the sets NP , NQ and NR must be preserved

setwise by the elements of Aut(N ), we shall represent the elements of NQ by stars

and the elements of NR by diamonds. Thus the following diagram represents the

permutation group
(
H,NP tNQ tNR

)
:

N N NN NNNN FFFFFFFF ���� ����

and the normaliser tower of H in Aut(N ) is represented by the following sequence

of diagrams:

N N NN NNNN FFFFFFFF ���� ����

NN NN NNNN FFFFFFFF ��������

NNNN NNNN FFFFFFFF ��������

NNNNNNNN FFFFFFFF ��������

In particular, the normaliser tower of H in Aut(N ) terminates after exactly 3 steps.

Now imagine that P is a miraculous notion of forcing which manages to convert

each star into a triangle. Then H is represented by the following diagram in V P:

N N NN NNNN NNNNNNNN ���� ����

and the normaliser tower of H in AutV
P
(N ) = Sym(NP t NQ) × Sym(NR) is

represented by the following sequence of diagrams:

N N NN NNNN NNNNNNNN ���� ����

NN NN NNNN NNNNNNNN ��������

NNNN NNNN NNNNNNNN ��������

NNNNNNNN NNNNNNNN ��������

NNNNNNNNNNNNNNNN ��������

Hence the normaliser tower of H in AutV
P
(N ) terminates after exactly 4 steps.

Finally imagine that Q is an equally miraculous notion of forcing which converts

each diamond into a triangle. Then H is represented by the following diagram in

V Q:

N N NN NNNN NNNN NNNN FFFFFFFF
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and the normaliser tower of H in AutV
Q
(N ) = Sym(NP t NR) × Sym(NQ) is

represented by the following sequence of diagrams:

N N NN NNNN NNNN NNNN FFFFFFFF

NN NN NNNNNNNNNNNN FFFFFFFF

NNNN NNNNNNNNNNNN FFFFFFFF

Hence the normaliser tower of H in AutV
Q
(N ) terminates after exactly 2 steps.

Of course, the induced action on the orbit of size 12 is not isomorphic to one of

the form (Pn,Σn) for any n ≥ 0. Instead the induced action is isomorphic to the

natural action of P2 Wr Sym(3) on Σ2 t Σ2 t Σ2.

While the existence of the notions of forcing P and Q is a pure fantasy, it turns

out to be possible to convert the above argument into a valid proof. We simply

replace each point of N by a suitably chosen connected rigid graph. (Recall that a

structure M is said to be rigid iff the identity map idM is the only automorphism

ofM.) In more detail, let Γ1, Γ2 and Γ3 be pairwise nonisomorphic connected rigid

graphs and let Γ be the graph consisting of 8 copies of Γi for each 1 ≤ i ≤ 3. Let

Φ = Φ1 t Φ2 t Φ3

be the set of connected components of Γ, where each Φi consists of the 8 copies of

Γi. Then Aut(Γ) can be naturally identified with the group

Sym(Φ1)× Sym(Φ2)× Sym(Φ3) ' Aut(N ).

Using this identification, we can regard H as a subgroup of Aut(Γ); and we have

already seen that:

(a)′′ The normaliser tower of H in Sym(Φ1)× Sym(Φ2)× Sym(Φ3) terminates

after exactly 3 steps;

(b)′′ The normaliser tower of H in Sym(Φ1 ∪ Φ2)× Sym(Φ3) terminates after

exactly 4 steps; and

(c)′′ The normaliser tower of H in Sym(Φ1 ∪ Φ3)× Sym(Φ2) terminates after

exactly 2 steps.

So the pair H 6 Aut(Γ) will satisfy conditions (a)′, (b)′ and (c)′ provided that the

rigid connected graphs Γ1, Γ2 and Γ3 can also be chosen to satisfy the following

properties.
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(b)′′′ There exists a notion of forcing P, which preserves cofinalities and cardi-

nals, such that the following statements are true in V P:

(i) Γ1 ' Γ2.

(ii) Γ1 6' Γ3.

(iii) Γ1, Γ2 and Γ3 remain rigid.

(c)′′′ There exists a notion of forcing Q, which preserves cofinalities and cardi-

nals, such that the following statements are true in V Q:

(i) Γ1 ' Γ3.

(ii) Γ1 6' Γ2.

(iii) Γ1, Γ2 and Γ3 remain rigid.

Of course, it is far from clear that such graphs exist. For example, since Γ1 and

Γ2 remain rigid, there must exist a unique isomorphism π : Γ1 → Γ2 in V P; and

it is natural to suspect that if a unique isomorphism π exists, then π should be

“canonical” and hence should already exist in V . Fortunately the following result

shows that it is at least consistent that such graphs exist.

Theorem 8.1.3. It is consistent that for every regular cardinal κ ≥ ω, there

exists a set {Γα | α < κ+} of pairwise nonisomorphic connected rigid graphs with

the following property. If E is any equivalence relation on κ+, then there exists a

notion of forcing P such that

(a) P preserves cofinalities and cardinals;

(b) P does not adjoin any new κ-sequences of ordinals;

(c) each graph Γα remains rigid in V P;

(d) Γα ' Γβ in V P iff α E β.

In Section 8.2, we shall show how to derive Theorem 8.1.1 from Theorem 8.1.3.

The argument, which is essentially algebraic in nature, follows the method sketched

in this section; but unfortunately, because of the extra difficulties which arise at

limit stages, the analysis of the relevant normaliser towers is substantially more

complicated. Finally in Section 8.3, we shall prove Theorem 8.1.3.
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8.2. More normaliser towers

In this section, we shall derive Theorem 8.1.1 from Theorem 8.1.3. So through-

out this section, we will assume that the following hypothesis holds in the ground

model V .

Hypothesis 8.2.1. For every regular cardinal κ ≥ ω, there exists a set of

pairwise nonisomorphic connected rigid graphs {Γα | α < κ+} with the following

property. If E is any equivalence relation on κ+, then there exists a notion of

forcing P such that

(a) P preserves cofinalities and cardinals;

(b) P does not adjoin any new κ-sequences of ordinals;

(c) each graph Γα remains rigid in V P;

(d) Γα ' Γβ in V P iff α E β.

Most of our effort will go into proving the following result.

Theorem 8.2.2. Assume Hypothesis 8.2.1. Then for every infinite cardinal λ

and every ordinal α < λ, there exist a graph Γ and a subgroup H 6 Aut(Γ) with

the following properties.

(a) The normaliser tower of H in Aut(Γ) terminates after exactly α steps.

(b) If β is any ordinal such that 1 ≤ β < λ, then there exists a notion of forc-

ing P, which preserves cofinalities and cardinals, such that the normaliser

tower of H in AutV
P
(Γ) terminates after exactly β steps.

Corollary 8.2.3. Assume Hypothesis 8.2.1. Then for every infinite cardinal

λ and every ordinal α < λ, there exists a centreless group G with the following

properties.

(a) τ(G) = α.

(b) If β is any ordinal such that 1 ≤ β < λ, then there exists a notion of

forcing P, which preserves cofinalities and cardinals, such that τV
P
(G) =

β.

Proof of Corollary 8.2.3. Let Γ = 〈X,E〉 be the graph and H 6 Aut(Γ)

be the subgroup given by Theorem 8.2.2. By Theorem 6.6.18, there exists a field
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KΓ of cardinality max{|X|, ω} such that whenever P is a (possibly trivial) notion

of forcing and M = V P, then the following conditions are satisfied.

(a) X is an AutM (KΓ)-invariant subset of KΓ.

(b) The restriction mapping, π 7→ π � X, is an isomorphism from AutM (KΓ)

onto AutM (Γ).

Let G = PGL(2,KΓ)oH. By Theorem 4.1.6, τM (G) is the height of the normaliser

tower of H in AutM (Γ). Thus G satisfies our requirements. �

In the last section, we saw that the normaliser tower of the permutation group

(H3,∆3) ' (P0,Σ0)× (P0,Σ0)× (P1,Σ1)× (P2,Σ2)

in (Sym(∆3),∆3) terminates after exactly 3 steps. Now we shall define an analogous

permutation group (Hα,∆α) for each ordinal α.

Definition 8.2.4. For each ordinal α, let (Hα,∆α) and (Fα,∆α) be the per-

mutation groups defined inductively as follows.

(a) |∆0| = 1 and H0 = F0 = {id∆0
}.

(b) If α > 0, then we define

(Hα,∆α) = (H0,∆0)×
∏
β<α

(Fβ ,∆β)

and we define Fα to be the terminal group of the normaliser tower of Hα

in Sym(∆α).

In particular, it follows that for each successor ordinal α = β+ 1, we have that

(Hβ+1,∆β+1) = (Hβ ,∆β)× (Fβ ,∆β) .

During the proof of Lemma 8.2.6, we shall need a more explicit notation for the

set ∆α. So for each successor ordinal α = β + 1, let ∆1
β be the set such that

∆β+1 = ∆β t∆1
β ; i.e.

(Hβ+1,∆β+1) =
(
Hβ × Fβ ,∆β t∆1

β

)
.

Note that if δ is a limit ordinal, then

∆δ =
⋃
ξ<δ

∆ξ.
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Also if α is an arbitrary ordinal and γ < α, then

∆α = ∆γ t
⊔

γ≤ξ<α

∆1
ξ .

Notation 8.2.5. Throughout this section, Nβ(Hα) always denotes the βth

group in the normaliser tower of Hα in Sym(∆α).

Lemma 8.2.6 says that the normaliser tower of Hα in Sym(∆α) terminates after

exactly α steps. As the proof of Lemma 8.2.6 is rather involved, we will first explain

the basic idea for the case when α is a successor ordinal. Let α = β + 1, so that

(Hβ+1,∆β+1) = (Hβ ,∆β)×
(
Fβ ,∆

1
β

)
.

We shall show that for each γ ≤ β,

(Nγ(Hβ+1),∆β+1) = (Nγ(Hβ),∆β)×
(
Fβ ,∆

1
β

)
.

In particular,

(Nβ(Hβ+1),∆β+1) = (Fβ ,∆β)×
(
Fβ ,∆

1
β

)
.

It is now easily seen

(Nβ+1(Hβ+1),∆β+1) =
(
[Fβ × Fβ ]o 〈σ〉,∆β t∆1

β

)
,

where σ is an element of order 2 which interchanges the sets ∆β and ∆1
β ; and it

turns out that this group is self-normalising in Sym(∆β+1).

In the proof of Lemma 8.2.6, we shall need to study the blocks of imprimitivity

of Fα in its action on ∆α. Recall that if (G,Ω) is a transitive permutation group,

then the nonempty subset Z of Ω is a block of imprimitivity if for each g ∈ G,

either g[Z] = Z or g[Z] ∩ Z = ∅. In this case, the distinct elements of the set

{g[Z] | g ∈ G} form a partition
⊔
j∈J Zj of Ω; and we obtain a corresponding G-

invariant equivalence relation E on Ω by defining x E y iff there exists j ∈ J such

that x, y ∈ Zj . Conversely, if E is a G-invariant equivalence relation on Ω, then

each E-equivalence class is a block of imprimitivity.

Lemma 8.2.6. For each ordinal α, the normaliser tower of Hα in Sym(∆α)

terminates after exactly α steps.
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Proof. We shall prove the following statements by a simultaneous induction

on α ≥ 0.

(1α) Fα acts transitively on ∆α.

(2α) Let ∆0 = {v0}. Then {∆β | β ≤ α} is the set of blocks Z of imprimitivity

of (Fα,∆α) such that v0 ∈ Z.

(3α) For each β ≤ α, let Eαβ be the Fα-invariant equivalence relation on ∆α

corresponding to the block of imprimitivity ∆β . Then for each β ≤ γ < α,

the set ∆1
γ is a union of Eαβ -equivalence classes.

(4α) If β < α, then

(Nβ(Hα),∆α) = (Fβ ,∆β)×
∏

β≤γ<α

(
Fγ ,∆

1
γ

)
.

(5α) Furthermore, if β < α, then Nβ(Hα) is the subgroup of Fα consisting of

those elements which fix setwise each of the sets in the partition

{∆β} ∪ {∆1
γ | β ≤ γ < α}

of ∆α.

(6α) Nα(Hα) is self-normalising in Sym(∆α) and so Fα = Nα(Hα).

It is easily checked that the result holds for α = 0. Next we shall deal with the

successor step of the induction. So suppose that α ≥ 0 and that the result holds

for all β ≤ α. The following claim will be used in the proof that condition (4α+1)

holds.

Claim 8.2.7. If β < γ ≤ α, then (Fβ ,∆β) and (Fγ ,∆γ) are nonisomorphic

permutation groups.

Proof of Claim 8.2.7. Let β ≤ α and let v be any point of ∆β . Let Bβ(v)

be the set of blocks Z of imprimitivity of (Fβ ,∆β) such that v ∈ Z. Then conditions

(1β) and (2β) imply that (Bβ(v),⊂) is a well-ordering of order-type β + 1. Now

suppose that β < γ ≤ α and that (f, ϕ) is a permutation group isomorphism from

(Fβ ,∆β) onto (Fγ ,∆γ). Thus

(i) f : Fβ → Fγ is a group isomorphism;

(ii) ϕ : ∆β → ∆γ is a bijection; and

(iii) for all g ∈ Fβ and v ∈ ∆β , f(g)(ϕ(v)) = ϕ(g(v)).
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It is easily checked that if v ∈ ∆β and X ⊆ ∆β , then

X ∈ Bβ(v) iff ϕ[X] ∈ Bγ(ϕ(v)).

But this means that ϕ induces an order-isomorphism between the well-orderings

(Bβ(v),⊂) and (Bγ(ϕ(v)),⊂), which is a contradiction. �

By Lemma 1.3.15, if (G,Ω) is a permutation group and π ∈ Sym(Ω) normalises

G, then π permutes the orbits of G. Furthermore, if X and Y are G-orbits and

π[X] = Y , then G must induce isomorphic permutation groups via its actions on X

and Y . Using these observations, it is now easy to see that condition (4α+1) holds.

First note that

(Hα+1,∆α+1) = (Hα,∆α)×
(
Fα,∆

1
α

)
.

Then, since the permutation group (Fα,∆α) is not isomorphic to (Fγ ,∆γ) for any

γ < α, we see inductively that

(Nβ(Hα+1),∆α+1) = (Nβ(Hα),∆α)×
(
Fα,∆

1
α

)
= (Fβ ,∆β)×

∏
β≤γ<α+1

(
Fγ ,∆

1
γ

)
for all β ≤ α. Next we shall check that condition (1α+1) holds. To see this, first

note that

(Nα(Hα+1),∆α+1) = (Fα,∆α)×
(
Fα,∆

1
α

)
.

Clearly Nα+1(Hα+1) contains an involution σ which interchanges ∆α and ∆1
α. Thus

[Fα × Fα]o 〈σ〉 = Fα Wr Sym(2) 6 Nα+1(Hα+1) 6 Fα+1

and so Fα+1 acts transitively on ∆α+1. For later use, we shall next check that

(Nα+1(Hα+1),∆α+1) =
(
Fα Wr Sym(2),∆α t∆1

α

)
.

To see this, suppose that g ∈ Nα+1(Hα+1) is arbitrary. Then g must permute the

two orbits ∆α and ∆1
α of Nα(Hα+1). After replacing g by σg if necessary, we can

suppose that g[∆α] = ∆α and g[∆1
α] = ∆1

α; i.e. g ∈ Sym(∆α) × Sym(∆1
α). By

condition (6α), Fα is self-normalising in Sym(∆α). It follows that g ∈ Fα × Fα.

Next we shall check that {∆β | β ≤ α+1} is the set of blocks Z of imprimitivity

of

(Nα+1(Hα+1),∆α+1) =
(
Fα Wr Sym(2),∆α t∆1

α

)
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such that v0 ∈ Z. It is easily checked that ∆β is a block of imprimitivity of

Nα+1(Hα+1) for each β ≤ α+ 1. Now let Z ⊆ ∆α+1 be any block of imprimitivity

such that v0 ∈ Z. First consider the case when Z ∩ ∆1
α 6= ∅. Since the subgroup

1 × Fα fixes v0 and acts transitively on ∆1
α, it follows that ∆1

α ⊆ Z. Similarly

∆α ⊆ Z and so Z = ∆α+1. So we can suppose that Z ⊆ ∆α. In this case, Z must

also be a block of imprimitivity of (Fα,∆α) and so Z = ∆β for some β ≤ α.

Now suppose that g ∈ Sym(∆α+1) normalises Nα+1(Hα+1) = Fα Wr Sym(2).

Then g must permute the set {Eα+1
β | β ≤ α+ 1} of Nα+1(Hα+1)-invariant equiv-

alence relations on ∆α+1. Since the set {Eα+1
β | β ≤ α + 1} is well-ordered under

inclusion, it follows that Eα+1
β is also g-invariant for each β ≤ α+ 1. In particular,

Eα+1
α is g-invariant and so g must induce a permutation of the set {∆α,∆

1
α} of

Eα+1
α -equivalence classes. This implies that g must normalise the setwise stabiliser

of ∆α in Nα+1(Hα+1). In other words, g normalises Fα × Fα = Nα(Hα+1) and so

g ∈ Nα+1(Hα+1). So we have now established that conditions (6α+1) and (2α+1)

also hold.

Next we shall check that condition (5α+1) holds. Let β ≤ α. Since

(Nβ(Hα+1),∆α+1) = (Fβ ,∆β)×
∏

β≤γ<α+1

(
Fγ ,∆

1
γ

)
,

it follows that Nβ(Hα+1) fixes setwise each of the sets in the partition

{∆β} ∪ {∆1
γ | β ≤ γ < α+ 1}

of ∆α+1. Conversely suppose g ∈ Fα+1 = Fα Wr Sym(2) fixes setwise each of the

sets in the partition {∆β}∪{∆1
γ | β ≤ γ < α+1} of ∆α+1. Then g[∆α]∩∆α 6= ∅ and

so g ∈ Fα × Fα. Furthermore, g � ∆α fixes setwise each of the sets in the partition

{∆β} ∪ {∆1
γ | β ≤ γ < α} of ∆α. So condition (5α) implies that g � ∆α ∈ Nβ(Hα).

It follows that g ∈ Nβ(Hα+1).

Finally we shall check that condition (3α+1) holds and thus complete the proof

that the inductive hypotheses hold for α + 1. Let β ≤ γ < α + 1. If γ < α, then

condition (3α) says that ∆1
γ is a union of sets of the form g[∆β ] for various g ∈ Fα;

and this implies that ∆1
γ is a union of Eα+1

β -equivalence classes. So we can suppose

that γ = α. Since ∆α is a union of Eα+1
β -equivalence classes and there exists an

element g ∈ Fα+1 such that g[∆α] = ∆1
α, it follows that ∆1

α is also a union of

Eα+1
β -equivalence classes.
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Now suppose that λ is a limit ordinal and that the result holds for all α < λ.

Arguing as above, it is easy to see that conditions (4λ) and (1λ) hold; and it is also

easy to check that the following statements hold.

(2λ)′ For each β ≤ λ, the set ∆β is a block of imprimitivity of (Nλ(Hλ),∆λ).

(3λ)′ For each β ≤ λ, let Eλβ be the Nλ(Hλ)-invariant equivalence relation

on ∆λ corresponding to the block of imprimitivity ∆β . Then for each

β ≤ γ < λ, the set ∆1
γ is a union of Eλβ -equivalence classes.

(5λ)′ If β < λ, then Nβ(Hλ) is the subgroup of Nλ(Hλ) consisting of those

elements which fix setwise each of the sets in the partition

{∆β} ∪ {∆1
γ | β ≤ γ < λ}

of ∆λ.

Thus it is enough to prove the following two claims.

Claim 8.2.8. If Z is a block of imprimitivity of (Nλ(Hλ),∆λ) with v0 ∈ Z,

then Z = ∆β for some β ≤ λ.

Claim 8.2.9. Nλ(Hλ) is self-normalising in Sym(∆λ) and so Fλ = Nλ(Hλ).

Proof of Claim 8.2.8. If there exists γ < λ such that Z ⊆ ∆γ , then Z must

also be a block of imprimitivity of (Fγ ,∆γ) and so Z = ∆β for some β ≤ γ. Hence

we can suppose that the set I = {γ < λ | Z ∩ ∆1
γ 6= ∅} is cofinal in λ. Fix some

γ ∈ I. By condition (4λ),

(Nγ(Hλ),∆λ) = (Fγ ,∆γ)×
∏

γ≤ξ<λ

(
Fξ,∆

1
ξ

)
.

Hence for each x ∈ ∆γ , there exists an element g ∈ Nγ(Hλ) 6 Nλ(Hλ) such that

(i) g(v0) = x; and

(ii) g(y) = y for all y ∈ ∆1
γ .

By condition (ii), g[Z] ∩ Z 6= ∅ and hence x ∈ g[Z] = Z. Thus ∆γ ⊆ Z for each

γ ∈ I and so Z = ∆λ. �

Proof of Claim 8.2.9. Note that for each π ∈ Nλ(Hλ), there exists β < λ

such that π ∈ Nβ(Hλ) and so π
[
∆1
γ

]
= ∆1

γ for all β ≤ γ < λ. Suppose that

g ∈ Sym(∆λ) normalises Nλ(Hλ). Then arguing as in the successor stage of the

argument, it follows that Eλβ is also g-invariant for each β ≤ λ.
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First we shall show that there exists an ordinal β < λ such that g
[
∆1
γ

]
= ∆1

γ

for all β ≤ γ < λ. To see this, for each γ < λ, let C1
γ = g

[
∆1
γ

]
and suppose that

there exists a cofinal subset I ⊆ λ such that C1
γ 6= ∆1

γ for all γ ∈ I. Fix some

γ ∈ I. Since ∆1
γ is an Eλγ -equivalence class, it follows that C1

γ = g
[
∆1
γ

]
is also an

Eλγ -equivalence class. Using condition (3λ)′, it follows that either

(i) C1
γ = ∆γ , or

(ii) there exists f(γ) > γ such that C1
γ  ∆1

f(γ).

If γ 6= γ′ ∈ I, then ∆1
γ ∩ ∆1

γ′ = ∅ and so C1
γ ∩ C1

γ′ = ∅. Hence condition (i) can

hold for at most one element γ ∈ I. Without loss of generality, we can assume that

condition (ii) holds for all γ ∈ I. Furthermore, by passing to a suitable subset of

I if necessary, we can assume that the resulting function f : I → λ is injective.

Remember that

(Hλ,∆λ) = (F0,∆0)×
∏

0≤ξ<λ

(
Fξ,∆

1
ξ

)
.

Since each Fξ acts transitively on ∆1
ξ , there exists an element ψ ∈ Hλ 6 Nλ(Hλ)

such that ψ
[
C1
γ

]
6= C1

γ for all γ ∈ I. Let π = g−1ψg ∈ Nλ(Hλ). Then π
[
∆1
γ

]
6= ∆1

γ

for all γ ∈ I, which is a contradiction.

Thus there exists β < λ such that g ∈ Sym(∆β) ×
∏
β≤γ<λ Sym(∆1

γ). Since

Nβ(Hλ) is the subgroup of Nλ(Hλ) consisting of those elements which fix setwise

each of the sets in the partition {∆β} ∪ {∆1
γ | β ≤ γ < λ} of ∆λ, it follows that g

normalises Nβ(Hλ). Thus g ∈ Nβ+1(Hλ) 6 Nλ(Hλ). �

This completes the proof of Lemma 8.2.6. �

Definition 8.2.10. If Γ is a connected rigid graph and α is an ordinal, then

we define Gα(Γ) to be the graph obtained by replacing each element of ∆α by a

copy of Γ.

Thus ∆α is essentially the set of connected components of Gα(Γ) and Aut(Gα(Γ))

can be naturally identified with Sym(∆α). Let Hα(Γ), Fα(Γ) be the subgroups of

Aut(Gα(Γ)) which correspond to the subgroups Hα, Fα of Sym(∆α). Then the

following result is an immediate consequence of Lemma 8.2.6.

Lemma 8.2.11. If Γ is a rigid connected graph, then normaliser tower of Hα(Γ)

in Aut(Gα(Γ)) terminates after exactly α steps.
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�

Now let β be any ordinal such that 1 ≤ β < α. We shall next introduce a

“device” which essentially has the effect of halting the normaliser tower of Hα(Γ)

in Aut(Gα(Γ)) after only β steps.

Definition 8.2.12. If Γ is a connected rigid graph and 1 ≤ β < α, then we

define (
Dα
β (Γ),Gαβ (Γ)

)
= (Hα(Γ),Gα(Γ))× (Fβ(Γ),Gβ(Γ))× (Fβ(Γ),Gβ(Γ)) .

Lemma 8.2.13. If Γ is a connected rigid graph, then the normaliser tower of

Dα
β (Γ) in Aut(Gαβ (Γ)) terminates after exactly β steps.

Proof. Let (B,Γ′) = (Fβ(Γ),Gβ(Γ))×(Fβ(Γ),Gβ(Γ))×(Fβ(Γ),Gβ(Γ)) and let

Fβ(Γ) Wr Sym(3) = Bo Sym(3) be the associated wreath product. By rearranging

the order of its factors, we can identify
(
Dα
β (Γ),Gαβ (Γ)

)
with

(Hβ(Γ),Gβ(Γ))× (B,Γ′)×
∏

β<γ<α

(Fγ(Γ),Gγ(Γ)) .

Arguing as in the proof of Lemma 8.2.6, we find that the βth element of the nor-

maliser tower of Dα
β (Γ) in Aut(Gαβ (Γ)) is

(Fβ(Γ),Gβ(Γ))× (Fβ(Γ) Wr Sym(3),Γ′)×
∏

β<γ<α

(Fγ(Γ),Gγ(Γ))

and that this group is self-normalising in Aut(Gαβ (Γ)). �

We are now ready to complete the proof of Theorem 8.2.2. So let λ be any

infinite cardinal and let α be any ordinal such that α < λ. Choose a regular

cardinal κ such that κ ≥ λ. Let {Γγ | γ < κ+} be the set of pairwise nonisomorphic

connected rigid graphs given by Hypothesis 8.2.1. If α ≥ 1, then we define

(Bα,Γ
α) =

∏
1≤β<α

(
(Fβ(Γβ),Gβ(Γβ))× (Fβ(Γβ),Gβ(Γβ))

)
and

(H,Γ) = (Bα,Γ
α)× (Hα(Γα),Gα(Γα))×

∏
α≤γ<λ

(Fγ(Γγ+1),Gγ(Γγ+1)) .

If α = 0, then we define

(H,Γ) = (F0(Γ0),G0(Γ0))×
∏

0≤γ<λ

(Fγ(Γγ+1),Gγ(Γγ+1)) .
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We shall show that the graph Γ and the subgroup H 6 Aut(Γ) satisfy the require-

ments of Theorem 8.2.2.

Lemma 8.2.14. The normaliser tower of H in Aut(Γ) terminates after exactly

α steps.

Proof. For example, suppose that α ≥ 1. Then

Aut(Γ) = Aut(Γα)×Aut(Gα(Γα))×
∏

α≤γ<λ

Aut(Gγ(Γγ+1)).

First by Lemma 8.2.11, the normaliser tower of Hα(Γα) in Aut(Gα(Γα)) terminates

after exactly α steps. Next since Fγ(Γγ+1) is self-normalising in Aut(Gγ(Γγ+1)), it

follows that
∏
α≤γ<λ Fγ(Γγ+1) is self-normalising in

∏
α≤γ<λ Aut(Gγ(Γγ+1)). Fi-

nally note that

(Fβ(Γβ),Gβ(Γβ))× (Fβ(Γβ),Gβ(Γβ)) ' (Nβ(Hβ+1(Γβ)),Gβ+1(Γβ))

and so the normaliser tower of Bα in Aut(Γα) terminates after exactly 1 step.

It follows that the normaliser tower of H in Aut(Γ) terminates after exactly α

steps. �

The following lemma completes the proof of Theorem 8.2.2.

Lemma 8.2.15. If β is any ordinal such that 1 ≤ β < λ, then there exists a

notion of forcing P, which preserves cofinalities and cardinals, such that the nor-

maliser tower of H in AutV
P
(Γ) terminates after exactly β steps.

Proof. Clearly we can suppose that β 6= α. There are two cases to consider.

First suppose that 1 ≤ β < α. Let E be the equivalence relation on κ+ such that

γ E δ iff {γ, δ} = {α, β} or γ = δ

and let P be the corresponding notion of forcing, given by Hypothesis 8.2.1. Using

the facts that

(a) each graph Γδ remains rigid in V P, and

(b) P does not adjoin any new κ-sequences of ordinals,

we see that

(Hγ(Γδ),Gγ(Γδ))
V P

= (Hγ(Γδ),Gγ(Γδ))
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and

(Fγ(Γδ),Gγ(Γδ))
V P

= (Fγ(Γδ),Gγ(Γδ))

for all γ, δ < κ+. Let

(B′,Γ′) =
∏

1≤γ<α
γ 6=β

((Fγ(Γγ),Gγ(Γγ))× (Fγ(Γγ),Gγ(Γγ))) .

Then in V P, the permutation group (H,Γ) is isomorphic to

(B′,Γ′)×
(
Dα
β (Γα),Gαβ (Γα)

)
×

∏
α≤γ<λ

(Fγ(Γγ+1),Gγ(Γγ+1)) .

Hence the normaliser tower of H in AutV
P
(Γ) terminates after exactly β steps.

Now suppose that α < β < λ. We will only deal with the case when α ≥ 1.

(The case when α = 0 is almost identical.) Let E be the equivalence relation on

κ+ such that γ E δ iff either

(i) α ≤ γ, δ < β + 1; or

(ii) γ = δ ;

and let P be the corresponding notion of forcing, given by Hypothesis 8.2.1. Then

in V P, the permutation group (H,Γ) is isomorphic to

(Bα,Γ
α)× (Hβ(Γα),Gβ(Γα))×

∏
β≤γ<λ

(Fγ(Γγ+1),Gγ(Γγ+1)) .

Hence the normaliser tower of H in AutV
P
(Γ) terminates after exactly β steps. �

8.3. Rigid trees

In this section, we shall prove Theorem 8.1.3. Instead of working directly with

graphs, we will find it more convenient to prove the following analogous theorem

for trees.

Theorem 8.3.1. It is consistent that for every regular cardinal κ ≥ ω, there

exists a set {Tα | α < κ+} of pairwise nonisomorphic rigid trees of height κ+ with

the following property. If E is any equivalence relation on κ+, then there exists a

notion of forcing P such that

(a) P preserves cofinalities and cardinals;

(b) P does not adjoin any new κ-sequences of ordinals;

(c) each tree Tα remains rigid in V P;
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(d) Tα ' Tβ in V P iff α E β.

First we shall show how to derive Theorem 8.1.3 from Theorem 8.3.1.

Proof of Theorem 8.1.3. Let T be the category of trees and let G be the

category of graphs. For each tree T ∈ T , let ΓT be the corresponding connected

graph which encodes T , as given in the proof of Lemma 4.2.2. Thus if T , T ′ ∈ T ,

then

(a) T ' T ′ iff ΓT ' ΓT ′ ; and

(b) Aut(T ) ' Aut(ΓT ).

Furthermore, an examination of the proof of Lemma 4.2.2 shows that the construc-

tion of ΓT from T is upwards absolute. Hence properties (a) and (b) will continue

to hold in any generic extension of the ground model.

Now suppose that for every regular cardinal κ ≥ ω, the ground model contains

a set {Tα | α < κ+} of trees satisfying the conditions of Theorem 8.3.1. By the

above remarks, it follows that the corresponding set {ΓTα | α < κ+} of graphs

satisfies the conditions of Theorem 8.1.3. �

Before we begin the proof of Theorem 8.3.1, we need to introduce some notions

from the theory of trees.

Definition 8.3.2. (a) A tree is a partially ordered set 〈T,<〉 such that

for every x ∈ T , the set predT (x) = {y ∈ T | y < x} is well-ordered by <.

(b) If x ∈ T , then the height of x in T , denoted htT (x), is the order-type of

predT (x) under <.

(c) If α is an ordinal, then the αth level of T is the set

Levα(T ) = {x ∈ T | htT (x) = α}

and T � α =
⋃
β<α

Levβ(T ). The height of the tree T is the least ordinal α

such that Levα(T ) = ∅.

(d) A branch of T is a maximal linearly ordered subset of T . The length of a

branch B is the order-type of B. An α-branch is a branch of length α.

Definition 8.3.3. Let δ be an ordinal and let λ be a cardinal. A tree T is said

to be a (δ, λ)-tree iff
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(i) for all α < δ, 0 < |Levα(T )| < λ; and

(ii) Levδ(T ) = ∅.

A (δ, λ)-tree T is normal if each of the following conditions is satisfied.

(a) If δ > 0, then |Lev0(T )| = 1.

(b) If α + 1 < δ and x ∈ Levα(T ), then there exist exactly two elements y1,

y2 ∈ Levα+1(T ) such that x < y1 and x < y2.

(c) If α < β < δ and x ∈ Levα(T ), then there exists y ∈ Levβ(T ) such that

x < y.

(d) If α is a limit ordinal and x, y ∈ Levα(T ) are distinct elements, then

predT (x) 6= predT (y).

Let T be a (δ, λ)-tree. Then the tree T+ is an end-extension of T , written T l T+,

if T+ � δ = T . The tree T+ is a proper end-extension if T l T+ and T 6= T+.

Definition 8.3.4. Let κ ≥ ω be a regular cardinal such that κ<κ = κ and let

α < κ+. A normal (α, κ+)-tree T is κ-closed if for each β < α such that cf(β) < κ

and each increasing sequence of elements of T

x0 < x1 < · · · < xξ < · · · , ξ < β,

such that xξ ∈ Levξ(T ) for each ξ < β, there exists an element y ∈ Levβ(T ) such

that predT (y) = {xξ | ξ < β}.

In the proof of Theorem 8.3.1, we shall make repeated use of the following

simple observation.

Lemma 8.3.5. Let κ ≥ ω be a regular cardinal such that κ<κ = κ and let

α < κ+. If T is a κ-closed normal (α, κ+)-tree and x ∈ T , then there exists an

α-branch B of T such that x ∈ B.

�

Now we are ready to discuss the notion of forcing Qκ which will adjoin a set

{Tα | α < κ+} of pairwise nonisomorphic rigid trees of height κ+ satisfying the

conditions of Theorem 8.3.1. Until further notice, M will denote the ground model

and κ ≥ ω will be a regular cardinal such that κ<κ = κ and 2κ = κ+.

Definition 8.3.6. Let κ ≥ ω be a regular cardinal such that κ<κ = κ. Then

Qκ is the notion of forcing consisting of all conditions p = 〈tpα | α < κ+〉, where
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(a) each tpα is a κ-closed normal (βα, κ
+)-tree for some βα < κ+;

(b) there exists an ordinal γ < κ+ such that tpα = ∅ for all γ ≤ α < κ+; and

(c) if tpα 6= ∅, then the universe of tpα is an ordinal ηα < κ+.

We define q ≤ p iff tpα l tqα for all α < κ+.

It is easily checked that Qκ is κ+-closed and that |Qκ| = κ+. (Clause (c)

of Definition 8.3.6 was only included to ensure that |Qκ| = κ+. The reader can

safely ignore clause (c) from this point onwards.) By Theorem 6.3.21, Qκ preserves

cofinalities and cardinals. The meaning of a condition p = 〈tpα | α < κ+〉 ∈

Qκ should be clear: for each α < κ+, the tree tpα is intended to be an initial

approximation to the tree Tα ∈ MQκ . The following result implies that whenever

βα < γ < κ+, there exists a κ-closed normal (γ, κ+)-tree t+ such that tpα l t+.

Consequently, the tree Tα ∈MQκ will have height κ+.

Lemma 8.3.7. Let κ ≥ ω be a regular cardinal such that κ<κ = κ.

(a) For each β < κ+, there exists a κ-closed normal (β, κ+)-tree.

(b) If β < γ < κ+ and S is a κ-closed normal (β, κ+)-tree, then there exists

a κ-closed normal (γ, κ+)-tree S′ such that S l S′.

Proof. It is enough to prove (b). So suppose that S is a κ-closed normal

(β, κ+)-tree. We shall prove inductively that there exists a sequence 〈Sγ | β ≤ γ <

κ+〉 satisfying:

(i) S = Sβ ;

(ii) if β ≤ ξ ≤ γ, then Sξ l Sγ ; and

(iii) Sγ is a κ-closed normal (γ, κ+)-tree.

Clearly there is no difficulty when γ is a limit ordinal or when γ = ξ + 1 for some

successor ordinal ξ. Hence we can assume that γ = δ+1, where δ is a limit ordinal.

First suppose that cf(δ) < κ and let 〈ξi | i < cf(δ)〉 be a strictly increasing

sequence of ordinals such that supi<cf(δ) ξi = δ. Let B be the set of δ-branches of

Sδ. Notice that each branch B ∈ B is uniquely determined by its cf(δ)-subset

B ∩
⋃

i<cf(δ)

Levξi(Sδ).

Since κ<κ = κ, it follows that |B| ≤ κ. Hence we can take

Sδ+1 = Sδ ∪ {bB | B ∈ B},



200 8. CHANGING THE HEIGHTS OF AUTOMORPHISM TOWERS

where y < bB iff y ∈ B.

Now suppose that cf(δ) = κ. For each x ∈ Sδ, fix some δ-branch B(x) of Sδ

such that x ∈ B(x). Then we can take

Sδ+1 = Sδ ∪ {bB(x) | x ∈ Sδ},

where y < bB(x) iff y ∈ B(x). �

Notice that there was no real choice in the construction of Sγ , except in the

case where γ = δ + 1 for a limit ordinal δ of cofinality κ, when we get to select

which branches of Sδ are the predecessors of elements of Sδ+1. The following easy

observation will play a crucial role in the proof that the trees {Tα | α < κ+}

are rigid and pairwise nonisomorphic, since it will enable us to “kill off” potential

isomorphisms.

Lemma 8.3.8. Suppose that δ < κ+ is a limit ordinal of cofinality κ and that S

is a κ-closed normal (δ, κ+)-tree. If B 6= C are δ-branches of S, then there exists a

κ-closed normal (δ + 1, κ+)-tree S′ such that:

(1) S l S′;

(2) there exists b ∈ S′ such that predS′(b) = B; and

(3) there does not exist c ∈ S′ such that predS′(c) = C.

Proof. Clearly we can choose a collection B = {B(x) | x ∈ S} of δ-branches

of S such that:

(i) x ∈ B(x) for each x ∈ S;

(ii) B ∈ B; and

(iii) C /∈ B.

Then we can take

S′ = S ∪ {bB(x) | x ∈ S},

where y < bB(x) iff y ∈ B(x). �

While the trees {Tα | α < κ+} adjoined by Qκ are supposed to be pairwise

nonisomorphic, they are also supposed to be “potentially isomorphic” by means of

a further notion of forcing. In order for this to be possible, it is necessary that

Tα � γ ' Tβ � γ for all α < β < κ+ and γ < κ+. This point is dealt with by the

following lemma.
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Lemma 8.3.9. Let κ ≥ ω be a regular cardinal such that κ<κ = κ and let

α < κ+. If S and T are κ-closed normal (α, κ+)-trees, then S ' T . Furthermore,

if δ + 1 ≤ α, then for each isomorphism ϕ : S � (δ + 1)→ T � (δ + 1), there exists

an isomorphism π : S → T such that ϕ ⊆ π.

Proof. If α ≤ κ, then S and T are both complete binary trees of height α

and so S ' T . Hence we can suppose that κ < α < κ+. Thus |S| = |T | = κ. We

will define an isomorphism π =
⋃
ξ<κ

πξ : S → T via a back-and-forth argument.

Suppose that we have defined πξ for some ξ < κ. Assume inductively that

there exists a set {Bi | i ∈ I} of α-branches of S such that

(i) |I| < κ; and

(ii) domπξ =
⋃
i∈I
Bi.

Let s be any element of S r domπξ. Choose an α-branch B of S such that s ∈ B.

Let B = {bτ | τ < α}, where bτ ∈ B ∩ Levτ (S). Let β be the least ordinal such

that bβ /∈ domπξ. First suppose that β = γ + 1 is a successor ordinal. Then there

exists an i ∈ I such that bγ ∈ Bi. Let Ci = πξ [Bi]. Then there exists a unique

element c ∈ Levβ(T ) r Ci such that πξ(bγ) < c. Let C be an α-branch of T such

that c ∈ C and let ψ : B → C be the unique order-preserving bijection. Then

πξ+1 = πξ ∪ψ is a partial isomorphism such that s ∈ domπξ+1. Now suppose that

β is a limit ordinal. Since {bτ | τ < β} is covered by the set of branches {Bi | i ∈ I},

it follows that cf(β) < κ. Hence there exists an element c ∈ Levβ(T ) such that

predT (c) = {πξ(bτ ) | τ < β}. Let C be an α-branch of T such that c ∈ C and let

ψ : B → C be the unique order-preserving bijection. Once again, πξ+1 = πξ ∪ ψ is

a partial isomorphism such that s ∈ domπξ+1. By a similar argument, if t is any

element of T r ran(πξ+1), then we can find a partial isomorphism πξ+2 ⊃ πξ+1 such

that t ∈ ranπξ+2. Hence we can ensure that π =
⋃
ξ<κ

πξ is an isomorphism from S

onto T .

Finally suppose that δ + 1 ≤ α and that ϕ : S � (δ + 1) → T � (δ + 1) is

an isomorphism. For each s ∈ S and t ∈ T , define S[s] = {x ∈ S | s ≤ x} and

T [t] = {y ∈ T | t ≤ y}. Let γ be the ordinal such that α = δ + γ. Then for

each s ∈ Levδ(S), both S[s] and T [ϕ(s)] are κ-closed normal (γ, κ+)-trees, and so

S[s] ' T [ϕ(s)]. Hence ϕ can be extended to an isomorphism π : S → T . �
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Now let G be a Qκ-generic filter over M and let M [G] be the corresponding

generic extension. Since Qκ is κ+-closed, we also have that κ<κ = κ and 2κ = κ+

within M [G]. For each α < κ+, let Tα =
⋃
{tpα | p ∈ G} ∈M [G].

Lemma 8.3.10. In M [G], {Tα | α < κ+} is a set of distinct pairwise noniso-

morphic rigid trees of height κ+.

Proof. For each α < κ+, let T̃α be the canonical Qκ-name for Tα. First

suppose that for some α < κ+, there exists a nonidentity automorphism f of Tα

in M [G]. Let f̃ be a Qκ-name for f . Then there exists a condition p ∈ Qκ and an

element a ∈ tpα such that

p  f̃ : T̃α → T̃α is an isomorphism such that f̃(a) 6= a.

Since Qκ is κ+-closed, we can inductively define a descending sequence of conditions

〈pξ | ξ < κ〉 such that

(1) p0 = p;

(2) t
pξ+1
α is a proper end-extension of t

pξ
α ; and

(3) pξ+1 decides f̃ � tpξα .

Let q ∈ Qκ be the greatest lower bound of the sequence 〈pξ | ξ < κ〉. Then

tqα =
⋃
ξ<κ t

pξ
α and so q decides f̃ � tqα. (This is another instance of the bootstrap

argument .) Note that tqα is a κ-closed normal (γ, κ+)-tree for some ordinal γ such

that cf(γ) = κ. Let B be a γ-branch of tqα such that a ∈ B and let C be the

γ-branch of tqα such that q  f̃ [B] = C. Then B 6= C. Since cf(γ) = κ, there exists

a κ-closed normal (γ + 1, κ+)-tree t+α such that

(i) t+α is a proper end-extension of tqα;

(ii) there exists x ∈ t+α such that predt+α (x) = B; and

(iii) there does not exist y ∈ t+α such that predt+α (y) = C.

Let r ≤ q be a condition such that t+α l trα. Then

r  f̃ � tqα cannot be extended to an automorphism of t+α ,

which is a contradiction.

Now suppose that for some ordinals α < β < κ+, there exists an isomorphism

g : Tα → Tβ in M [G]. Let g̃ be a Qκ-name for g. Then there exists a condition
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p ∈ Qκ such that

p  g̃ : T̃α → T̃β is an isomorphism.

By the bootstrap argument, there exists a condition q ≤ p such that

(a) tqα and tqβ are κ-closed normal (γ, κ+)-trees for some γ such that cf(γ) = κ;

and

(b) q decides g̃ � tqα.

Let B be a γ-branch of tqα and let C be the γ-branch of tqβ such that q  g̃[B] = C.

Since cf(γ) = κ, there exist κ-closed normal (γ + 1, κ+)-trees t+α and t+β such that

(1) t+α and t+β are proper end-extensions of tqα, tqβ respectively;

(2) there exists x ∈ t+α such that predt+α (x) = B; and

(3) there does not exist y ∈ t+β such that predt+β
(y) = C.

But this means that g̃ � tqα cannot be extended to an isomorphism from t+α onto t+β .

Once again, this yields a contradiction. �

Next suppose that E ∈ M [G] is any equivalence relation on κ+. Let A ⊆ κ+

be the set of E-equivalence class representatives obtained by selecting the least

element of each class.

Definition 8.3.11. PE is the notion of forcing in M [G] consisting of all con-

ditions p = 〈fαβ | α < β < κ+〉 such that for some γ < κ+,

(a) if α ∈ A, β < γ and α E β, then there exists δ < κ+ such that fαβ is an

isomorphism from Tα � (δ + 1) onto Tβ � (δ + 1);

(b) otherwise, fαβ = ∅.

If p = 〈fαβ | α < β < κ+〉, q = 〈gαβ | α < β < κ+〉 ∈ PE , then we define q ≤ p iff

fαβ ⊆ gαβ for all α < β < κ+.

Remark 8.3.12. Some readers may be wondering why we have introduced the

set A of E-equivalence class representatives. Consider the slightly simpler notion of

forcing P′E consisting of all conditions p = 〈fαβ | α < β < κ+〉 such that for some

γ < κ+,

(a) if α < β < γ and α E β, then there exists δ < κ+ such that fαβ is an

isomorphism from Tα � (δ + 1) onto Tβ � (δ + 1);

(b) otherwise, fαβ = ∅.
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Using Lemma 8.3.9, it is easily seen that the notion of forcing P′E adjoins a generic

isomorphism gαβ : Tα → Tβ for each α < β < κ+ such that α E β. Fix such a

pair α < β and suppose that there exists an ordinal γ such that β < γ < κ+ and

β E γ. Then it is easily checked that gαγ and gβγ◦gαβ will be distinct isomorphisms

from Tα onto Tγ and so Tα will no longer be rigid. The set A was introduced to

deal with precisely this problem. For example, suppose that α ∈ A. Then the

notion of forcing PE will only directly adjoin isomorphisms gαβ : Tα → Tβ and

gαγ : Tα → Tγ . Of course, we can then obtain an isomorphism from Tβ onto Tγ by

forming the composition gαγ ◦ g−1
αβ .

Let H be a PE-generic filter over M [G] and let M [G][H] be the correspond-

ing generic extension. The following result is an immediate consequence of the

discussion in Remark 8.3.12.

Lemma 8.3.13. If α < β < κ+ and α E β, then there exists an isomorphism

gαβ : Tα → Tβ in M [G][H].

�

Lemma 8.3.14. PE preserves cofinalities and cardinals, and does not adjoin

any new κ-sequences of ordinals. Furthermore, the following statements hold in

M [G][H].

(a) Tα is rigid for each α < κ+.

(b) If α < β < κ+, then Tα ' Tβ iff α E β.

Proof. Let Ẽ, Ã and P̃E be Qκ-names for E, A and PE respectively. Let R

be the subset of Qκ ∗ P̃E consisting of those conditions

〈p, q̃〉 = 〈〈tpα | α < κ+〉, 〈fαβ | α < β < κ+〉〉

such that for some γ, δ < κ+,

(1) p decides Ẽ � (γ × γ) and hence p also decides Ã ∩ γ;

(2) if α < γ, then tpα is a κ-closed normal (δ + 1, κ+)-tree; and

(3) (i) if α < β < γ and p  α ∈ Ã and α Ẽ β, then fαβ is an isomorphism

from tpα onto tpβ ;

(ii) otherwise, fαβ = ∅.
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(Here we are identifying each isomorphism fαβ with its canonical Qκ-name f̌αβ .)

Claim 8.3.15. R is a dense subset of Qκ ∗ P̃E.

Proof of Claim 8.3.15. Let 〈p, q̃〉 = 〈p, 〈f̃αβ | α < β < κ+〉〉 be any element

of Qκ ∗ P̃E . Then there exists p′ ≤ p and γ < κ+ such that p′ forces

(a) f̃αβ = ∅ for all β ≥ γ; and

(b) if α ∈ Ã, β < γ and α Ẽ β, then there exists τ < γ such that dom f̃αβ is

a κ-closed normal (τ + 1, κ+)-tree.

Since Qκ is κ+-closed, there exists r ≤ p′ such that

(c) r decides Ẽ � (γ × γ) and hence r also decides Ã ∩ γ;

(d) there exists δ ≥ γ such that trα is a κ-closed normal (δ + 1, κ+)-tree for

each α < γ; and

(e) if α < β < γ and r  α ∈ Ã and α Ẽ β, then there exists τ < γ and an

isomorphism fαβ : trα � (τ + 1)→ trβ � (τ + 1) such that r  f̃αβ = fαβ .

By Lemma 8.3.9, for each pair α < β < γ such that r  α ∈ Ã and α Ẽ β, there

exists an isomorphism gαβ : trα → trβ such that fαβ ⊂ gαβ . Let gαβ = ∅ for all

other pairs α < β < κ+. Then 〈r, 〈gαβ | α < β < κ+〉〉 ∈ R is a strengthening of

〈p, q̃〉. �

Thus the forcing notions Qκ ∗ P̃E and R are equivalent. It is easily checked that

|R| = κ+.

Claim 8.3.16. R is κ+-closed.

Proof of Claim 8.3.16. Suppose that λ < κ+ and that 〈〈pξ, q̃ξ〉 | ξ < λ〉 is

a descending sequence of elements of R. For each ξ < λ, let pξ = 〈tpξα | α < κ+〉

and q̃ξ = 〈fξαβ | α < β < κ+〉. For each α < β < κ+, let tα =
⋃
ξ<λ t

pξ
α and

fαβ =
⋃
ξ<λ f

ξ
αβ . Then p = 〈tα | α < κ+〉 ∈ Qκ and there exist ordinals γ, δ < κ+

such that

(1) p decides Ẽ � (γ × γ) and hence p also decides Ã ∩ γ;

(2) if α < γ, then tα is a κ-closed normal (δ, κ+)-tree; and

(3) (i) if α < β < γ and p  α ∈ Ã and α Ẽ β, then fαβ is an isomorphism

from tα onto tβ ;

(ii) otherwise, fαβ = ∅.
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If δ is a successor ordinal, then

〈p, q̃〉 = 〈p, 〈fαβ | α < β < κ+〉〉 ∈ R

and 〈p, q̃〉 ≤ 〈pξ, q̃ξ〉 for all ξ < λ. So suppose that δ is a limit ordinal. In order to

construct a condition 〈p+, q̃+〉 ∈ R such that 〈p+, q̃+〉 ≤ 〈pξ, q̃ξ〉 for all ξ < λ, it is

enough if we can simultaneously solve the following extension problems.

(8.3.16 Suppose that α < β < γ and that p  α ∈ Ã and α Ẽ β. Then we must

extend tα, tβ to κ-closed normal (δ+1, κ+)-trees t+α , t+β such that fαβ can

be extended to an isomorphism gαβ : t+α → t+β .

If cf(δ) < κ, then there is no difficulty, since then both t+α and t+β will be obtained

by adjoining elements above every δ-branch of tα, tβ respectively. So suppose that

cf(δ) = κ. First we extend each of the trees tα such that p  α ∈ Ã to a κ-closed

normal (δ + 1, κ+)-trees t+α . If β < γ and p 1 β ∈ Ã, then there exists a unique

α < β such that p  α Ẽ β. We now choose t+β so that fαβ can be extended to an

isomorphism gαβ : t+α → t+β . �

Hence R preserves cofinalities and cardinals, and does not adjoin any new κ-

sequences of ordinals. It follows that no new κ-sequences of ordinals are adjoined

if we force with PE over M [G].

Now suppose that for some µ < κ+, there exists a nonidentity automorphism

ϕ of Tµ in M [G][H]. By Lemma 8.3.13, we can assume that µ ∈ A. Let ϕ̃ be an

R-name for ϕ. Then there exists a condition 〈p, q̃〉 ∈ R and an element a ∈ tpµ such

that

〈p, q̃〉  ϕ̃ : T̃µ → T̃µ is an automorphism such that ϕ̃(a) 6= a.

Since R is κ+-closed, we can inductively define a descending sequence of conditions

〈〈pξ, q̃ξ〉 | ξ < κ〉 such that

(i) 〈p0, q̃0〉 = 〈p, q̃〉;

(ii) t
pξ+1
µ is a proper end-extension of t

pξ
µ ; and

(iii) 〈pξ+1, q̃ξ+1〉 decides ϕ̃ � tpξµ .

Let tµ =
⋃
ξ<κ

t
pξ
µ and let ψ : tµ → tµ be the nonidentity automorphism such that

for each ξ < κ, 〈pξ+1, q̃ξ+1〉  ϕ̃ � tpξµ ⊂ ψ. Note that tµ is a κ-closed normal

(η, κ+)-tree for some η such that cf(η) = κ. Arguing as in the proof of Lemma

8.3.10, we see that there exists a κ-closed normal (η+ 1, κ+)-tree t+µ ⊃ tµ such that
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ψ cannot be extended to an automorphism of t+µ . And then arguing as in the proof

of Claim 8.3.16, we see that there exists a condition 〈pκ, q̃κ〉 ∈ R such that

(1) 〈pκ, q̃κ〉 ≤ 〈pξ, q̃ξ〉 for all ξ < κ; and

(2) tpκµ = t+µ .

But this is a contradiction.

A similar argument shows that if α < β < κ+ and α, β are not E-equivalent,

then Tα and Tβ remain nonisomorphic in M [G][H]. This completes the proof of

Lemma 8.3.14. �

Finally we will use a suitable reverse Easton iteration to complete the proof

of Theorem 8.3.1. Let V0 � GCH. We shall inductively construct a sequence of

forcing notions 〈Pβ | β ∈ On〉 satisfying Hypothesis 6.8.9. By the remark following

Theorem 6.8.10, at successor stages β of the construction, we can assume inductively

that V Pβ−1 � GCH.

Case 1. If β = 0, then P0 = {∅} is the trivial notion of forcing.

Case 2. If β is a limit ordinal which is not inaccessible, then Pβ is the inverse limit

of 〈Pγ | γ < β〉.

Case 3. If β is inaccessible, then Pβ is the direct limit of 〈Pγ | γ < β〉.

Case 4. Finally suppose that β = γ + 1 is a successor ordinal. First suppose that

γ = κ+ for some regular cardinal κ ≥ ω. Then we can assume inductively that

V Pγ � GCH. Let Qκ ∈ V Pγ be the notion of forcing introduced in Definition 8.3.6.

Then we set Pγ+1 = Pγ ∗ Q̃κ. (As usual, Q̃κ denotes a Pγ-name of the notion of

forcing Qκ ∈ V Pγ .) Finally if γ does not have the form κ+ for some regular cardinal

κ ≥ ω, then we set Pγ+1 = Pγ ∗ P̌0.

Let P∞ be the direct limit of 〈Pβ | β ∈ On〉; and for each β ∈ On, let P̃β∞ be

the canonically chosen Pβ-name for a proper class notion of forcing such that P∞
is isomorphic to a dense sub-order of Pβ ∗ P̃β∞. Let G be a P∞-generic filter over

V0 and let V = V0[G] be the corresponding generic extension. For each β ∈ On, let

Gβ = G ∩ Pβ and let Pβ∞ = (P̃β∞)Gβ . Then the following result is an immediate

consequence of Theorem 6.8.10.

Lemma 8.3.17. (a) P∞ preserves cofinalities and cardinals.

(b) If θ = κ+ for some regular cardinal κ ≥ ω, then V [Gθ+1] � Pθ+1∞ is κ++-closed.

(c) V is a model of ZFC +GCH.
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�

Let κ be a regular cardinal and let θ = κ+. Let {Tα | α < κ+} ∈ V0[Gθ+1]

be the set of trees which is adjoined by Qκ at the θth stage of the iteration. Since

V [Gθ+1] � Pθ+1∞ is κ++-closed, it follows that {Tα | α < κ+} remains a set of

pairwise nonisomorphic rigid trees in V . Now let E ∈ V be any equivalence relation

on κ+ and let PE be the corresponding notion of forcing, which was introduced in

Definition 8.3.11. Again using the fact that V [Gθ+1] � Pθ+1∞ is κ++-closed, we

see that E, PE ∈ V0[Gθ+1]. We have already shown that PE has the appropriate

properties in V0[Gθ+1]. Thus it only remains to prove that these properties are

preserved in V .

Lemma 8.3.18. In V , PE preserves cofinalities and cardinals, and does not

adjoin any new κ-sequences of ordinals. The following statements hold in V PE .

(a) Tα is rigid for each α < κ+.

(b) If α < β < κ+, then Tα ' Tβ iff α E β.

Proof. Since |PE | = κ+, PE preserves cofinalities and cardinals greater than

κ+. The remaining parts of the lemma correspond to combinatorial properties of

PE which are preserved under κ++-closed forcing. For example, working inside V ,

suppose that α < κ+ and that p ∈ PE satisfies

p  f̃ : Tα → Tα is an automorphism.

We can assume that f̃ is a nice PE-name; i.e. that

f̃ =
⋃
{{〈s, t〉} ×As,t | s, t ∈ Tα},

where each As,t is an antichain of PE . Since V [Gθ+1] � Pθ+1∞ is κ++-closed,

it follows that f̃ ∈ V0[Gθ+1]. A moment’s thought shows that, working within

V0[Gθ+1], we also have that

p  f̃ : Tα → Tα is an automorphism;

and so there exists q ≤ p such that within V0[Gθ+1],

q  f̃(t) = t for all t ∈ Tα.
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This means that whenever s 6= t are distinct elements of Tα, then q is incompatible

with every element of As,t. Consequently, working within V , we also have that

q  f̃(t) = t for all t ∈ Tα.

Hence Tα is rigid in V PE . �

This completes the proof of Theorem 8.3.1.

8.4. Notes

The material in this chapter first appeared in Hamkins-Thomas [15]. The

proof of Theorem 8.3.1 relies heavily on the ideas of Jech [18], who used a similar

bootstrap argument to prove the consistency of the existence of Suslin trees T such

that 2ω < |Aut(T )| < 2ω1 .





CHAPTER 9

Bounding The Heights Of Automorphism Towers

A common feature of the consistency results in the earlier chapters of this book

was that, in each case, it was essentially only necessary to generically adjoin a

single centreless group. (For example, to prove the consistency of τω1
< τω2

, it was

enough to adjoin a centreless group G of cardinality ω2 such that τ(G) ≥ (2ω1)
+

.)

Thus most of our effort went into the construction of suitable notions of forcing

for adjoining centreless groups with appropriate properties. On the other hand,

in this chapter, we shall prove that it is consistent that τλ < 2λ for every regular

cardinal λ; and this requires finding a generic extension in which we have some

understanding of every centreless group G of regular cardinality λ. Consequently,

in this chapter, our notions of forcing will be extremely simple and all of our effort

will go into analysing the automorphism tower of an arbitrary centreless group

of regular cardinality λ in the corresponding generic extension. More specifically,

fix some regular cardinal λ. Suppose that V � GCH and that θ is a regular

cardinal such that θ ≥ λ++. Let P = Fn(θ, 2, λ) and for each subset X ⊆ θ, let

P � X = Fn(X, 2, λ). Then we shall show that if G ∈ V P is a centreless group of

cardinality λ, then there exists a subset X ∈ [θ]λ
+

such that G ∈ V P�X and

τV
P
(G) = τV

P�X
(G).

Since V P�X � 2λ = λ+, this implies that

V P � τ(G) < λ++ ≤ θ = 2λ.

Then we shall use a suitable reverse Easton forcing to deal with all regular cardinals

λ simultaneously.

9.1. The overspill argument

In Sections 9.2 and 9.3, we shall present a proof of the following result.

211
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Theorem 9.1.1. It is consistent that τλ < 2λ for all regular cardinals λ.

In this section, we shall discuss the intuitive ideas which motivate the rather

technical proof of Theorem 9.1.1. As usual, it is enough to find a notion of forcing

which deals with a single regular cardinal λ, and then we can use a suitable reverse

Easton forcing to complete the proof of Theorem 9.1.1. For the rest of this section,

let M be a c.t.m. and let κ, λ, θ ∈M be cardinals such that

(a) κ<κ = κ ≤ λ

(b) 2λ = λ+

(c) λ++ ≤ θ = θλ.

Recall that if if κ is an infinite cardinal and X is any set, then Fn(X, 2, κ) is the

notion of forcing consisting of all functions p such that

(a) dom p ⊆ X,

(b) ran p ⊆ 2, and

(c) |p| < κ,

ordered by q ≤ p iff q ⊇ p. Let P = Fn(θ, 2, κ) ∈M . Clearly

Fn(θ, 2, κ) ' Fn(θ × λ, 2, κ).

Hence, by Theorems 6.4.4 and 6.5.4, MP � 2λ = θ ≥ λ++. In the rest of this

section, we shall sketch a heuristic argument that if G ∈ MP is a centreless group

of cardinality λ, then τM
P
(G) < λ++. Our argument is based upon the fact that

if X is any set such that |X| ≥ κ, then Q = Fn(X, 2, κ) is a weakly homogeneous

notion of forcing. More specifically, we shall make use of Theorem 9.1.4. (The proof

of Theorem 9.1.4 will be given at the end of this section.)

Definition 9.1.2. A notion of forcing Q is weakly homogeneous if for each pair

of conditions p, q ∈ Q, there exists an automorphism ψ ∈ Aut(Q) such that ψ(p)

and q are compatible.

Example 9.1.3. We shall show that if κ is an infinite cardinal and X is any

set such that |X| ≥ κ, then Q = Fn(X, 2, κ) is a weakly homogeneous notion of

forcing. To see this, note that there is a natural action of Sym(X) as a group of

automorphisms of Q, defined by

ψ(p) = p ◦ ψ−1
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for each ψ ∈ Sym(X) and p ∈ Q. Also note that if ψ ∈ Sym(X) and p ∈ Q, then

domψ(p) = ψ[dom p]. Now let p, q ∈ Q be an arbitrary pair of conditions. Then

there exists a permutation ψ ∈ Sym(X) such that ψ[dom p] ∩ dom q = ∅ and it

follows that ψ(p) and q are compatible.

Theorem 9.1.4. Let M be a c.t.m. and let Q ∈ M be a weakly homogeneous

notion of forcing. If ϕ(v1, . . . , vn) is any formula and a1, . . . , an ∈M , then either

1Q  ϕ(ǎ1, . . . , ǎn) or 1Q  ¬ϕ(ǎ1, . . . , ǎn).

Our argument will also make use of the following basic results on the product

structure of P = Fn(θ, 2, κ).

Theorem 9.1.5. With the above hypotheses, let P = Fn(θ, 2, κ) ∈ M and let

H be a P-generic filter over M . Suppose that X ∈ M satisfies X ⊆ θ and let

Y = θ rX.

(a) Fn(θ, 2, κ) ' Fn(X, 2, κ)× Fn(Y, 2, κ).

(b) Let HX = H ∩ Fn(X, 2, κ) and HY = H ∩ Fn(Y, 2, κ). Then HX is a

Fn(X, 2, κ)-generic filter over M and HY is a Fn(Y, 2, κ)-generic filter

over M [HX ]. Furthermore, M [H] = M [HX ][HY ].

Proof. (a) It is easily checked that the map

p 7→ 〈p � X, p � Y 〉

is a isomorphism from Fn(θ, 2, κ) onto Fn(X, 2, κ)× Fn(Y, 2, κ).

(b) This is Theorem VIII.2.1 of Kunen [26]. �

Notice that, since Fn(X, 2, κ) ∈M is κ-closed, it follows that

Fn(Y, 2, κ)M [HX ] = Fn(Y, 2, κ)M .

Lemma 9.1.6. With the above hypotheses, let P = Fn(θ, 2, κ) ∈ M and let H

be a P-generic filter over M . Suppose that µ ∈ M is a cardinal such that µ ≤ θ

and that S ∈M [H] satisfies S ⊆ µ. Then there exists X ∈M of cardinality µ such

that X ⊆ θ and S ∈M [H ∩ Fn(X, 2, κ)].
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Proof. Since P = Fn(θ, 2, κ) ∈ M is κ-closed, it follows that if µ < κ, then

S ∈M . Hence we can suppose that µ ≥ κ. Let

τ =
⋃
{{α̌} ×Aα | α ∈ µ} ∈M

be a nice P-name for a subset of µ such that τH = S. Since P ∈M has the κ+-c.c,

it follows that each antichain Aα has cardinality at most κ. Hence there exists a

subset X ∈ PM (θ) of cardinality µ such that Aα ⊆ Fn(X, 2, κ) for each α ∈ µ. Let

HX = H ∩ Fn(X, 2, κ). Then τ is a nice Fn(X, 2, κ)-name for a subset of µ such

that τHX = S. In particular, S ∈M [HX ] = M [H ∩ Fn(X, 2, κ)]. �

We are now ready to complete our heuristic argument that if G ∈ MP is a

centreless group of cardinality λ, then τM
P
(G) < λ++. Let MP = M [H], where

H ⊆ P is a P-generic filter over M , and let G ∈ MP be a centreless group of

cardinality λ. To simplify notation, we shall initially assume that G ∈ M . Now

suppose that MP � τ(G) ≥ λ++ and let γ be any ordinal such that γ < λ++. Then,

in MP, we have a strictly increasing tower of groups

G = GM
P

0 C GM
P

1 C · · · C GM
P

α C · · · C GM
P

γ C GM
P

γ+1

and it seems reasonable to suppose that this will be reflected down to some submodel

of MP of the form N = M [H ∩ Fn(Xγ , 2, κ)], where Xγ ∈ [θ]λ
+ ∩M . Roughly

speaking, for each α ≤ γ, we should first choose an element gα ∈ GM
P

α+1 r GM
P

α ,

and then we should find a subset Xγ ∈ [θ]λ
+ ∩M such that gα ∈ N and GNα is a

gα-invariant subgroup of GP
α for each α ≤ γ. Then gα � GNα ∈ GNα+1 r GNα for all

α ≤ γ and so N � τ(G) > γ. (The reader is advised not to examine the previous

two sentences too carefully. In particular, he should not be concerned if he notices

that GNα is probably not even a subgroup of GM
P

α when α ≥ 2.) Thus for each

ordinal γ < λ++, there should exist a subset Xγ ∈ [θ]λ
+ ∩M such that

M [H ∩ Fn(Xγ , 2, κ)] � τ(G) > γ.

Now let Q = Fn(λ+, 2, θ) and notice that Fn(Xγ , 2, κ) ' Q for all γ < λ++.

Hence for each γ < λ++, there exists a Q-generic filter Kγ over M such that

M [H ∩ Fn(Xγ , 2, κ)] = M [Kγ ]. Hence by Theorem 9.1.4,

1Q Q τ(Ǧ) > γ̌
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for all γ < λ++. But this means that if K is any Q-generic filter over M , then

M [K] � τ(G) ≥ λ++ =
(
2λ
)+
,

which contradicts Corollary 3.3.2. Thus τM
P
(G) < λ++ for every centreless group

G ∈M of cardinality λ.

Now suppose that G ∈MP is any centreless group of cardinality λ. Then there

exists a subset Y ∈ [θ]λ ∩M such that G ∈ N = M [H ∩ Fn(Y, 2, κ)] and κ, λ, θ

continue to satisfy our hypotheses in N . Since MP = N [H ∩ Fn(θ r Y, 2, κ)] and

Fn(θ r Y, 2, κ) ' P, our previous argument shows that τM
P
(G) < λ++.

We shall present a rigorous proof of Theorem 9.1.1 in Sections 9.2 and 9.3.

The main technical difficulty will concern the problem of comparing the values of

τ(G) within various generic extensions MP of the c.t.m. M . We have already dealt

with an easy case of this problem in Section 6.7. There we showed that if P is

|G|+-closed, then τM
P
(G) = τM (G). The proof was relatively easy because, with

this hypothesis on P, we could show inductively that GM
P

α = GMα for all ordinals

α. In Section 9.2, we shall develop a technique for comparing τM
P
(G) and τM (G)

in the situation when GM1 = AutM (G) is a proper subgroup of GM
P

1 = AutM
P
(G).

(In this case, there is already a difficulty in trying to relate GM2 = AutM (GM1 )

and GM
P

2 = AutM
P
(GM

P

1 ).) Then we shall complete the proof of Theorem 9.1.1 in

Section 9.3.

In the remainder of this section, we shall present a proof of Theorem 9.1.4. The

proof is based on the observation that if Q is any notion of forcing, then Aut(Q)

acts naturally on the entire Q-forcing apparatus. For example, if ψ ∈ Aut(Q), then

for each Q-name τ , we can inductively define the associated Q-name ψ(τ) by

ψ(τ) = {〈ψ(σ), ψ(p)〉 | 〈σ, p〉 ∈ τ}.

Lemma 9.1.7. Let Q be a notion of forcing and let ψ ∈ Aut(Q). Suppose that

ϕ(v1, . . . , vn) is any formula and that τ1, . . . , τn are Q-names. Then for all p ∈ Q,

p  ϕ(τ1, . . . , τn) iff ψ(p)  ϕ(ψ(τ1), . . . , ψ(τn)).

The definition of the forcing relation  in Chapter 6 involved the collection of all

Q-generic filters. Using this definition, Lemma 9.1.7 is not quite obvious. However,

there is an alternative approach to the forcing relation for which the analogue of
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Lemma 9.1.7 is completely obvious. (The relation ∗ is essentially just the result

of a tedious inductive analysis of the forcing relation , which can be carried out

within the c.t.m. M ; i.e. an analysis which avoids the use of any objects which lie

outside M .)

Definition 9.1.8. Let Q be a notion of forcing. If p ∈ Q, ϕ(v1, . . . , vn) is any

formula and τ1, . . . , τn are Q-names, then we define the relation

p ∗ ϕ(τ1, . . . , τn)

by induction on the complexity of ϕ(v1, . . . , vn) as follows.

(a) p ∗ τ1 = τ2 iff the following two clauses hold.

(i) For all 〈π1, s1〉 ∈ τ1 and q ≤ p, there exists r ≤ q such that either

r ⊥ s1 or there exists 〈π2, s2〉 ∈ τ2 with r ≤ s2 and r ∗ π1 = π2.

(ii) For all 〈π2, s2〉 ∈ τ2 and q ≤ p, there exists r ≤ q such that either

r ⊥ s2 or there exists 〈π1, s1〉 ∈ τ1 with r ≤ s1 and r ∗ π1 = π2.

(b) p ∗ τ1 ∈ τ2 iff for all q ≤ p, there exists r ≤ q and 〈π, s〉 ∈ τ2 such that

r ≤ s and r ∗ π = τ1.

(c) p ∗ ϕ(τ1, . . . , τn)∧ψ(τ1, . . . , τn) iff p ∗ ϕ(τ1, . . . , τn) and p ∗ ψ(τ1, . . . , τn).

(d) p ∗ ¬ϕ(τ1, . . . , τn) iff there does not exist a condition q ≤ p such that

q ∗ ϕ(τ1, . . . , τn).

(e) p ∗ ∃xϕ(x, τ1, . . . , τn) iff for all q ≤ p, there exists r ≤ q and a Q-name

σ such that r ∗ ϕ(σ, τ1, . . . , τn).

As we mentioned earlier, the following analogue of Lemma 9.1.7 is completely

obvious.

Lemma 9.1.9. Let Q be a notion of forcing and let ψ ∈ Aut(Q). Suppose that

ϕ(v1, . . . , vn) is any formula and that τ1, . . . , τn are Q-names. Then for all p ∈ Q,

p ∗ ϕ(τ1, . . . , τn) iff ψ(p) ∗ ϕ(ψ(τ1), . . . , ψ(τn)).

�

Clearly Lemma 9.1.7 is an immediate consequence of Lemma 9.1.9 and Theorem

9.1.10.



9.2. CONSERVATIVE EXTENSIONS 217

Theorem 9.1.10. Let Q be a notion of forcing. Let ϕ(v1, . . . , vn) be any for-

mula and let τ1, . . . , τn be Q-names. Then for all p ∈ Q,

p  ϕ(τ1, . . . , τn) iff p ∗ ϕ(τ1, . . . , τn).

Proof. For example, see Kunen [26, Section VIII.3]. �

We are now ready to present the proof of Theorem 9.1.4. Let M be a c.t.m.

and let Q ∈ M be a weakly homogeneous notion of forcing. Let ϕ(v1, . . . , vn) be

any formula and let a1, . . . , an ∈M . Suppose that

1Q 1 ϕ(ǎ1, . . . , ǎn) and 1Q 1 ¬ϕ(ǎ1, . . . , ǎn).

Then there exist conditions p, q ∈ Q such that

p  ϕ(ǎ1, . . . , ǎn) and q  ¬ϕ(ǎ1, . . . , ǎn).

Let ψ ∈ AutM (Q) be an automorphism such that ψ(p) and q are compatible.

An easy induction shows that ψ(b̌) = b̌ for all b ∈ M . Hence, by Lemma 9.1.7,

ψ(p)  ϕ(ǎ1, . . . , ǎn). But this means that if r ≤ ψ(p), q, then

r  ϕ(ǎ1, . . . , ǎn) ∧ ¬ϕ(ǎ1, . . . , ǎn),

which is a contradiction.

9.2. Conservative extensions

Suppose that M1 is a c.t.m. and that G ∈M1 is a centreless group. Let P ∈M1

be a notion of forcing and let M2 = MP
1 be the corresponding generic extension.

In this section, we shall develop a technique for comparing τM1(G) and τM2(G)

in the case when GM1
1 = AutM1(G) is a proper subgroup of GM2

1 = AutM2(G).

In this case, there is already a difficulty in trying to relate GM1
2 = AutM1(GM1

1 )

and GM2
2 = AutM2(GM2

1 ). However, suppose that every automorphism ϕ of GM1
1

extends to an automorphism ϕ+ of GM2
1 . Since G 6 GM1

1 , Theorem 1.1.10 implies

that there must be a unique such extension ϕ+ for each ϕ ∈ GM1
2 = AutM1(GM1

1 );

and so we can define a canonical embedding π : GM1
2 → GM2

2 by π(ϕ) = ϕ+. If we

now also suppose that every automorphism of π[GM1
2 ] extends to an automorphism

of GM2
2 , then we next obtain a canonical embedding of GM1

3 into GM2
3 . Continuing

in this fashion, we arrive at the notion of a G-conservative extension.
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Definition 9.2.1. Let M1 be a c.t.m. Let P ∈ M1 be a notion of forcing and

let M2 = MP
1 be the corresponding generic extension. If G ∈ M1 is a centreless

group, then M2 is said to be a G-conservative extension of M1 iff for each α ∈ On,

M2 contains an embedding πα : GM1
α → GM2

α such that the following conditions are

satisfied.

(a) If β < α, then πβ ⊆ πα.

(b) π0 = idG.

(c) If α is a limit ordinal, then πα =
⋃
β<α πβ .

(d) Finally suppose that α = β + 1 and that g ∈ GM1
α = AutM1(GM1

β ). Then

πα(g) ∈ GM2
α = AutM2(GM2

β ) extends the automorphism πβgπ
−1
β of the

subgroup πβ [GM1

β ] 6 GM2

β .

In this case, we shall say that πα is the canonical embedding of GM1
α into GM2

α .

Remark 9.2.2. To get a better understanding of Definition 9.2.1 and to see

that there is a unique canonical embedding πα : GM1
α → GM2

α for each α ∈ On,

we shall spell out exactly what needs to be checked when verifying that M2 is a

G-conservative extension of M1. So suppose inductively that we have shown that

there exists a canonical embedding πβ : GM1

β → GM2

β for each β < α. Clearly

no problems arise if α is a limit ordinal. So suppose that α = β + 1. Then it is

enough to check that for each g ∈ Gα = AutM1(GM1

β ), the automorphism πβgπ
−1
β

of πβ [GM1

β ] can be extended to an automorphism h of GM2

β . To see this, notice that

G0 6 πβ [GM1

β ] 6 GM2

β ,

and so Theorem 1.1.10 implies that h is the unique automorphism of GM2

β which

extends πβgπ
−1
β . Hence we can define the embedding πα : GM1

α → GM2
α by

πα(g) = the unique h ∈ GM2
α such that πβgπ

−1
β ⊆ h.

It only remains to verify that πβ ⊆ πα. To see this, let a ∈ GM1

β . Then a is

identified with the corresponding inner automorphism ia ∈ GM1
α = AutM1(GM1

β ),

It is easily checked that πβiaπ
−1
β ⊆ iπβ(a) and hence πα(ia) = iπβ(a). Since πβ(a)

is identified with iπβ(a) within GM2
α , it follows that πβ ⊆ πα.
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Lemma 9.2.3. Suppose that M2 is a G-conservative extension of M1 and let

πα : GM1
α → GM2

α be the canonical embedding for each α ∈ On. If β ≤ α, then

πα[GM1
α ] ∩GM2

β = πβ [GM1

β ]

Hence τM1(G) ≤ τM2(G).

Proof. Fix some ordinal α. We shall argue by induction on β ≤ α that

πα[GM1
α ] ∩GM2

β = πβ [GM1

β ].

Clearly the result holds for β = 0 and no problems arise when β is a limit ordinal.

So suppose that β = γ + 1. First note that since πβ ⊆ πα, it follows that

πβ [GM1

β ] 6 πα[GM1
α ] ∩GM2

β .

Now suppose that h ∈ πα[GM1
α ] ∩GM2

β . Then h normalises

πα[GM1
α ] ∩GM2

γ = πγ [GM1
γ ].

Let g ∈ GM1
α be the element such that πα(g) = h. Then g normalises GM1

γ . By

Proposition 4.1.2, GM1
γ+1 is the normaliser of GM1

γ in GM1
α . Hence

h = πα(g) ∈ πα[GM1

β ] = πβ [GM1

β ].

Finally to see that τM1(G) ≤ τM2(G), let τM1(G) = τ and for each β < τ , let

gβ ∈ GM1

β+1 rG
M1

β . Then πβ+1(gβ) ∈ GM2

β+1 rG
M2

β and hence τM2(G) > β. �

There exist examples of G-conservative extensions such that τM1(G) < τM2(G).

For example, suppose that G ∈ M1 is a complete group. Then it is clear that if

P ∈ M1 is any notion of forcing, then M2 = MP
1 is a G-conservative extension of

M1. In particular, this is true if P is a notion of forcing which adjoins an outer

automorphism of G; and in this case, we have that τM1(G) < τM2(G).

Now suppose that M is a c.t.m. and that κ, λ, θ ∈M are cardinals such that

(a) κ<κ = κ ≤ λ

(b) 2λ = λ+

(c) λ++ ≤ θ = θλ.

If G ∈M is a centreless group of cardinality λ and P = Fn(θ, 2, κ) ∈M , then there

is no reason to suppose that MP is a G-conservative extension of M . For example,

if κ = ω and λ = 2ω, then Theorem 6.6.16 says that there exists a centreless
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group H ∈ M of cardinality λ such that τM (H) > τM
P
(H) and so MP is not

an H-conservative extension of M . However, in the next section, we shall prove

that if Q = Fn(λ+, 2, κ) and G ∈ M is any centreless group of cardinality λ, then

MP is a G-conservative extension of MQ. Furthermore, we shall also prove that

τM
Q
(G) = τM

P
(G). Since MQ � 2λ = λ+, it follows that τM

Q
(G) < λ++ and hence

that MP � τ(G) < λ++ ≤ θ = 2λ.

We shall end this section with a slightly technical result, which will be used

repeatedly in the proof of Theorem 9.3.1. We have already mentioned that if

πβ : GM1

β → GM2

β is a canonical embedding, then there exists a canonical embedding

πβ+1 : GM1

β+1 → GM2

β+1 iff for each g ∈ AutM1(GM1

β ), the automorphism πβgπ
−1
β of

πβ [GM1

β ] can be extended to an automorphism h of GM2

β . The next lemma says

that it is enough to check that for each g ∈ AutM1(GM1

β ), the embedding

πβ ◦ (g � G) ◦ π−1
β = πβ ◦ (g � G)

of πβ [G] = G into GM2

β can be extended to an automorphism h of GM2

β .

Lemma 9.2.4. Suppose that M1 is a c.t.m. and that G ∈ M1 is a centreless

group. Let M2 be a generic extension of M1 and suppose that there exists a canonical

embedding πγ : GM1
γ → GM2

γ for each γ ≤ β. If the elements g ∈ AutM1(GM1

β ) and

h ∈ AutM2(GM2

β ) satisfy

(a) h[G] ⊆ πβ [GM1

β ] and

(b) π−1
β ◦ (h � G) ⊆ g,

then πβgπ
−1
β ⊆ h.

Proof. This is equivalent to the statement that g ⊆ π−1
β hπβ . We will prove

this inclusion for g � GM1
γ by induction on γ ≤ β. Since πβ � G is the identity map,

clause (b) says that the result holds when γ = 0. Once again, no difficulties arise

when γ is a limit ordinal. Suppose that γ = ξ+1 and let ϕ ∈ GM1

ξ+1 be any element.

For each a ∈ GM1

ξ , let aϕ ∈ GM1

ξ be the element such that ϕaϕ−1 = aϕ; and for

each ψ ∈ GM1

ξ+1, let ψ = πβ(ψ). Then for each a ∈ GM1

ξ , we have that

g(ϕ) · g(a) ·
(
g(ϕ)

)−1

= g(aϕ)

and that

h(ϕ) · h(a) · h(ϕ)−1 = h(aϕ).
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By the inductive hypothesis, g � GM1

ξ ⊆ π−1
β hπβ and this implies that h(a) = g(a)

and that h(aϕ) = g(aϕ). Thus for all elements d ∈ (h ◦ πβ)[GM1

ξ ], we have that

h(ϕ)−1 · g(ϕ) ∈ C
G
M2
β

(d).

Since G 6 πβ [GM1

ξ ], this implies that

h(ϕ)−1 · g(ϕ) ∈ C
G
M2
β

(h[G]).

By Theorem 1.1.10, C
G
M2
β

(G) = 1. Applying the automorphism h of GM2

β , we

obtain that C
G
M2
β

(h[G]) = 1 and hence h(ϕ) = g(ϕ). Consequently the result also

holds for ξ + 1. �

9.3. The reflection argument

In this section, we shall present the proof of Theorem 9.1.1. As we shall see,

Theorem 9.1.1 is an easy consequence of the following result, together with a suit-

able reverse Easton forcing.

Theorem 9.3.1. Let M be a c.t.m. and let κ ≤ λ < θ be regular cardinals

which satisfy the following conditions.

(a) κ<κ = κ.

(b) 2λ = λ+.

(c) θ ≥ λ++.

Let P = Fn(θ, 2, κ) and let Q = Fn(λ+, 2, κ). Then for every centreless group

G ∈M of cardinality λ:

(1) MP is a G-conservative extension of MQ.

(2) τM
P
(G) = τM

Q
(G) < λ++.

Throughout the proof of Theorem 9.3.1, the notation P(θ) and [θ]λ
+

will always

refer to P(θ)∩M and [θ]λ
+ ∩M respectively. Fix some P-generic filter H over M .

Then for each X ∈ P(θ), we define M(X) = M [H ∩ Fn(X, 2, κ)]. We shall make

repeated use of the following easy consequence of Theorem 9.1.4.

Lemma 9.3.2. Suppose that X, Y , Z ∈ [θ]≤λ
+

are such that X ⊂ Y , Z and

|Y rX| = |Z rX| = λ+. If ϕ(v1, . . . , vn) is any formula and a1, . . . , an ∈M(X),

then

M(Y ) � ϕ(a1, . . . , an) iff M(Z) � ϕ(a1, . . . , an).
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Proof. Note that M(Y ) and M(Z) are generic extensions of M(X) with re-

spect to the notions of forcing Fn(Y r X, 2, κ)M , Fn(Z r X, 2, κ)M respectively;

and also that

Fn(Y rX, 2, κ)M = Fn(Y rX, 2, κ)M(X) ' Fn(λ+, 2, κ)M(X)

and

Fn(Z rX, 2, κ)M = Fn(Z rX, 2, κ)M(X) ' Fn(λ+, 2, κ)M(X).

Working inside M(X), we can apply Theorem 9.1.4 to the weakly homogeneous

notion of forcing Q = Fn(λ+, 2, κ)M(X) and hence obtain that

M(Y ) � ϕ(a1, . . . , an) iff 1Q Q ϕ(ǎ1, . . . , ǎn)

iff M(Z) � ϕ(a1, . . . , an).

�

In particular, by considering the special case when X = ∅ and Z = λ+, we

obtain the following result.

Lemma 9.3.3. Suppose that Y ∈ [θ]λ
+

. If ϕ(v1, . . . , vn) is any formula and

a1, . . . , an ∈M , then

M(Y ) � ϕ(a1, . . . , an) iff M(λ+) � ϕ(a1, . . . , an).

�

Theorem 9.3.1 is an easy consequence of the following result.

Lemma 9.3.4. If G ∈ M be a centreless group of cardinality λ, then for each

α ∈ On, the following statements are true.

(a)α If X ∈ [θ]λ
+

, there exists a canonical embedding πX,θα : G
M(X)
α → G

M(θ)
α .

(b)α Whenever X, Y ∈ [θ]λ
+

satisfy X ⊂ Y and |Y r X| = λ+, then there

exists a canonical embedding πX,Yα : G
M(X)
α → G

M(Y )
α . Furthermore, the

following diagram commutes.

GM(θ)
α

GM(X)
α

πX,Yα-

π
X
,θ

α

-

GM(Y )
α

πY,θα

6
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(c)α For each g ∈ G
M(θ)
α , there exists X ∈ [θ]λ

+

and h ∈ G
M(X)
α such that

πX,θα (h) = g.

(d)α Suppose that X =
⋃
i<λ+ Xi, where 〈Xi | i < λ+〉 ∈M is a smooth strictly

increasing sequence of elements of [θ]λ
+

such that |Xi+1 r Xi| = λ+ for

each i < λ+. Then πX,θα [G
M(X)
α ] =

⋃
i<λ+ πXi,θα [G

M(Xi)
α ].

Before we prove Lemma 9.3.4, we shall show how to complete the proof of

Theorem 9.3.1.

Proof of Theorem 9.3.1. Letting X = λ+ in Lemma 9.3.4(a)α, we see that

MP = M(θ) is a G-conservative extension of MQ = M(λ+). Hence by Lemma 9.2.3,

we have that τM(λ+)(G) ≤ τM(θ)(G). To see that τM(θ)(G) ≤ τM(λ+)(G), suppose

that β < τM(θ)(G) and let g ∈ G
M(θ)
β+1 r G

M(θ)
β . By Lemma 9.3.4(c)β+1, there

exists Y ∈ [θ]λ
+

and h ∈ GM(Y )
β+1 such that πY,θβ+1(h) = g. Applying Lemma 9.2.3,

we see that h ∈ G
M(Y )
β+1 r G

M(Y )
β and so M(Y ) � τ(G) > β. By Lemma 9.3.3,

M(λ+) � τ(G) > β. Hence τM(θ)(G) = τM(λ+)(G). Finally Theorem 6.4.4 implies

that M(λ+) � 2λ = λ+ and so τM(λ+)(G) < λ++. �

Proof of Lemma 9.3.4. We shall prove that statements (a)α, (b)α, (c)α and

(d)α hold by a simultaneous induction on α. The result is trivially true if α = 0 and

there are no difficulties at limit stages of the induction. So suppose that α = β + 1

and that the result holds for β. For each Z ∈ [θ]λ
+

, let ΓZ = πZ,θβ [G
M(Z)
β ]. Notice

that statement (b)β implies that if Y , Z ∈ [θ]λ
+

satisfy Y ⊂ Z and |Z r Y | = λ+,

then ΓY 6 ΓZ . It also follows easily from statement (b)β that if X, Y , Z ∈ [θ]λ
+

satisfy X ⊂ Y ⊂ Z and |Y r X| = |Z r Y | = λ+, then the following diagram

commutes.

G
M(Z)
β

GM(X)
α

πX,Yβ -

π
X
,Z

β

-

GM(Y )
α

πY,Zβ

6

First we shall prove that statement (a)α holds. Fix some X ∈ [θ]λ
+

. As we

noted in Remark 9.2.2, it is enough to show that whenever g ∈ AutM(X)(G
M(X)
β ),

then there exists a corresponding automorphism h ∈ AutM(θ)(G
M(θ)
β ) such that

πX,θβ ◦ g ◦
(
πX,θβ

)−1

⊆ h. Fix some g ∈ AutM(X)(G
M(X)
β ); and, working inside M ,
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express X =
⋃
i<λ+ Xi as the union of a smooth strictly increasing chain such that

|Xi+1 rXi| = λ+ for all i < λ+.

Claim 9.3.5. There exists an i < λ+ such that g[G0] 6 πXi,Xβ [G
M(Xi)
β ] and

k = (πXi,Xβ )−1 ◦ (g � G0) ∈M(Xi).

Proof of Claim 9.3.5. By statement (d)β , we have that

πX,θβ [G
M(X)
β ] =

⋃
i<λ+

πXi,θβ [G
M(Xi)
β ].

So applying (πX,θβ )−1 to both sides of this equality, we obtain that

G
M(X)
β =

⋃
i<λ+

πXi,Xβ [G
M(Xi)
β ].

Since |g[G0]| = λ, there exists an j < λ+ such that g[G0] 6 π
Xj ,X
β [G

M(Xj)
β ]. Since

k′ = (π
Xj ,X
β )−1 ◦ (g � G0) ∈M(X) and |k′| = λ, there exists i such that j < i < λ+

and k′ ∈M(Xi). We claim that i satisfies our requirements. To see this, note that

π
Xj ,Xi
β ∈M(Xi) and that the following diagram commutes.

G
M(X)
β

GM(Xj)
α

π
Xj ,Xi
β -

π
Xj
,X

β

-

GM(Xi)
α

πXi,Xβ

6

It follows that

g[G0] 6 πXj ,Xβ [G
M(Xj)
β ] 6 πXi,Xβ [G

M(Xi)
β ]

and that

k = (πXi,Xβ )−1 ◦ (g � G0) = π
Xj ,Xi
β ◦ k′ ∈M(Xi).

�

In particular, the following statement with parameters G, k ∈ M(Xi) is true

in M(X).

(9.3.5)X There exists an automorphism g ∈ AutM(X)(G
M(X)
β ) such that

πXi,Xβ ◦ k ⊆ g.
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By Lemma 9.3.2, statement (9.3.5)Y must be true for all Y ∈ [θ]λ
+

such that

Xi ⊂ Y and |Y r Xi| = λ+; say, statement (9.3.5)Y is witnessed by the auto-

morphism gY ∈ AutM(Y )(G
M(Y )
β ). We can now define a suitable automorphism

h ∈ AutM(θ)(G
M(θ)
β ) as follows. Let a ∈ GM(θ)

β be any element. By statements (c)β

and (b)β , there exists a set Y ∈ [θ]λ
+

such that Xi ⊂ Y , |Y rXi| = λ+ and a ∈ ΓY ;

and so we can define

h(a) = πY,θβ ◦ gY ◦ (πY,θβ )−1(a).

Of course, we must check that h is well-defined. To see this, it is enough to consider

the case when Xi ⊂ Y1 ⊂ Y2, |Y1rXi| = |Y2rY1| = λ+ and a ∈ ΓY1 6 ΓY2 . Notice

that

(πY1,Y2

β )−1 ◦ (gY2 � G0) = (πY1,Y2

β )−1 ◦ πXi,Y2

β ◦ k = πXi,Y1

β ◦ k ⊆ gY1 .

So by Lemma 9.2.4, we have that

(πY1,Y2

β ) ◦ gY1 ◦ (πY1,Y2

β )−1 ⊆ gY2 .

It follows that h is well-defined. Also notice that

(πX,θβ )−1 ◦ (h � G0) ⊆ g

and so by Lemma 9.2.4,

(πX,θβ ) ◦ g ◦ (πX,θβ )−1 ⊆ h,

as required. This completes the proof that statement (a)α holds.

Next we shall prove that statement (b)α holds. Fix some X ∈ [θ]λ
+

. We shall

first show that if Y ∈ [θ]λ
+

is such that X ⊂ Y and |Y rX| = λ+, then there exists

a canonical embedding πX,Yα : G
M(X)
α → G

M(Y )
α . By Lemma 9.3.2, it is enough

to find a single set Y ∈ [θ]λ
+

with these properties. We shall use the following

observation to find such a set Y .

Claim 9.3.6. Suppose that S ∈ [θ]λ
+

and that X ⊆ S. Then there exists

T ∈ [θ]λ
+

such that S ⊆ T and

1P P π
X,θ
α (g)[ΓS ] 6 ΓT for all g ∈ AutM(X)(G

M(X)
β ).
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Proof of Claim 9.3.6. Suppose that S ∈ [θ]λ
+

and that X ⊆ S. Initially

we shall work within M(θ). By statement (c)β , for each g ∈ AutM(X)(G
M(X)
β ) and

a ∈ ΓS , there exists a set Yg,a ∈ [θ]λ
+

such that πX,θα (g)(a) ∈ ΓYg,a . Let

Y = S ∪
⋃
{Yg,a | g ∈ AutM(X)(G

M(X)
β ) and a ∈ ΓS}.

Recall that G is an ascendent subgroup of both AutM(X)(G
M(X)
β ) and ΓS . Conse-

quently, since M(X) and M(S) both satisfy 2λ = λ+, Theorem 3.3.1 implies that

|AutM(X)(G
M(X)
β )| ≤ λ+ and |ΓS | ≤ λ+. Thus |Y | = λ+.

Now let Ỹ be a Fn(θ, 2, κ)-name for Y . Since Fn(θ, 2, κ) has the κ+-c.c., it

follows that there exists a set T ∈ [θ]λ
+

such that

1P P Ỹ ⊆ T.

Clearly T satisfies our requirements. �

Thus, working within M , we can inductively define a smooth strictly increasing

sequence 〈Xi | i < λ+〉 such that X0 = X, |Xi+1 rXi| = λ+ and

1P P π
X,θ
α (g)[ΓXi ] 6 ΓXi+1 for all g ∈ AutM(X)(G

M(X)
β ).

Let Y =
⋃
i<λ+ Xi. By statement (d)β , we have that ΓY =

⋃
i<λ+ ΓXi and hence

πX,θα (g)[ΓY ] = ΓY for all g ∈ AutM(X)(G
M(X)
β ). For each g ∈ AutM(X)(G

M(X)
β ),

define the automorphism πX,Yα (g) ∈ AutM(θ)(G
M(Y )
β ) by

πX,Yα (g) = (πY,θβ )−1 ◦ πX,θα (g) ◦ πY,θβ .

Notice that

πX,Yα (g) � πX,Yβ [G
M(X)
β ] = (πX,Yβ )−1 ◦ g ◦ πX,Yβ .

Since πX,Yβ , g ∈ M(Y ), it follows that πX,Yα (g) � G0 ∈ M(Y ). By Lemma 6.7.2,

πX,Yα (g) ∈ M(Y ). Thus πX,Yα is a canonical embedding of AutM(X)(G
M(X)
β ) into

AutM(Y )(G
M(Y )
β ). It is now easily checked that the following diagram commutes.

AutM(θ)(G
M(θ)
β )

AutM(X)(G
M(X)
β )

πX,Yα-

π
X,
θ

α

-

AutM(Y )(G
M(Y )
β )

πY,θα

6

Hence X,Y satisfy the conclusion of statement (b)α.
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Next we shall prove that statement (c)α holds. Let g ∈ AutM(θ)(G
M(θ)
β ). Then

there exists X0 ∈ [θ]λ
+

such that g[G0] 6 ΓX0 . Let k = (πX0,θ
β )−1 ◦ (g � G0). Then

there exists X1 ⊃ X0 such that |X1 rX0| = λ+ and k ∈M(X1). Thus

(πX1,θ
β )−1 ◦ (g � G0) = πX0,X1

β ◦ k ∈M(X1).

Arguing as in the previous paragraph, we can define a smooth strictly increasing

sequence 〈Xi | i < λ+〉 ∈ M of elements of [θ]λ
+

such that if Y =
⋃
i<λ+ Xi, then

g[ΓY ] = ΓY . Thus h = (πY,θβ )−1 ◦g ◦πY,θβ ∈ AutM(θ)(G
M(Y )
β ) and it suffices to show

that h ∈M(Y ). To see this, note that

h � G0 = πX1,Y
β ◦

(
(πX1,θ
β )−1 ◦ (g � G0)

)
,

and so h � G0 ∈M(Y ). By Lemma 6.7.2, h ∈M(Y ).

Finally we shall prove statement (d)α. So suppose that X =
⋃
i<λ+ Xi, where

〈Xi | i < λ+〉 ∈ M is a smooth strictly increasing sequence of elements of [θ]λ
+

such that |Xi+1 rXi| = λ+ for each i < λ+. It is clear that⋃
i<λ+

πXi,θα [GM(Xi)
α ] 6 πX,θα [GM(X)

α ].

Conversely suppose that g ∈ πX,θα [G
M(X)
α ] and let

h = (πX,θα )−1(g) ∈ AutM(X)(G
M(X)
β ).

Arguing as above, there exists i < λ+ such that h[G0] 6 πXi,Xβ [G
M(Xi)
β ] and k =

(πXi,X)−1 ◦ (h � G0) ∈M(Xi). Notice that |X rXi| = |Xi+1 rXi| = λ+ and that

h ∈ AutM(X)(G
M(X)
β ) satisfies πXi,Xβ ◦ k ⊆ h. So Lemma 9.3.2 implies that there

exists f ∈ AutM(Xi+1)(G
M(Xi+1)
β ) such that π

Xi,Xi+1

β ◦ k ⊆ f . Let h′ = π
Xi+1,X
α (f).

Then h′ � G0 = h � G0 and so h′ = h. It follows that g ∈ πXi+1,θ
α [G

M(Xi+1)
α ]. This

completes the proof of Lemma 9.3.4. �

We now easily obtain the following result.

Theorem 9.3.7. Let M be a c.t.m. and let κ ≤ λ < λ be regular cardinals

which satisfy the following conditions.

(a) κ<κ = κ.

(b) 2λ = λ+.

(c) θ ≥ λ++ and θλ = θ.
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Then P = Fn(θ, 2, κ) is κ-closed and has the κ+-c.c.. Hence P preserves cofinalities

and cardinals. Furthermore, if H is a P-generic filter over M , then the following

statements are true in M [H].

(1) 2λ = θ.

(2) If G is a centreless group of cardinality λ, then τ(G) < λ++.

Proof. Except for statement 9.3.7(2), the conclusion follows from Theorem

6.4.4. Let G ∈M [H] be a centreless group of cardinality λ. By Lemma 9.1.6, there

exists a subset X ⊂ θ of cardinality λ such that G ∈M1 = M [H ∩Fn(X, 2, κ)]. Let

Y = θ rX. By Theorem 9.1.5, HY = H ∩ Fn(Y, 2, κ) is a Fn(Y, 2, κ)-generic filter

over M1 and M [H] = M1[HY ]. Working inside M1, we have that Fn(Y, 2, κ)M =

Fn(Y, 2, κ)M1 ' PM1 and the cardinals κ, λ and θ continue to satisfy our original

hypotheses. Hence Theorem 9.3.1 implies that τ(G) < λ++ in M1[H1] = M [H]. �

Finally we will use a suitable reverse Easton iteration to complete the proof of

Theorem 9.1.1. Let V � GCH and let {θβ | β ∈ On} be the increasing enumeration

of the class of limit cardinals. For each β ∈ On, define

κβ =

θβ , if θβ is regular;

θ+
β , if θβ is singular.

Thus if β > 0, then κβ = θβ iff β is an inaccessible cardinal. We shall define a

sequence 〈Pβ | β ∈ On〉 of forcing notions by induction on β.

Case 1. If β = 0, then P0 = {∅} is the trivial notion of forcing.

Case 2. If β is a limit ordinal which is not inaccessible, then Pβ is the inverse limit

of 〈Pγ | γ < β〉.

Case 3. If β is inaccessible, then Pβ is the direct limit of 〈Pγ | γ < β〉.

Case 4. Finally if β = γ + 1 is a successor ordinal, then Pγ+1 = Pγ ∗ Q̃γ , where

Q̃γ is a Pγ-name for the notion of forcing Fn(θ+
γ+1, 2, κγ) ∈ V Pγ .

Let P∞ be the direct limit of 〈Pβ | β ∈ On〉; and for each β ∈ On, let P̃β∞ be

the canonically chosen Pβ-name for a proper class notion of forcing such that P∞
is isomorphic to a dense sub-order of Pβ ∗ P̃β∞. Let F be a P∞-generic filter over

V and let V = V [F ] be the corresponding generic extension. For each β ∈ On, let

Fβ = F ∩ Pβ and let Pβ∞ = (P̃β∞)Fβ .

Lemma 9.3.8. (a) P∞ preserves cofinalities and cardinals.
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(b) For each ordinal β, the following statements are true in V [Fβ ]:

(i) 2µ = µ+ for all cardinals µ ≥ θβ.

(ii) κ
<κβ
β = κβ.

(iii) Pβ∞ is κβ-closed.

(c) V [F ] is a model of ZFC.

(d) Let λ be regular and let α be the least ordinal such that λ < θα. Then

V [F ] � 2λ = θ+
α > λ++.

Proof. This follows easily from Menas [32]. �

Thus to complete the proof of Theorem 9.1.1, it is enough to show that if λ

is a regular cardinal and G ∈ V [F ] is a centreless group of cardinality λ, then

V [F ] � τ(G) < λ++. Clearly we can suppose that G has underlying set λ. Let β be

the least ordinal such that λ < θβ . Clearly β is a successor ordinal, say β = γ + 1,

and θγ ≤ κγ ≤ λ < θγ+1 < κγ+1. Since V [Fβ ] � Pβ∞ is κβ-closed, it follows that

G ∈ V [Fβ ], and Theorem 6.7.1 implies that τV [F ](G) = τV [Fβ ](G). Thus it suffices

to prove that V [Fβ ] � τ(G) < λ++. By Lemma 9.3.8(b), the following statements

are true in V [Fγ ]:

(a) κ
<κγ
γ = κγ .

(b) 2λ = λ+.

(c) λ++ < θ+
γ+1 and (θ+

γ+1)λ = θ+
γ+1.

Since (Q̃γ)Fγ = Fn(θ+
γ+1, 2, κγ), Theorem 9.3.7 implies that V [Fγ+1] � τ(G) < λ++.

Question 9.3.9. Is it consistent with ZFC that τλ < 2λ for all infinite cardi-

nals λ?

A positive answer to Question 9.3.9 would necessarily involve the use of large

cardinals. To see this, recall that Corollary 4.1.14 says that τλ ≥ λ+ for every

infinite cardinal λ. Hence if τλ < 2λ for every infinite cardinal λ, then 2λ > λ+

for every infinite cardinal λ. In particular, 2λ > λ+ when λ is a singular strong

limit cardinal; and by Gitik [11], the consistency strength of this latter statement

is strictly stronger than the consistency strength of a measurable cardinal. On

the other hand, Woodin has shown that if there exists a supercompact cardinal,

then there exists a model of ZFC in which 2λ = λ++ for every infinite cardinal

λ. (See Foreman-Woodin [9].) Thus it seems reasonable to conjecture that a
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positive answer to Question 9.3.9 can be obtained under the assumption that a

supercompact cardinal exists.

9.4. Notes

The material in this chapter first appeared in Thomas [50].
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