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Computational group theory has a history going back more than 80 years.
It is a collaborative e�ort of researchers in a wide range of areas in both
mathematics and computer science. The �eld has produced important al-
gorithmic ideas and large software packages that have been used to obtain
valuable results in mathematics and in other disciplines. The algorithmic
achievements include the development of complicated algorithms designed
to have the best possible asymptotic complexity and algorithms of exponen-
tial or perhaps unknown complexity that are nevertheless extremely useful
in actual computations. There are also techniques for attempting to study
instances of problems that are known not have have algorithmic solutions in
general.

This article is intended as a survey of the �eld for the nonexpert. Thus
it is written to provide a mathematician, physicist, or chemist who has en-
countered a particular group with guidance about the kinds of information
one should expect to be able to determine about the group and in some cases
to o�er insight into the size of problems that can be attacked with current
hardware. The article also is designed to show the computer scientist unfa-
miliar with the �eld the rich variety of problems concerning the complexity
of group-theoretic algorithms.

The reader is introduced to several data structures that are unique to
computational group theory. These include bases and strong generating sets
for permutation groups and coset tables used to describe �nitely generated
subgroups of free groups. Other themes are the role of the classi�cation
of �nite simple groups in the development of the subject and e�orts to cope
with the fact that many interesting problems do not have general algorithmic
solutions.

A number of other surveys of computational group theory have appeared
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over the years. This article draws on many of them, including [3], [8], [24],
[35], and [15].

1 A crash course in group theory

The reader is assumed to have a knowledge of abstract algebra at roughly
the level of an introductory undergraduate course. Thus the following terms
will be used without de�nition: group, commutative or abelian group, sub-

group, normal subgroup, quotient group, generating set, cyclic group, homo-

morphism, isomorphism, permutation, even permutation, orbit, coset, Sylow

subgroup, center, conjugacy class of elements or of subgroups, centralizer,
normalizer, and simple group.

We will also assume a basic familiarity with linear algebra, particularly
linear algebra over �nite �elds. For each power q of a prime, the �eld with q
elements will be denoted GF(q).

Many properties of groups are de�ned using series of subgroups. Let G
be a group and let

G = G1 � G2 � � � � � Gk � Gk+1 = 1

be a series of subgroups of G. The series said to be subnormal if Gi+1 is
normal in Gi for 1 � i � k. A composition series is a subnormal series in
which each quotient group Gi=Gi+1 is a (nontrivial) simple group. If G has a
composition series, the simple groups which occur are called the composition

factors of G. They do not depend on the particular composition series. The
groupG is solvable if it has a subnormal series in which the quotients Gi=Gi+1

are abelian. If G has a subnormal series with cyclic quotients, then G is said
to be polycyclic.

The Gi form a normal series if each is a normal subgroup of G. If in this
case each quotient Gi=Gi+1 is in the center ofG=Gi+1, then G is nilpotent. All
�nitely generated nilpotent groups are polycyclic and all polycyclic groups
are solvable. Every �nite solvable group is polycyclic. If p is a prime, then a
p-group is a group in which all elements have orders which are powers of p.
All �nite p-groups are nilpotent.

Let n be a positive integer. The symmetric group, which consists of
all permutations of the set f1; 2; : : : ; ng, will be denoted �n and An will
denote the alternating subgroup of �n, the set of all even permutations. If
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K is a �eld, then the general linear group GL(n;K) is the group of all n-
by-n invertible matrices with entries in K. If K = GF(q), then we write
GL(n; q). The group GL(n;Z) is the subgroup of GL(n;Q) consisting of the
invertible integer matrices whose inverses also have integer entries. These
are the integer matrices with determinant �1.

To every set X there is associated the free group F (X) on X. Intuitively,
F (X) is \the most general group generated by X". Formally we proceed as
follows: Let X�1 be a set disjoint from X and having the same cardinality
as X. Let x 7! x�1 be a bijection of X onto X�1. De�ne (x�1)�1 to be
x. A word over X is a �nite sequence u = u1 � � �ur, where the ui are in
X [X�1. The word u�1 is de�ned to be u�1

r � � �u�1
1 . The word u is reduced

if it contains no subwords of the form xx�1 or x�1x. The product of two
words is de�ned to be their concatenation. We may take F (X) to be the
set of reduced words. If u and v are reduced words, then there are unique
words a, b, and c such that u = ac, v = c�1b and c has maximal length.
The product of u and v in F (X) is de�ned to be ab. The identity element of
F (X) is the empty word.

Here is an example with X = fx; yg: If u = xyx�1yxy�1 and v =
yx�1y�1x�1yx, then a = xyx�1, b = x�1y, and c = yxy�1. Thus the product
of u and v in F (X) is ab = xyx�1x�1y.

Let R be a subset of F (X). The subgroup of F (X) generated by R may
not be normal in F (X). However, if we form the subgroup N generated
by all conjugates of elements of R, then N is normal in F (X). The group
G = F (X)=N is denoted hX j Ri. The pair (X;R) is called a presentation

for G by generators and relators. The presentation is �nite if both X and
R are �nite. If X = fx1; : : : ; xrg and R = fU1; : : : ; Usg, then we write
G = hx1; : : : ; xr j U1 = � � � = Us = 1i. For example, the group hx; y j x2 =
y3 = (xy)7 = 1i is the most general group generated by an element of order 2
and an element of order 3 such that the product of these elements has order
7.

2 Describing groups

Some computational questions in group theory refer to many groups at once.
For example, in [29] it is shown that the answer to the question \How many
nonisomorphic groups of order 256 are there?" is 56092. However, more
commonly a single group G is speci�ed and questions about the structure of
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G are asked.
Computational group theory is divided into sub�elds based on the way

the group G is speci�ed. The questions asked and the techniques used to
answer them depend critically on the nature of the speci�cation of G.

Here are four ways of specifying a group G.

1. One can de�ne a �nite subset S of some previously speci�ed group M
and say that G is the subgroup of M generated by S. Frequently M
is a symmetric group �n, a general linear group GL(n;K), or a free
group F (X) for some �nite set X. In this context, the �rst problem
one encounters is the membership problem: Given an element g of M ,
is g in G?

2. One can de�ne G by a �nite presentation.

3. One can de�ne G to be the group of all automorphisms of some alge-
braic or combinatorial structure. Possible combinatorial structures are
graphs and block designs. Galois groups are automorphism groups of
�eld extensions.

4. One can give a black box description of G. Black box descriptions are
an abstraction of the minimal information one would need to begin
computing in a �nite group. They arise in algorithms for studying
a �nite group given by a set of generators. A black box description
involves the following:

� A positive integer N , which is assumed to be O(log jGj).

� An encoding of elements of G by bit strings of length N . By this
is meant a bijection between G and a subset of the bit strings of
length N . The details of the encoding are \hidden". In particular,
the set of bit strings which are encodings of elements of G need
not be known initially. All that one knows is that jGj � 2N .

� Two oracles or \black boxes". Let U and V be the bit strings
corresponding to two elements g and h of G. Given U , the �rst
oracle returns the bit string for g�1. Given U and V , the second
oracle returns the bit string for gh.

� The bit strings corresponding to a generating set for G. (Note
that without these generators there would be no way to begin
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computing in G. Using the two oracles, one can start with the
generators and construct more elements of G as products and
inverses of previously obtained elements.)

When the way G is speci�ed makes it obvious that G is �nite, then the
existence of algorithms for studying properties of G is usually not an issue.
The question becomes how hard is it to determine the answer to a particular
question. This is not literally true, however. For example, one might ask,
of the homomorphisms of G into some in�nite group H, which ones are
essentially di�erent in some sense. Since there might be in�nitely many such
homomorphisms, it is not clear that there is a �nite description of the answer.

Some speci�cations de�ne in�nite groups or groups for which it is not
immediately clear whether they are �nite or in�nite. In this case, the �rst
issue is: Does there exist an algorithm to answer a particular question? If
the answer is no, then discussions of practicality or e�ciency are irrelevant.

It is now known that there are natural computational questions about
groups which can not be answered algorithmically. There may be instances
of the questions which can be answered, but there is no algorithm which is
guaranteed to provide an answer in every case. In fact, most computational
questions about �nitely presented groups turn out not to have algorithmic
solutions.

Except in groups given by �nite presentations, questions about individual
elements of a group tend not to be particularly challenging. Frequently one
asks questions involving large sets of elements, either in the statement of
the question or in its answer. For example, elements g and h of G may be
given and we want to determine all the elements of G which commute with
g and to describe the elements which conjugate g to h. The answer to the
�rst question is the centralizer C of g in G, which is a subgroup of G. The
answer to the second question is either the empty set or a coset of C. For
each method of describing a group it is useful to have data structures which
permit the e�cient representation of subgroups.

3 A brief history

The de�nition of a group was not formalized until late in the 19th century.
The �rst algorithmic questions about groups appeared almost immediately.
The subject of computational group theory is generally considered to have
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originated with three questions posed in [11] by Dehn in 1911. All three
concern groups de�ned by �nite presentations (X;R). Elements of such a
group are described by words over X.

The Word Problem. Let G = hXjRi and let U be a word over X. Does
U represent the identity element of G?

The Conjugacy Problem. Let G = hXjRi and let U and V be words over
X. Do U and V represent conjugate elements of G?

The Isomorphism Problem. Let G = hXjRi and H = hY jSi. Are G and
H isomorphic groups?

All three of Dehn's questions turned out not to have algorithmic solu-
tions. The word problem was shown undecidable by Novikov in [28]. A
�nite presentation (X;R) has been constructed for which the word prob-
lem is undecidable. The word problem is problem is the special case of the
conjugacy problem in which the word V is taken to be empty. Thus the
conjugacy problem is undecidable too. The isomorphism problem was shown
to be undecidable in [32]. Even the case in which H is a group of order 1 is
undecidable.

Many other properties of �nitely presented groups have been shown to be
undecidable. For example, it is not possible to determine in general whether
G = hXjRi is �nite, nilpotent, or solvable.

Dehn showed the word problem does have a solution for a class of pre-
sentations which arise naturally in topology. The algorithm given by Dehn
is now known to work for large classes of \small cancellation groups", groups
in which distinct relators have no long subwords in common. With certain
fairly natural probability measures on presentations, a random presentation
turns out to de�ne a small cancellation group and hence to have a solvable
word problem. Unfortunately, the presentations which arise in many areas
of research are not random.

One of the early positive contributions to computational group theory
was [37]. That paper describes a technique now known as coset enumeration.
Coset enumeration is one of the most used tools for studying �nitely presented
groups. It is discussed below.

The �rst digital computers were used primarily for numerical computa-
tion. However, in the mid-1940's Alan Turing suggested that a proposed new
computer might be used to answer questions in group theory.
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Attempts to implement coset enumeration began in the early 1950's, mak-
ing coset enumeration one of the �rst nonnumerical procedures to be pro-
grammed. Unfortunately, computer memories of the time were too small to
permit machines to go beyond what human experts could do by hand.

Perhaps the �rst mathematician to make computational group theory the
primary focus of his professional activity was Joachim Neub�user. His �rst
paper with a computational content [23] appeared in 1960.

The �rst conference to include a substantial portion of computational
group theory was held in Oxford in 1967. Its proceedings [17] is the �rst
volume to contain a collection of papers in this �eld. The �rst conference
to be devoted entirely to computational group theory was held in Durham,
England, in 1982. The proceedings [2] of that conference is still a useful
reference.

The most important result of the 20th century in �nite group theory is
the classi�cation of �nite simple groups, which was completed in the early
1980's. The classi�cation has had an impact on computational group theory
in two important ways.

Beginning in the mid 1960's, new simple groups were discovered at fairly
regular intervals. The existence of these large groups was di�cult to demon-
strate. E�orts to provide computer proofs of the existence of new simple
groups provided strong motivation to improve algorithmic techniques, par-
ticular techniques for working with permutation groups.

Early algorithms for studying �nite groups used relatively elementary the-
oretical results. However, once the classi�cation of �nite simple groups was
�nished, a new generation of algorithms began to appear which required the
classi�cation in their proofs of correctness or in the analysis of their complex-
ity. These include many of the algorithms for studying �nite permutation
groups which have the best asymptotic complexity.

As important as the classi�cation of simple groups is, there are large
parts of �nite group theory which are una�ected by it. In a certain sense
most �nite groups are p-groups, in fact, groups of order a power of 2. Finite
p-groups lend themselves to computation more readily than general �nite
groups. Around 1970 there began line of algorithmic development related to
�nite p-groups. These techniques now constitute another major tool.

Until the 1970's, most research in computational group theory was under-
taken by individuals trained as group theorists. This changed dramatically
with the appearance of [21], which demonstrated the close connection be-
tween permutation group algorithms and e�orts to solve the graph isomor-
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phism problem, one of the most famous problems in theoretical computer
science. Until computer scientists became actively involved, the primary fo-
cus of research in computational group theory consisted of e�orts to solve
speci�c problems with the then available hardware. Issues of complexity were
not usually considered.

Computer scientists brought a new perspective to the subject. They in-
sisted that researchers specify carefully what they meant by good algorithms.
With their distinct point of view they constructed new data structures and
algorithms with goal of obtaining better asymptotic complexity. It frequently
turned out that these structures and algorithms provided practical improve-
ments for people interested in actual machine computation. A health rivalry
continues between the the two \camps" within computational group theory.
Two conferences have been held at DIMACS with the speci�c purpose of en-
couraging dialogues between group theorists and computer scientists about
algorithmic questions. The proceedings of these conferences [13, 14] make
interesting reading. Another conference, sponsered by jointly by DIMACS
and the Geometry Center, also produced a useful proceedings [1].

Two other major collections of papers on computational group theory
were published as special issues [9] and [10] of the Journal of Symbolic Com-
putation.

4 Permutation groups

The algorithmic theory of permutation groups is one of the most developed
areas of computational group theory. Space does not permit giving here
either a complete discussion of the available algorithms or a complete bib-
liography. An elementary introduction to the subject can be found in [7].
The survey [15] provides a good overview of recent results. A more complete
treatment [34] is in preparation.

One of the �rst lessons learned about machine computation with permu-
tation groups is that, although cycle notation is useful for hand computation,
it is not a good representation for elements of �n in a computer. In most
cases, an element g of �n is represented by a vector of length n whose i-th
component is the image ig of i under g. Thus the number of bits need to
describe our element g is n logn. However, it is traditional to consider n to
be the size of a permutation.

The �rst question one normally asks about a permutation group G is
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whether or not G is transitive or, more generally, what the orbits of G are.
Finding the orbit � of G containing a point � is easy, but it is basic. One
usually needs to construct not only � but also, for each  in �, an element
v() in G such that the image of � under v() is . Suppose G is given by
a generating set S. Then we initialize the orbit � to f�g and set v(�) equal
to the identity. Then we consider the elements � of � in the order they are
discovered and for each x in S [ S�1 we compute  = �x. If  is not already
known to be in �, we add  to � and de�ne v() to be v(�)x. An easy but
fundamental fact is that j�j is the index jG : G�j of the stabilizer G� of � in
G.

If G has only one orbit, then G is transitive. In this case we can ask
if G is imprimitive. That is, we can ask if there is a nontrivial equivalence
relation on 
n which is preserved by G. This question can be answered in
time O(n2).

Subgroups of �n can have orders which are exponential in n. Thus we
can not solve the membership problem in polynomial time for a subgroup G
of �n by listing the elements of G. A better data structure is needed.

A base for G is a sequence B = �1, : : : , �r of elements of 
n such that
the only element of G �xing each �i is the identity. An element of G is
determined by what it does to B. If G contains An, then any base for G
must have at least n � 2 elements. However, many interesting groups have
bases of length O(logc n) for small values of c.

The group �n induces a permutation group T (n) on the set � of two-
element subsets of 
n. If n = 3m, where m is an integer, then the following
sequence of two-element sets is a base for T (n):

C = f1; 2g; f2; 3g; f4; 5g; f5; 6g; : : : ; f3m� 2; 3m� 1g; f3m� 1; 3mg:

If an element g of �n �xes the sets f1; 2g and f2; 3g, then it �xes 1, 2, and 3.
Thus if g all 2m of these sets, g must be the identity. Small modi�cations of
this sequence form bases in the case that n is not congruent to 0 modulo 3.

Fix a base B = �1, : : : , �r for a permutation group G. For 1 � i � r+1
let G(i) denote the subgroup of G �xing �1, : : : , �i�1. Then

G(1) = G and G(r+1) = 1:

For 1 � i � r let �i be the orbit of G
(i) containing �i and let Ui be a set of

right coset representatives for G(i+1) in G(i). Since G(i+1) is the stabilizer of
�i in G(i), it follows that j�ij = jG(i) : G(i+1)j and that every element of G
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can be uniquely written in the form ur � � �u1, where ui is in Ui. The �i are
referred to as the basic orbits relative to B. If we know the basic orbits and
sets Ui, we can decide membership in G using a straightforward algorithm
which runs in time O(n2).

If we take G to be the group T (3m) on � with the base C, then r = 2m
and �1 is all of �. The set �2 is the set of 2(n� 2) two-element sets which
intersect f1; 2g in one point.

Suppose that we are given a generating set S for our group G with base
B. Then it is easy to �nd �1. However, �nding the other �i is more di�cult,
since we do not immediately know generating sets for the subgroups G(i) with
i > 1. If S contains generators for all the subgroups G(i), then we say S is a
strong generating set relative to B.

We can get generators for the stabilizers of points using the following
theorem.

Theorem 1. Let � be an orbit of a permutation group G, let � be a point

in � and for each  in � let v() be an element of G taking � to . Suppose
that G is generated by a set S. Then G� is generated by

T = fv()sv(s)�1 j  2 �; s 2 Sg:

The generating set T in Theorem 1 can be much larger than S. To
use this theorem iteratively, we must show that a large generating set for
a permutation group can be \boiled down" to one of manageable size. A
permutation group on a set with n elements can always be generated by fewer
than n elements. Here we exhibit an algorithm for producing a generating
set of size O(n2). The algorithm uses variables uij for 1 � i < j � n. Either
uij is nil or it is a permutation taking i to j.

Procecure BOIL(S)
Initialize all uij to nil.
For g in S do
h := g;
For i from 1 to n� 1 do
j := ih;
If j > i then
If uij is nil then uij := h; break;
else h := hu�1

ij ; �;
�;
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od; od;
Return the set of uij which are not nil;

end.

If T is BOIL(S), then S and T generate the same group and jT j is O(n2).
The running time for BOIL is O(jSjn2).

Suppose we are given a generating set S for a permutation group G on

n. Assume that jSj is O(n2). The sequence B = 1; 2; : : : ; n � 1 is a base
for G. We can obtain the basic orbits �i and generating sets Si for the
subgroups G(i) by de�ning S1 to be S, computing �1 as sketched above, and
computing a generating set T for G(2) = (G(1))1 using Theorem 1. Then S2

is taken to be BOIL(T ). Since jS2j is O(n
2), we can proceed inductively.

The time of the i-th iteration of this procedure is dominated by the time
needed to apply BOIL. The initial generating set T for G(i+1) has size O(n3).
Thus applying BOIL takes time O(n5). Since n�1 iterations may be needed,
the time needed to compute the strong generating set is O(n6).

It is not hard to improve this approach to O(n5), but \breaking the expo-
nent 5 barrier" has been possible only using the classi�cation of �nite simple
groups. The best deterministic algorithm known runs in time O(n4 logc n)
for some constant c. Details, along with historical information, can be found
in [34].

The Rubik Cube group is a permutation group on 48 points. Showing
that the order of this group is 43252003274489856000 takes practically no
time at all. For groups with relatively short bases, it is now possible to �nd
strong generating sets even for degrees in the millions.

Let G be a permutation group given by a generating set S. A nearly

linear time algorithm answering a question about G is one that runs in time
O(jSjn logc jGj) for some �xed constant c. If G has a base of length O(logd n),

then the order of G is O(nlog
d n). Thus log jGj is O(logd+1 n). Therefore in

this case a nearly linear time algorithm runs in time O(jSjn logr n), where
r = c(d + 1). This is not much larger than the time needed to read in the
data for the problem.

Most known nearly linear time algorithms are randomized and thus have
a small probability of error. There are randomized nearly linear time al-
gorithms for �nding orbits and blocks of imprimitivity of a group G, for
computing the order of G, for deciding membership in G, and even for con-
structing a composition series for G.

There are still some algorithmic questions about permutation groups
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which are not known to have polynomial time solutions. For example, the
problem of �nding generators for the intersection of two permutation groups
is equivalent to graph isomorphism and may not have a polynomial time
solution.

Another class of di�cult problems are those which ask about properties
of speci�c generating sets of a permutation groups. As remarked above, it
is easy to determine the order of the Rubik Cube group and thus to com-
pute the number of possible con�gurations the cube can have. However,
we do not yet know how to �nd out the minimum number of moves which
is needed to return an arbitrary con�guration to the starting con�guration.
That is, we do not know the minimum number of factors needed to express
an arbitrary element of the Rubik Cube group as a product of the generators
corresponding to the rotations of the six faces of the cube.

5 Matrix groups

It is natural to consider a group G generated by a set of invertible matrices.
Analogous to the problems of determining orbits and deciding primitivity

for permutation groups, one has the following questions:

� Does G act reducibly on the underlying vector space? That is, does
there exist a proper nontrivial subspace which is invariant under the
action of G?

� If G acts irreducibly, does G act imprimitively? That is, can the vector
space be expressed as a nontrivial direct sum of subspaces in such
a way that the elements of G permute the direct summands among
themselves?

As with any group de�ned as a subgroup, one has the membership prob-
lem for G. One would also like to be able to say something about the struc-
ture of G. Is G �nite? If so, what is its order and what are its composition
factors? Is G solvable or nilpotent?

What can be said about G depends very much on the �eld over which G
is de�ned.

Let us �rst consider the case in which G is a subgroup of GL(n; q) for
some positive integer n and some prime power q. The size of a matrix for
analyzing complexity is n2 log q.
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Computer scientists are quick to point out that there are some very di�-
cult problems even when n = 1. For example, we do not know how to solve
the membership problem in polynomial time in this case. This problem is
usually called the discrete log problem. Given two nonzero elements a and
b of GF(q), is b a power of a? If so, �nd an integer r such that b = ar.
The order of the multiplicative group of GF(q) is q � 1 and we do not know
how to compute the prime factorization of q � 1 in polynomial time. Thus
we can not determine in polynomial time the possible orders of subgroups of
GL(1; q).

Group theorists tend not to worry about the discrete log problem as much
as computer scientists. Group theorists are most often interested in the case
in which q is relatively small. They are prepared to assume that

jGL(n; q)j = q(
n

2
)

nY

i=1

(qi � 1)

can be factored into primes. This means that the prime factors of the num-
bers qi � 1 can be determined.

A remarkably simple but extremely useful algorithm for deciding whether
G is reducible and if so, for �nding an invariant subspace was found by R.
Parker, who christened it the Meat-Axe. This algorithm has been improved
by Holt and Rees.

So far it has not been possible to �nd a data structure analogous to a
base and strong generating which permits a polynomial time solution to the
membership problem even when the discrete log problem is not the obstacle.
Researchers are currently focusing on what has been dubbed the \matrix
group recognition project". This is a project to develop algorithms, possi-
bly randomized, for providing information about the nonabelian composition
factors of G and about the maximal subgroups of GL(n; q) which contain G.
An introduction to this project can be found in [27].

Now suppose that G is a �nitely generated subgroup of GL(n;K), where
K is an in�nite �eld. The main case which has been studied is the one in
which K is a �nite extension of the rational numbers. If m is the degree of
K over Q , then any vector space of dimension n over K is a vector space of
dimensionmn over Q . This gives an embedding of GL(n;K) into GL(mn;Q ).
Thus it su�ces to consider the case K = Q .

If n � 4, then the membership problem for �nitely generated subgroups
of GL(n;Q ) is undecideable. The group GL(2;Q) contains a subgroup iso-
morphic to the free group F on two generators. Since GL(4;Q) contains a
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copy of GL(2;Q) � GL(2;Q), it follows that GL(4;Q) contains a copy of
F � F . The subgroup membership problem for �nitely generated subgroups
of F �F is equivalent to the word problem for �nitely presented groups and
hence is undecideable.

Somewhat surprisingly, it is possible to decide whether a �nitely generated
subgroup of GL(n;Q) is �nite.

Any polycyclic group is isomorphic to a subgroup of GL(n;Z) for some
n and all solvable subgroups of GL(n;Z) are polycyclic. Thus there is a
close connection between the algorithmic theories of polycyclic groups and
solvable subgroups of GL(n;Z).

More information about algorithms referred to in this section can be found
in [6] and [30].

6 Black box groups

Black box groups are not just of theoretical interest. At times, when one is
studying a permutation groups G, one may have subgroups H and K of G
with K normal in H. The quotient H=K may not have a description as a
permutation group and may have to be treated as a black box group. In fact
it is sometimes useful to consider G itself to be a black box group.

Most algorithms related to black box groups are randomized. An impor-
tant class of such algorithms are algorithms for recognizing simple groups.
The idea is to decide whether the black box group G is isomorphic to a given
simple group H and, if it is, to exhibit an isomorphism. It is surprising that
polynomial time randomized recognition algorithms exist. In some cases,
additional information about the group G is required, such as the ability to
determine orders of elements quickly. See [15] for more details.

7 Abelian groups

One class of groups in which computation is relatively easy is the class of
�nitely generated abelian groups. Any such group is isomorphic to a quotient
group of a free abelian groupM = Zn, the direct sum of copies of the additive
group of integers.

A subgroup H of M is �nitely generated and thus may be described as
the group generated by the rows of anm-by-n integer matrix A. Given A, the
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�rst question, as usual, is to decide membership in H. This is usually done
by replacing A by its (row) Hermite normal form by applying integer row
operations to A. Sometimes one needs to know an element P of GL(m;Z)
such that PA is in Hermite normal form. It is important to keep the entries
in P as small as possible. Polynomial time algorithms for computing Hermite
normal form are known.

Sometimes lattice reduction is used instead of computing Hermite nor-
mal forms. The LLL lattice reduction algorithm is slow, but it sometimes
produces multipliers P with quite small entries. See [36]. Other approaches
to computing nice bases of subgroups of Zn are discussed in [?].

8 Polycyclic groups

Although computation with in�nite groups usually leads quickly to unsolv-
able problems, there is one interesting class which provides an exception.
This is the class of polycyclic-by-�nite groups, groups which possess a poly-
cyclic subgroup with �nite index. All such groups have �nite presentations
and most computational problems concerning these groups have algorith-
mic solutions. In some cases, however, it is not known whether there are
algorithms which are practical with current hardware.

Since space is limited, the discussion here will be restricted to polycyclic
groups. The �nite subgroup at the top of a polycyclic-by-�nite group adds
only technical di�culties. A good general reference on polycyclic groups is
[33].

An alternative characterization of polycyclic groups gives some insight
into the reason polycyclic groups are nice from a computational point of
view. A group G is polycyclic if and only if it is solvable and all subgroups
are �nitely generated. Finite generation of subgroups is equivalent to the as-
cending chain condition on subgroups. As noted previously, we are frequently
looking for a subgroup H of G. Suppose that we know a subgroup K of H.
If we have a procedure which either con�rms that K = H or produces an
element h in H but not in K, then we are guaranteed to be able to �nd H. If
K 6= H, then we replace K by the subgroup generated by K and the element
h produced by the procedure. The ascending chain condition implies that
we will only be able to iterate this step a �nite number of times.

Suppose that G is a polycyclic group and let

G = G1 � G2 � � � � � Gk � Gk+1 = 1
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be a polycyclic series for G. Since each group Gi=Gi+1 is cyclic, for 1 � i �
k we can �nd an element ai such that the coset aiGi+1 is a generator for
Gi=Gi+1. By an easy induction, an element of G may be expressed in the
form ax11 � � �axkk , where the xi are integers. If Gi=Gi+1 is �nite of order mi,
then we can assume that 0 � xi < mi. With this condition, the exponents xi
are uniquely determined by g. The k-tupe (x1; : : : ; xk) is called the exponent
vector of g and ax11 � � �axkk is called the normal form for g.

Let I be the set of those indices i for which Gi=Gi+1 is �nite. For 1 �
i < j � k and each choice of � and � in f1;�1g the element a��i a�j a

�
i is in

Gi+1. Thus there are words U(i; j; �; �) over fai+1; : : : ; akg such that

a�j a
�
i = a�i U(i; j; �; �):

If i is in I, then ami

i is in Gi+1. It follows that there are words Vi and Wi

over fai+1; : : : ; akg such that

ami

i = Vi and a�1
i = ami�1

i Wi:

To these relations it is useful to add the redundant relations

aia
�1
i = 1 and a�1

i ai = 1;

for 1 � i � k.
Not only do these relations give a presentation for G, they permit the

computation of normal forms. If W is a word over the ai which is not in
normal form, then W contains as a subword the left side of one of these
relations. If we replace that left side with the corresponding right side and
iterate, we will eventually obtain a word in normal form representing the
same element of the group as W . This process is an example of rewriting,
which is discussed below.

The rewriting approach to computing with elements of polycyclic groups
is usually called collection by analogy with commutator collection introduced
by P. Hall.

Subgroups of our polycyclic group G can be represented by integer ma-
trices which are analogous to the matrices in Hermite normal form which
represent subgroups of Zn. Let H be a subgroup of G. For 1 � i � k let
Hi = H [ Gi. Let J be the set of indices i such that Hi 6= Hi+1, that is,
Hi is not contained in Gi+1. For i in J we can chose an element hi in Hi

whose image generates the image of Hi in the cyclic group Gi=Gi+1. If i is in
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I, then we can assume that xi, the �rst nonzero exponent of hi is a proper
divisor of mi. The elements hi with i in J generate H and the matrix whose
rows are the exponent vectors for the hi gives a good description of H. With
this matrix, or equivalently a knowledge of the hi, we decide membership in
H and decide equality of cosets.

Finite solvable groups form an important subclass of polycyclic groups.
If G is a �nite solvable group, then one normally chooses the polycyclic series
to be a composition series. In this case the integers mi are all primes.

Algorithms for many constructions in �nite solvable groups are available
in both of packages Magma and GAP discussed in Section 10. These include
computing centralizers, normalizers, and intersections of subgroups and con-
structing Sylow subgroups. One can also �nd representatives for the conju-
gacy classes of elements. Which computations are feasible depends on the
order of the group and the type of computation. Intersections can be found
in very large groups, but complete information about conjugacy classes of
elements can be di�cult in groups with orders in the millions.

For in�nite polycyclic groups algorithms for most constructions have been
shown to exist, but many of these algorithms are not practical. See [4]. A
practical algorithm for deciding conjugacy of elements in a polycyclic group
would be quite interesting.

For nilpotent polycyclic groups the situation is better. In [19] practical
algorithms for computing intersections and normalizers are described.

9 Finitely presented groups

Most computational questions about �nitely presented groups are undecide-
able in general. One of the few exceptions are questions about certain quo-
tient groups. This section describes some of the tools available to attempt
to study a �nitely presented group. Details can be found in [36].

9.1 Coset enumeration

Computation of products of elements in a free group F = F (X) is very easy.
Most other calculations with elements of F pose few di�culties. For example,
the conjugacy problem for F has an e�cient solution. Given two reduced
words U and V over X, one writes U as ABA�1 and V as CDC�1 with the
words A and C of maximal length. Then U and V are conjugate in F if and
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only the words B and D have the same length and are cyclic permutations
of each other.

Subgroups of free groups are free. Most computational questions about a
�nitely generated subgroup H of F have algorithmic solutions. The solution
to the membership problem for H is particularly important. There are in
fact two approaches to this problem. One uses Nielsen reduction of words
and the other uses coset tables. The coset table approach will be sketched
here. Nielsen reduction in described in [22].

A coset table relative to X is an array T whose rows are indexed by a
�nite set 
 of positive integers, whose columns are indexed by X [ X�1,
and whose entries are elements of 
. Some entries may not be de�ned. The
following conditions must hold:

1. The set 
 contains 1.

2. If k is the entry in row i and column x, then the entry in row i and
column x�1 is k.

3. The graph G with vertex set 
 and labeled edges consisting of the
triples (i; x; j) such that j is an entry in the i-th row and x-th column
of T is connected.

Here is an example of a coset table relative to X = fx; yg.

x x�1 y y�1

1 2 2 3
2 4 1 1
3 1 5
4 2 5
5 5 5 3 4

Given an element i of 
 and a word u over X, there is at most one path
in T which starts at i and has the property that the product of the labels on
the edges of the path is u. If j is the end point of this path, then we write
j = iu. In the above table, if u = xyxy2, then 2u = 1.

The set of reduced words u such that 1u = 1 is a �nitely generated sub-
group of F , which we denote H(T ). Deciding membership in H(T ) is linear
in the length of the input word. There is a natural notion of isomorphism
of coset tables and isomorphic tables de�ne the same subgroup of F . Every
�nitely generated subgroup H of F is de�ned by a coset table and all coset
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tables T such that H = H(T ) and the cardinality of 
 is minimal are iso-
morphic. For any coset table T , the subgroup H(T ) has �nite index in F if
and only if every entry in T is de�ned. In this case jF : Hj = j
j.

In its simplest form, coset enumeration refers to the construction of a
coset table T such that H(T ) = H, where H is given as the subgroup of F
generated by a �nite set S. The basic step in coset enumeration consists of
the following: Given a coset table T and an element g of F , �nd a coset table
T1 such that H(T1) is the subgroup generated by H(T ) and g.

To �nd T1, we write the word g as a product of subwords g = uvw, where
i = 1u and j = 1w

�1

are de�ned, the length of u is maximal, and subject to
this the length of w is maximal.

If the length of v is 1, so v is in X [X�1, then we change T by making j
the entry in row i and column v and making i the entry in row j and column
v�1.

If v has length greater than 1, let x be the �rst factor of v. We add a
new row to T indexed by a new index k and add entries so that ix = k and
kx
�1

= i. Then we recompute u, v, and w.
If v is empty, then either i = 1 and w is empty or i 6= j. In the �rst case,

g is in H and no change to T is needed. If i 6= j, then we must identify i and
j. More precisely, we �nd the �nest equivalence relation s on 
 such that
i s j and whenever x is in X [X�1, r s s and both rx and sx are de�ned in
T , then rx s sx. Let 
1 be the set of elements in 
 which are �rst in their
s-class. We can take T1 to be the coset table with rows indexed by 
1 such
that ix = j in T1 if and only if there are elements r and s in 
 such that
i s r, s s j and rx = s in T . This construction is known as the coincidence
procedure. The fact that it can be carried out e�ciently is what makes coset
enumeration such a useful algorithm.

Now let (X;R) be a �nite presentation for a group G. There is a homo-
morphism of F onto G with kernel equal to N, the subgroup of F generated
by the conjugates of the elements of R. There is a one-to-one correspon-
dence between subgroups of G and subgroups of F which contain N . If the
subgroupH ofG corresponds to the subgroup K of F then jG : Hj = jF : Kj.

Suppose that X and two �nite subsets R and S are given. Let G =
hX j Ri and let H be the subgroup of G generated by the image of S. If
jG : Hj is �nite, then it is possible to verify this fact and to compute jG : Hj.
However, if jG : Hj is in�nite, then there is no algorithm which is guaranteed
to demonstrate that fact.

In its more general form, coset enumeration refers to a family of related
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procedures for attemptying to verify that jG : Hj is �nite. Suppose that
jG : Hj is �nite and let K be the inverse image of H in F . Then jF : Kj
is �nite and K is generated by S and a �nite set of conjugates of elements
of R. All variants of coset enumeration proceed by constructing the coset
table for the subgroup L of F generated by S and larger and larger �nite
sets of conjugates of elements of R until jF : Lj is �nite. As noted above,
this occurs when every entry in the coset table T for L is de�ned. Let 
 be
the set of integers indexing the rows of T . For each element i of 
 we chose
one word U such that 1U = i in T . We add all elements of the form URU�1

to the generators of L, where R ranges over the elements of R. This may
cause L to get bigger. At this point L = K.

E�orts to program coset enumeration go back at least to 1953. Despite
the intervening 45 years, we are still �nding ways to carry out the procedure
more quickly or with less memory. Currently it is possible to work with coset
table having tens of millions of rows.

9.2 The Knuth-Bendix procedure for strings

The Knuth-Bendix procedure for strings is a special case of the very general
technique of universal algebra described in [16]. It provides an alternative
to coset enumeration for studying �nitely presented groups. With coset enu-
meration the basic data structure is the coset table. With the Knuth-Bendix
procedure for strings the basic data structure is the rewriting system.

Rewriting systems are de�ned with the aid of special orderings on words.
Let X be a �nite set. A reduction ordering on the set M of group words
over X is an well ordering < of M with the property that the empty word is
less than any other word and, for all words A, B, U , and V , if U < V , then
AUB < AV B. A rewriting system relative to a reduction ordering is a set
R of ordered pairs of words such that for each element (V; U) of R we have
V > U . Elements of R are called rewriting rules.

Given a rewriting system R, we shall be interested in the group G gen-
erated by X and de�ned by the relations V = U for all (V; U) in R. It is
useful to assume that R contains the rules (xx�1; 1) for all x in X [ X�1.
The corresponding relations are redundant in the context of groups but not
in the context of monoids.

Once we have �xed a rewriting system R, we can rewrite a group word
W over X using the following procedure:
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Procecure REWRITE(W )
P := W ;
While P contains the left side of a rule in R do
Let P = AV B, where A and B are words and (V; U) is in R;
P := AUB;

od;
Return P ;

END.

Because an occurrence of the left side of a rule (V; U) is replaced by the right
side, we often write the rule in the form V ! U .

Each time P is changed in REWRITE, the new value is less than the old
with respect to <. Since < is a well ordering, P can change only �nitely
often. Thus the procedure must terminate. The image of P in G does not
change during the execution of REWRITE. Therefore the word returned
by REWRITE de�nes the same element g of G as W and is reduced with
respect to R in the sense that it contains no left side of a rule as a subword.
Executing REWRITE poses no problems if R is �nite. If R is in�nite, then
it may still be possible to execute REWRITE.

It would be nice if the result of REWRITE depended only on g. Unfortu-
nately this need not be the case. In the operation of REWRITE there may
be many choices for the words A and B and the rule (V; U). The �nal result
may depend on those choices. Thus there may be many reduced words which
de�ne the same element of G.

The rewriting system R is called conuent if the word returned by the
call REWRITE(W ) depends only on W and not on the choices made during
execution. When this is the case, each element of G is de�ned by a unique
reduced word. Thus, when R is conuent and we can execute REWRITE,
then we can solve the word problem for G.

If R is �nite, then there is a �nite test for conuence. The test either
con�rms that R is conuent or produces a new rule (V; U) which must be
added to R if conuence is to hold. The Knuth-Bendix procedure for strings
proceeds by iterating the test for conuence, adding any new rules produced.
The procedure may not terminate, but if it does, the resulting rewriting
system is conuent and gives a solution of the word problem for G.

The Knuth-Bendix procedure is most easily run which < is a lenlex or-
dering. That is, words are �rst ordered by length and then lexicographically
according to a speci�ed ordering of the elements of X [X�1. However, other
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orderings are frequently needed. For example, the polycyclic presentation for
a polycyclic group de�ned above is a conuent rewriting system with respect
to an ordering on words where it is possible to have U < V even if U is longer
than V .

The following is a conuent rewriting system:

aA! 1; Aa! 1; bB ! 1; Bb! 1;

bA! Abb; bba! ab; Ba! baB; BA! ABB:

Here the \case convention" is being used. That is, A and B represent a�1

and b�1, respectively. Again the ordering < is not compatible with length.
The group de�ned by this rewriting system is in�nite since all words of the
form ai with i > 0 are reduced.

9.3 Quotient groups

Let G be a group given by a �nite presentation (X;R). Despite the unsolv-
ability of many computational questions about G, there are algorithms which
are guaranteed to construct certain nilpotent quotients of G. There are also
procedures for attempting to determine certain other solvable quotients of
G.

The most important case is the determination of the largest abelian quo-
tient G=G0. Suppose that jXj = n and X = fx1; : : : ; xng. There is a homo-
morphism f from F = F (X) to Zn which maps xi to the i-th standard basis
vector of Zn. The map f is clearly surjective and the kernel of f is F (X)0.
It is not hard to show that G=G0 is isomorphic to the quotient Zn=M , where
M is the subgroup of Zn generated by the image of R under f . Using the
methods of Section 7, we can determine the structure of G=G0.

More generally, for any s > 0 we can determine a polycyclic presentation
for P = G=s(G) and thus compute e�ectively in this quotient of G. An
algorithm for computing this presentation is described in [25].

A special case of nilpotent quotients are quotients which are p-groups.
Very powerful algorithms have been developed to compute quotients of G
which are p-groups for some given prime p. Quotients of order pn with n in
the thousands are often within reach.

The quotients of G by terms of the derived series other than the �rst
need not be polycyclic and cannot in general be computed. There are two
approaches for computing �nite solvable quotients of G. They are described
in [26] and [31].
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The only approach available for computing in�nite nonnilpotent quotients
of G is given in [20]. This method is based on the fact that if P is a polycyclic
group, then right ideals in the group ring Z(P ) are �nitely generated. It is
possible to generalize the Gr�obner basis methods described in Section ???
to submodules of �nitely generated free right modules over Z(P ). Let N
be a normal subgroup of G such that G=N is isomorphic to P . Then N=N 0

is a �nitely generated right module over Z(P ) it is possible to give a �nite
presentation for this module and using the Gr�obner basis algorithm one can
decide whether N=N 0 is �nitely generated as an abelian group. In this way
one can decide whether G=N 0 is polycyclic. If it is, then one can �nd a
consistent polycyclic presentation for it.

9.4 The Reidemeister-Schreier algorithm

Let G be a �nitely presented group and let H be a subgroup of G. It is
possible to describe a presentation for H. If the index of H in G is �nite,
then this presentation is �nite. The Reidemeister-Schreier algorithm is one
method for constructing presentations for subgroups of �nitely presented
groups.

One of the few ways available to prove that G is in�nite is to �nd a
subgroup H of �nite index such thatH=H 0 is in�nite, which can be con�rmed
by �nding the Reidemeister-Schreier presentation for H and then using the
methods of the previous subsection to determine the structure of H=H 0.

Even if the presentation for G is quite manageable and the index of H is
only a few hundred, the presentations forH obtained are very complicated. It
is usually necessary to �nd some way of simplifying the presentation before it
can be used further. Two approaches to simpli�cation are the Knuth-Bendix
method for strings and the systematic use of Tietze transformations.

10 Group-theoretic software

There are three software packages which o�er general support for group theo-
retic computation. These are Magma, GAP, and Magnus. In addition, Maple
provides some tools for group theory and there are many smaller packages
which are either intended to be run by themselves or with one or more of the
larger systems.

Magma with its predecessor system Cayley is the oldest of the existing
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comprehensive systems. It provides support for algebraic number theory and
several other areas besides group theory. Information about Magma can be
found on its Web page, http://???. A license fee is involved.

GAP has been around for about ??? years. A major revision of the
system is being tested as this article is written. The focus of GAP is more
directly on group theory. Its Web page is http://???.

The system Magnus is much newer and is less developed than Magma
and GAP. It is intended to support research on in�nite groups. For example,
while Magma and GAP only attempt to �nd presentations of subgroups of
�nite index in �nitely presented groups, Magnus is able to produce partial
presentations for subgroups of in�nite index.

Among the more specialized packages are

11 Another perspective

The point of view up to this point has be to look at a class of groups and ask
how hard it is to compute with elements and subgroups in groups belonging
to that class. There is a growing body of research which looks at computation
in groups quite di�erently. One make assumptions about the ease or di�culty
of computing in a group and asks what this implies about the structure of
the group.

The most common assumption is that the group is automatic. An au-

tomatic group is a group G in which multiplication and comparison of ele-
ments can be performed using �nite automata. The standard reference on
automatic groups is [12].

The sets of elements of automatic groups are naturally described by fam-
ilies of words called regular languages. It is possible to consider classes of
groups whose elements require more complicated types of languages for their
description.

Sylow subgroups of permutation groups. Random elements Lower central
series Derived series Degree
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