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A graph is called planar if it can be drawn in the plane (R2) with vertex v drawn as a point
f(v) ∈ R2, and edge (u, v) drawn as a continuous curve between f(u) and f(v), such that no two
edges intersect (except possibly at the end-points).

Given a planar drawing of a planar graph, in addition to the vertices and edges of the drawing, we
also have faces of the drawing. The faces are the connected components of R2 after we delete the
vertices and edges of the drawing.

One can find many examples of planar graphs by trial and error. Every tree is planar. Every cycle
Cn is planar. K4 is planar. But a naive attempt at drawing K5 planarly fails (Try it). In fact,
K5 is not planar. Showing this is not a joke (just because your attempt to draw it planarly failed
doesn’t mean it is not planar). We will show that K5 is not planar by first deriving some property
of all planar graphs which does not refer to the planar embedding, and then showing that K5 does
not satisfy this property.

1 Euler’s Formula

Theorem 1. Let G = (V,E) be a connected planar graph. Let F be the set of faces of a planar
drawing of G. Then

|V | − |E|+ |F | = 2.

Proof. By induction.

If G is acyclic, then |F | = 1, and the theorem holds because then G is a tree and |E| = |V | − 1.

Otherwise G has a cycle. Let e be an edge in a cycle. Deleting e from G and its planar drawing
results in a graph G′ with |V | vertices, |E| − 1 edges and |F | − 1 faces (since deleting an edge
involved in a cycle merges the two faces on either side of it).

By induction, we have that |V | − (|E| − 1) + (|F | − 1) = 2, and so |V | − |E|+ |F | = 2.

The homework has a more illuminating proof of Euler’s formula.

By itself, Euler’s formula does not provide us with a tool for showing that some graphs are not
planar, because it refers to the set of faces F in a potential planar drawing of the graph.

But we can use it to derive the following strong sufficient criterion for nonplanarity.

Lemma 2. If G = (V,E) is a connected planar graph and |V | > 2, then |E| ≤ 3|V | − 6.

Proof. If |E| ≤ 3, then the theorem can be verified by inspection (note that |V | > 2).
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Otherwise, since there are at least 3 edges, every face has at least 3 edges bounding it. Furthermore,
every edge bounds at most 2 faces. Thus, 3|F | ≥ 2|E|.

Taking this relation and substituting it into Euler’s formula, we get: |E| ≤ 3|V | − 6.

Corollary 3. The average degree of vertices in a planar graph is strictly less than 6.

In fact, the same argument shows that if a planar graph has no small cycles, we can get even
stronger bounds on the number of edges (in the extreme, a planar graph with no cycles at all is a
tree and has at most |V | − 1 edges).

Lemma 4. If G = (V,E) is a planar graph with |E| ≥ g and no cycle of length < g, then:

|E| ≤ g

g − 2
(|V | − 2).

Proof. The proof is identical to the previous proof, except we now know that every face has at least
g edges on it (we need |E| ≥ g for this).

Thus g|F | ≥ 2|E|, and so by Euler’s formula: |E| ≥ g
g−2(|V | − 2).

2 Some non-planar graphs

We now use the above criteria to find some non-planar graphs.

• K5: K5 has 5 vertices and 10 edges, and thus by Lemma 2 it is not planar.

• K3,3: K3,3 has 6 vertices and 9 edges, and so we cannot apply Lemma 2. But notice that it
is bipartite, and thus it has no cycles of length 3. We may apply Lemma 4 with g = 4, and
this implies that K3,3 is not planar.

• Any graph containing a nonplanar graph as a subgraph is nonplanar. Thus K6 and K4,5 are
nonplanar.

• In fact, any graph which contains a “topological embedding” of a nonplanar graph is non-
planar. A topological embedding of a graph H in a graph G is a subgraph of G which is
isomorphic to a graph obtained by replacing each edge of H with a path (with the paths all
vertex disjoint).

An absolutely stunning fact is that these observations capture all nonplanar graphs! The nonpla-
narity of the specific graphs K5 and K3,3 was a very old fact. Little did they know back then how
fundamental these examples were. This is Kuratowski’s theorem from 19351.

Theorem 5. A graph G is planar if and only if it contains a topological embedding of K5 or a
topological embedding of K3,3.

We will not prove Kuratowski’s planarity criterion, but we will see an efficient algorithm for de-
tecting whether a graph is planar, and how to draw a planar graph planarly.

1As a side note, Kuratowski was a giant of general topology and set theory (with very very large sets). Kuratowski
proved “Zorn’s Lemma” first, 20 years before Zorn had anything to do with it. It is amazing that he descended down
to finite planar graph theory and gave it such a gem.
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3 Coloring Planar Graphs

One of the major stimulants for the study of planar graphs back in the 1800s was the 4-color
conjecture.

Given a planar graph, how many colors do you need in order to color the vertices so that no two
adjacent vertices get the same color (this can also be phrased in the language of coloring regions
of a geographic map so that no adjacent regions get the same color). Long ago, Francis Guthrie
conjectured that 4 colors suffice. This became a very notorious problem.

We will eventually see that 5 colors suffice.

Theorem 6 (6-color theorem). Every planar graph G can be colored with 6 colors.

Proof. By induction on the number of vertices in G.

By Corollary 3, G has a vertex v of degree at most 5. Remove v from G. The remaining graph is
planar, and by induction, can be colored with at most 6 colors. Now bring v back. At least one of
the 6 colors is not used on the ≤ 5 neighbors of v. Thus, we may color v one of the unused colors,
and this gives a valid 6-coloring of G.

In 1890, Heawood brought the first serious ideas to this problem, and proved that planar graphs
could be 5 colored (along the way, he found a flaw in Kempe’s 11 year old widely accepted “proof”
of the 4-color conjecture).

Theorem 7 (5-color theorem). Every planar graph G can be colored with 5 colors.

Proof. If G has a vertex of degree ≤ 4, then we are done by induction as in the previous proof.

If not, by Corollary 3, G has a vertex v of degree 5. Remove v from G. The remaining graph is
planar, and by induction, can be colored with at most 5 colors. Now bring v back.

If among the 5 neighbors of v in G, not all 5 colors are used, then we may color v the missing color,
and we are done.

Otherwise, we are in the following situation. v has 5 neighbors v1, . . . , v5, and vi is colored with
color i. By renaming, we may assume that at v the edges from v to v1, . . . , v5 are arranged in
clockwise order.

We need to provide color for v. To do this, we necessarily have to modify the coloring of the
remaining graph.

First let us explore the possibility of replacing the color of v1 with color 3. To do this, consider the
graph H induced on the vertices colored 1 and 3.

• Case 1: If v1 is disconnected from v3 in H, then consider the component of H containing v1,
and swap the colors 1 and 3 on the component.

• Case 2: Otherwise, there is a path from v1 to v3 in H. This path, along with the edges
{v, v1} and {v, v3} forms a Jordan Curve separating vertex v2 from vertex v4. Thus the
graph induced on vertices colored 2 and 4 cannot have v2 and v4 connected! We may thus do
what we did in Case 1 to v2 and v4.
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By these operations, we now have that there are only 4 colors appearing on v1, . . . , v5. We may
thus color v with the remaining 5th color.

In fact, this gives an efficient algorithm to 5-color a planar graph (given its planar drawing).

In the 1970s, Appel and Haken proved the 4-color conjecture. This nonconventional proof was
based on two ingredients:

• reduction to verifying the conjecture for a certain finite number of graphs (this is based on
work of Heesch from the 1950s),

• and then verifying the conjecture on those graphs via a computer.

Till today, no simple computer-less proof of this theorem is known!
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