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Preface

These notes are designed to accompany STAT 553, a graduate-level course in large-sample
theory at Penn State intended for students who may not have had any exposure to measure-
theoretic probability. While many excellent large-sample theory textbooks already exist,
the majority (though not all) of them reflect a traditional view in graduate-level statistics
education that students should learn measure-theoretic probability before large-sample the-
ory. The philosophy of these notes is that these priorities are backwards, and that in fact
statisticians have more to gain from an understanding of large-sample theory than of measure
theory. The intended audience will have had a year-long sequence in mathematical statistics,
along with the usual calculus and linear algebra prerequisites that usually accompany such
a course, but no measure theory.

Many exercises require students to do some computing, based on the notion that comput-
ing skills should be emphasized in all statistics courses whenever possible, provided that the
computing enhances the understanding of the subject matter. The study of large-sample the-
ory lends itself very well to computing, since frequently the theoretical large-sample results
we prove do not give any indication of how well asymptotic approximations work for finite
samples. Thus, simulation for the purpose of checking the quality of asymptotic approxi-
mations for small samples is very important in understanding the limitations of the results
being learned. Of course, all computing activities will force students to choose a particular
computing environment. Occasionally, hints are offered in the notes using R (http://www.r-
project.org), though these exercises can be completed using other packages or languages,
provided that they possess the necessary statistical and graphical capabilities.

Credit where credit is due: These notes originally evolved as an accompaniment to the book
Elements of Large-Sample Theory by the late Erich Lehmann; the strong influence of that
great book, which shares the philosophy of these notes regarding the mathematical level
at which an introductory large-sample theory course should be taught, is still very much
evident here. I am fortunate to have had the chance to correspond with Professor Lehmann
several times about his book, as my students and I provided lists of typographical errors
that we had spotted. He was extremely gracious and I treasure the letters that he sent me,
written out longhand and sent through the mail even though we were already well into the



era of electronic communication.

I have also drawn on many other sources for ideas or for exercises. Among these are the
fantastic and concise A Course in Large Sample Theory by Thomas Ferguson, the compre-
hensive and beautifully written Asymptotic Statistics by A. W. van der Vaart, and the classic
probability textbooks Probability and Measure by Patrick Billingsley and An Introduction to
Probability Theory and Its Applications, Volumes 1 and 2 by William Feller. Arkady Tem-
pelman at Penn State helped with some of the Strong-Law material in Chapter 3 and it was
Tom Hettmansperger who originally convinced me to design this course at Penn State back
in 2000 when I was a new assistant professor. My goal in doing so was to teach a course
that I wished I had had as a graduate student, and I hope that these notes help to achieve
that goal.



Chapter 1

Mathematical and Statistical
Preliminaries

We assume that many readers are familiar with much of the material presented in this
chapter. However, we do not view this material as superfluous, and we feature it prominently
as the first chapter of these notes for several reasons. First, some of these topics may have
been learned long ago by readers, and a review of this chapter may remind them of knowledge
they have forgotten. Second, including these preliminary topics as a separate chapter makes
the notes more self-contained than if the topics were omitted: We do not have to refer
readers to “a standard calculus textbook” or “a standard mathematical statistics textbook”
whenever an advanced result relies on this preliminary material. Third, some of the topics
here are likely to be new to some readers, particularly readers who have not taken a course
in real analysis.

Fourth, and perhaps most importantly, we wish to set the stage in this chapter for a math-
ematically rigorous treatment of large-sample theory. By “mathematically rigorous,” we
do not mean “difficult” or “advanced”; rather, we mean logically sound, relying on argu-
ments in which assumptions and definitions are unambiguously stated and assertions must
be provable from these assumptions and definitions. Thus, even well-prepared readers who
know the material in this chapter often benefit from reading it and attempting the exercises,
particularly if they are new to rigorous mathematics and proof-writing. We strongly caution
against the alluring idea of saving time by skipping this chapter when teaching a course,
telling students “you can always refer to Chapter [1| when you need to”; we have learned the
hard way that this is a dangerous approach that can waste more time in the long run than
it saves!



1.1 Limits and Continuity

Fundamental to the study of large-sample theory is the idea of the limit of a sequence. Much
of these notes will be devoted to sequences of random variables; however, we begin here by
focusing on sequences of real numbers. Technically, a sequence of real numbers is a function
from the natural numbers {1,2,3,...} into the real numbers R; yet we always write ay, as, . . .
instead of the more traditional function notation a(1),a(2),....

We begin by defining a limit of a sequence of real numbers. This is a concept that will be
intuitively clear to readers familiar with calculus. For example, the fact that the sequence
a; = 1.3,a3 = 1.33,a3 = 1.333,... has a limit equal to 4/3 is unsurprising. Yet there are
some subtleties that arise with limits, and for this reason and also to set the stage for a
rigorous treatment of the topic, we provide two separate definitions. It is important to
remember that even these two definitions do not cover all possible sequences; that is, not
every sequence has a well-defined limit.

Definition 1.1 A sequence of real numbers a1, as, . . . has limit equal to the real num-
ber a if for every € > 0, there exists IV such that

la, —al] <€ foralln > N.

In this case, we write a,, — a as n — 0o or lim,,_,, @, = a and we could say that
“a, converges to a”.

Definition 1.2 A sequence of real numbers ay, as, ... has limit oo if for every real
number M, there exists N such that

a, > M foralln > N.

In this case, we write a, — 00 as n — oo or lim,,_,o a, = oo and we could say
that “a,, diverges to oco”. Similarly, a,, — —oc as n — oo if for all M, there exists
N such that a,, < M for alln > N.

Implicit in the language of Definition [1.1] is that N may depend on e. Similarly, N may
depend on M (in fact, it must depend on M) in Definition .

The symbols +00 and —oo are not considered real numbers; otherwise, Definition [1.1| would
be invalid for @ = oo and Definition [I.2] would never be valid since M could be taken to
be co. Throughout these notes, we will assume that symbols such as a,, and a denote real
numbers unless stated otherwise; if situations such as a = +oo are allowed, we will state this
fact explicitly.

A crucial fact regarding sequences and limits is that not every sequence has a limit, even
when “has a limit” includes the possibilities +co. (However, see Exercise which asserts
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that every nondecreasing sequence has a limit.) A simple example of a sequence without a
limit is given in Example [I.3] A common mistake made by students is to “take the limit of
both sides” of an equation a,, = b, or an inequality a,, < b,. This is a meaningless operation
unless it has been established that such limits exist. On the other hand, an operation that is
valid is to take the limit superior or limit inferior of both sides, concepts that will be defined
in Section [I.1.1} One final word of warning, though: When taking the limit superior of a
strict inequality, < or > must be replaced by < or >; see the discussion following Lemma

LI1a

Example 1.3 Define
a, = logn; b, =14+ (=1)"/n; cn =14 (=1)"/n*; d, = (=1)".

Then a,, — o0, b, — 1, and ¢, — 1; but the sequence dy, ds, ... does not have a
limit. (We do not always write “as n — oo” when this is clear from the context.)
Let us prove one of these limit statements, say, b, — 1. By Definition (1.1} given
an arbitrary € > 0, we must prove that there exists some N such that |b, — 1| < €
whenever n > N. Since |b, — 1| = 1/n, we may simply take N = 1/e: With this
choice, whenever n > N, we have |b, — 1| = 1/n < 1/N = ¢, which completes the
proof.

We always assume that log n denotes the natural logarithm, or logarithm base e,
of n. This is fairly standard in statistics, though in some other disciplines it is
more common to use logn to denote the logarithm base 10, writing Inn instead
of the natural logarithm. Since the natural logarithm and the logarithm base 10
differ only by a constant ratio—mamely, log, n = 2.3026 log,, n—the difference is
often not particularly important. (However, see Exercise M)

Finally, note that although lim,, b, = lim, ¢, in Example there is evidently
something different about the manner in which these two sequences approach this

limit. This difference will prove important when we study rates of convergence
beginning in Section [I.3]

Example 1.4 A very important example of a limit of a sequence is

lim (1 + £>n = exp(c)
n

n—0o0

for any real number c¢. This result is proved in Example [1.20] using I’'Hopital’s
rule (Theorem [1.19)).

Two or more sequences may be added, multiplied, or divided, and the results follow in-
tuitively pleasing rules: The sum (or product) of limits equals the limit of the sums (or
products); and as long as division by zero does not occur, the ratio of limits equals the limit
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of the ratios. These rules are stated formally as Theorem [I.5], whose complete proof is the
subject of Exercise [I.I} To prove only the “limit of sums equals sum of limits” part of the
theorem, if we are given a, — a and b, — b then we need to show that for a given ¢ > 0,
there exists N such that for all n > N, |a,, + b, — (a + b)| < €. But the triangle inequality
gives

|an + by = (a4 b)| < |an — af + [b, = b, (1.1)

and furthermore we know that there must be N; and Nj such that |a, —a| < €/2 for n > N;
and |b, —b| < €/2 for n > N, (since €/2 is, after all, a positive constant and we know a,, — a
and b, — b). Therefore, we may take N = max{N, No} and conclude by inequality
that for all n > NV,

€

Jan+ 00— (a4 D) < 5 +3

which proves that a, + b, — a + b.

Theorem 1.5 Suppose a, — a and b, — b as n — oo. Then a, + b, — a + b and
anb, — ab; furthermore, if b # 0 then a, /b, — a/b.

A similar result states that continuous transformations preserve limits; see Theorem [1.16]
Theorem may be extended by replacing a and/or b by +o00, and the results remain true
as long as they do not involve the indeterminate forms oo — oo, +00 x 0, or +o0/00.

1.1.1 Limit Superior and Limit Inferior

The limit superior and limit inferior of a sequence, unlike the limit itself, are defined for any
sequence of real numbers. Before considering these important quantities, we must first define
supremum and infimum, which are generalizations of the ideas of maximum and minumum.
That is, for a set of real numbers that has a minimum, or smallest element, the infimum
is equal to this minimum; and similarly for the maximum and supremum. For instance,
any finite set contains both a minimum and a maximum. (“Finite” is not the same as
“bounded”; the former means having finitely many elements and the latter means contained
in an interval neither of whose endpoints are +00.) However, not all sets of real numbers
contain a minimum (or maximum) value. As a simple example, take the open interval (0, 1).
Since neither 0 nor 1 is contained in this interval, there is no single element of this interval
that is smaller (or larger) than all other elements. Yet clearly 0 and 1 are in some sense
important in bounding this interval below and above. It turns out that 0 and 1 are the
infimum and supremum, respectively, of (0, 1).

An upper bound of a set S of real numbers is (as the name suggests) any value m such that
s <mforall s € S. A least upper bound is an upper bound with the property that no smaller



upper bound exists; that is, m is a least upper bound if m is an upper bound such that for
any € > 0, there exists s € S such that s > m — e. A similar definition applies to greatest
lower bound. A useful fact about the real numbers—a consequence of the completeness of
the real numbers which we do not prove here—is that every set that has an upper (or lower)
bound has a least upper (or greatest lower) bound.

Definition 1.6 For any set of real numbers, say S, the supremum sup S is defined to
be the least upper bound of S (or +o0 if no upper bound exists). The infimum
inf S is defined to be the greatest lower bound of S (or —oo if no lower bound
exists).

Example 1.7 Let S = {ay,as,as,...}, where a,, = 1/n. Then inf S, which may also
be denoted inf, a,, equals 0 even though 0 ¢ S. But sup,a, = 1, which is
contained in S. In this example, max S = 1 but min .S is undefined.

If we denote by supys,, ar the supremum of {a,, a,,1, ...}, then we see that this supremum is
taken over a smaller and smaller set as n increases. Therefore, SUPg~,, Gk 1S @ nonincreasing
sequence in n, which implies that it has a limit as n — oo (see Exercise . Similarly,
infy>, ar is a nondecreasing sequence, which implies that it has a limit.

Definition 1.8 The limit superior of a sequence ay,as, ..., denoted limsup,, a, or
sometimes lim,a,,, is the limit of the nonincreasing sequence

sup a, Sup ag,
k>1 k>2

The limit inferior, denoted liminf, a, or sometimes lim, a,, is the limit of the
nondecreasing sequence

inf ay, inf ag, . ...
E>1 0 k>2

Intuitively, the limit superior and limit inferior may be understood as follows: If we define
a limit point of a sequence to be any number which is the limit of some subsequence, then
liminf and limsup are the smallest and largest limit points, respectively (more precisely,
they are the infimum and supremum, respectively, of the set of limit points).

Example 1.9 In Example[1.3] the sequence d,, = (—1)" does not have a limit. How-
ever, since sup;,, dr = 1 and infy<, dp = —1 for all n, it follows that

limsupd, =1 and liminfd, = —1.

In this example, the set of limit points of the sequence dy, ds, . .. is simply {—1, 1}.

Here are some useful facts regarding limits superior and inferior:
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Lemma 1.10 Let ay,as,... and by, b, ... be arbitrary sequences of real numbers.

e limsup, a, and liminf,, a, always exist, unlike lim,, a,,.
e liminf, a, < limsup, a,

e lim, a, exists if and only if lim inf, a,, = lim sup,, a,,, in which case

lima,, = liminf a,, = limsup a,,.
n n n

e Both limsup and liminf preserve nonstrict inequalities; that is, if a, < b,
for all n, then limsup,, a,, < limsup,, b, and liminf, a, <liminf, b,.
e limsup,(—a,) = — liminf, a,.
The next-to-last claim in Lemma|[1.10]is no longer true if “nonstrict inequalities” is replaced

by “strict inequalities”. For instance, 1/(n+1) < 1/n is true for all positive n, but the limit
superior of each side equals zero. Thus, it is not true that

lim su < limsup —.
np n+1 np n
We must replace < by < (or > by >) when taking the limit superior or limit inferior of both
sides of an inequality.

1.1.2 Continuity

Although Definitions[I.T]and [T.2]concern limits, they apply only to sequences of real numbers.
Recall that a sequence is a real-valued function of the natural numbers. We shall also require
the concept of a limit of a real-valued function of a real variable. To this end, we make the
following definition.

Definition 1.11 For a real-valued function f(z) defined for all points in a neighbor-
hood of xy except possibly xzq itself, we call the real number a the limit of f(z)
as x goes to xg, written

lim f(z) = aq,

T—rT0

if for each € > 0 there is a § > 0 such that | f(z) —a| < € whenever 0 < |z —xzo| < 4.

First, note that Definition is sensible only if both 2y and a are finite (but see Definition
for the case in which one or both of them is +00). Furthermore, it is very important
to remember that 0 < |z — x¢| < § may not be replaced by |z — x| < ¢: The latter would
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imply something specific about the value of f(z) itself, whereas the correct definition does

not even require that this value be defined. In fact, by merely replacing 0 < |x — xo| < ¢
by | — x¢| < § (and insisting that f(x) be defined), we could take Definition to be

the definition of continuity of f(x) at the point xy (see Definition for an equivalent
formuation).

Implicit in Definition is the fact that a is the limiting value of f(z) no matter whether
x approaches zy from above or below; thus, f(z) has a two-sided limit at xy. We may also
consider one-sided limits:

Definition 1.12 The value a is called the right-handed limit of f(z) as x goes to xy,
written

lim f(z)=a or f(zo+)=a,

r—xo+
if for each € > 0 there is a § > 0 such that |f(x) —a| < € whenever 0 < x —xy < 4.

The left-handed limit, lim, ., f(x) or f(x¢—), is defined analagously: f(xo—) =
a if for each € > 0 there is a § > 0 such that | f(z) —a| < € whenever —§ < z—x¢ <
0.

The preceding definitions imply that

lim f(x) =a if and only if f(zo+) = f(xo—) = a; (1.2)
T—T0
in other words, the (two-sided) limit exists if and only if both one-sided limits exist and they
coincide. Before using the concept of a limit to define continuity, we conclude the discussion
of limits by addressing the possibilities that f(z) has a limit as x — 400 or that f(z) tends
to £oo0:

Definition 1.13 Definition [I.I1] may be expanded to allow z or a to be infinite:

(a) We write lim, .o f(x) = a if for every ¢ > 0, there exists N such that
|f(z) —a| < e forall z > N.

(b) We write lim,_,,, f(z) = oo if for every M, there exists 6 > 0 such that
f(z) > M whenever 0 < |z — xo| < .

(c) Wewrite lim,_,, f(z) = oo if for every M, there exists N such that f(x) > M
for all x > N.

Definitions involving —oo are analogous, as are definitions of f(xo+) = +o00 and
f(zo—) = £o0.



As mentioned above, the value of f(z) in Definitions and is completely irrelevant;
in fact, f(xy) might not even be defined. In the special case that f(z) is defined and equal
to a, then we say that f(z) is continuous (or right- or left-continuous) at o, as summarized
by Definition below. Intuitively, f(z) is continuous at xq if it is possible to draw the
graph of f(x) through the point [z¢, f(x¢)] without lifting the pencil from the page.

Definition 1.14 If f(z) is a real-valued function and zy is a real number, then

e we say f(x) is continuous at xq if lim, .., f(z) = f(x0);
e we say f(x) is right-continuous at zg if lim, ..+ f(z) = f(x0);

e we say f(x) is left-continuous at x¢ if lim, ., f(x) = f(z0).

Finally, even though continuity is inherently a local property of a function (since Defini-
tion applies only to the particular point x(), we often speak globally of “a continuous
function,” by which we mean a function that is continuous at every point in its domain.

Statement implies that every (globally) continuous function is right-continuous. How-
ever, the converse is not true, and in statistics the canonical example of a function that is
right-continuous but not continuous is the cumulative distribution function for a discrete
random variable.

08 1.0
|

0.6

F()

0.4

0.2

OJO

-0.5 0.0 0.5 1.0 15

Figure 1.1: The cumulative distribution function for a Bernoulli (1/2) random variable is
discontinuous at the points t =0 and t = 1, but it is everywhere right-continuous.
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Example 1.15 Let X be a Bernoulli (1/2) random variable, so that the events X = 0
and X = 1 each occur with probability 1/2. Then the distribution function
F(t) = P(X < t) is right-continuous but it is not continuous because it has
“jumps” at t = 0 and t = 1 (see Figure . Using one-sided limit notation of
Definition [I.12] we may write

0=F(0—)# F(0+)=1/2 and 1/2 = F(1-) # F(14) = 1.

Although F(t) is not (globally) continuous, it is continuous at every point in the
set R\ {0, 1} that does not include the points 0 and 1.

We conclude with a simple yet important result relating continuity to the notion of the
limit of a sequence. Intuitively, this result states that continuous functions preserve limits
of sequences.

Theorem 1.16 If g is a real number such that a,, — a as n — oo and the real-valued
function f(z) is continuous at the point a, then f(a,) — f(a).

Proof: We need to show that for any € > 0, there exists N such that |f(a,) — f(a)] < €
for all n > N. To this end, let € > 0 be a fixed arbitrary constant. From the definition of
continuity, we know that there exists some § > 0 such that |f(z) — f(a)| < € for all z such
that |x — a| < 0. Since we are told a, — a and since 6 > 0, there must by definition be
some N such that |a, — a|] < § for all n > N. We conclude that for all n greater than this
particular N, |f(a,) — f(a)| < e. Since € was arbitrary, the proof is finished. n

Exercises for Section 1.1

Exercise 1.1 Assume that a,, — a and b,, — b, where a and b are real numbers.
(a) Prove that a,b, — ab

Hint: Show that |a,b, — ab| < |(a, — a)(b, — b)| + |a(b, — b)| + |b(a, — a)| using
the triangle inequality.

(b) Prove that if b # 0, a,, /b, — a/b.

Exercise 1.2 For a fixed real number ¢, define a,(c) = (1 4+ ¢/n)". Then Equation
(1.9) states that a,(c) — exp(c). A different sequence with the same limit is
obtained from the power series expansion of exp(c):



For each of the values ¢ € {—10,—1,0.2,1,5}, find the smallest value of n such
that |a,(c) — exp(c)|/exp(c) < .01. Now replace a,(c) by b,(c) and repeat.
Comment on any general differences you observe between the two sequences.

Exercise 1.3 (a) Suppose that a, — ¢ as k — oo for a sequence of real numbers

ai,as,.... Prove that this implies convergence in the sense of Cesaro, which
means that
1 n
Q2 ke as n — oo. (1.3)
k=1

In this case, ¢ may be real or it may be 4oc.

Hint: If ¢ is real, consider the definition of a;, — ¢: There exists N such that
lar, — ¢| < € for all K > N. Consider what happens when the sum in expression
(1.3) is broken into two sums, one for ¥ < N and one for k¥ > N. The case
¢ = too follows a similar line of reasoning.

(b) Is the converse true? In other words, does (1.3) imply ay — ¢?

Exercise 1.4 Prove that if a;,as, ... is a nondecreasing (or nonincreasing) sequence,
then lim, a,, exists and is equal to sup,, a, (or inf, a,). We allow the possibility
sup,, a, = oo (or inf, a,, = —o0) here.

Hint: For the case in which sup,, a, is finite, use the fact that the least upper
bound M of a set S is defined by the fact that s < M for all s € S, but for any
€ > 0 there exists s € S such that s > M —e.

Exercise 1.5 Let a, =sinn forn=1,2,....
(a) What is sup,, a,” Does max, a, exist?

(b) What is the set of limit points of {ay,as,...}? What are limsup,, a, and
liminf, a,? (Recall that a limit point is any point that is the limit of a subse-
quence ay, , ag,, - - ., where k; < kg < ---.)

(c) As usual in mathematics, we assume above that angles are measured in
radians. How do the answers to (a) and (b) change if we use degrees instead (i.e.,
a, = sinn®)?

Exercise 1.6 Prove Lemma [[L10

Exercise 1.7 For z ¢ {0, 1,2}, define

2% — 2

Jx) = z(x —1)(x —2)

12



(a) Graph f(z). Experiment with various ranges on the axes until you attain a
visually pleasing and informative plot that gives a sense of the overall behavior
of the function.

(b) For each of xy € {—1,0, 1,2}, answer these questions: Is f(z) continuous at
zo, and if not, could f(zq) be defined so as to make the answer yes? What are
the right- and left-hand limits of f(x) at 237 Does it have a limit at xy? Finally,
what are lim, ., f(z) and lim,_, ., f(x)?

Exercise 1.8 Define F(t) as in Example [1.17] (and as pictured in Figure [L.1)). This
function is not continuous, so Theorem does not apply. That is, a,, — a does
not imply that F'(a,) — F(a).

(a) Give an example of a sequence {a,} and a real number a such that a, — a
but limsup,, F(a,) # F(a).

(b) Change your answer to part (a) so that a, — a and limsup,, F'(a,) = F(a),
but lim,, F'(a,) does not exist.

(c) Explain why it is not possible to change your answer so that a, — a and
liminf, F(a,) = F(a), but lim, F(a,) does not exist.

1.2 Differentiability and Taylor’s Theorem

Differential calculus plays a fundamental role in much asymptotic theory. In this section
we review simple derivatives and one form of Taylor’s well-known theorem. Approximations
to functions based on Taylor’s Theorem, often called Taylor expansions, are ubiquitous in
large-sample theory.

We assume that readers are familiar with the definition of a derivative of a real-valued
function f(z):

Definition 1.17 If f(z) is continuous in a neighborhood of =y and
lim f(@) = f(=zo) (1.4)
T—x0 r — T

exists, then f(x) is said to be differentiable at xy and the limit (1.4) is called the
derivative of f(x) at z¢ and is denoted by f(zq) or fM(zo).

We use the standard notation for second- and higher-order derivatives. Thus, if f'(z) is
itself differentiable at o, we express its derivative as f”(zo) or f®(xy). In general, if the
kth derivative f*)(x) is differentiable at xo, then we denote this derivative by f*+1(z). We
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also write (d*/dx*) f(x) (omitting the & when k = 1) to denote the function f*)(x), and to
denote the evaluation of this function at a specific point (say zy), we may use the following
notation, which is equivalent to f*)(x):

da*

In large-sample theory, differential calculus is most commonly applied in the construction of
Taylor expansions. There are several different versions of Taylor’s Theorem, distinguished
from one another by the way in which the remainder term is expressed. The first form we
present here (Theorem, which is proved in Exercise , does not state an explicit form
for the remainder term. This gives it the advantage that it does not require that the function
have an extra derivative. For instance, a second-order Taylor expansion requires only two
derivatives using this version of Taylor’s Theorem (and the second derivative need only exist
at a single point), whereas other forms of Taylor’s Theorem require the existence of a third
derivative over an entire interval. The disadvantage of this form of Taylor’s Theorem is that
we do not get any sense of what the remainder term is, only that it goes to zero; however,
for many applications in these notes, this form of Taylor’s Theorem will suffice.

Theorem 1.18 If f(z) has d derivatives at a, then

(x —a)?

f@) = fl)+@=a)f(e)+ +——fa) +ra(z,0), (15)
where ry(x,a)/(z —a)? — 0 as z — a.

In some cases, we will find it helpful to have an explicit form of r4(z,a). This is possible
under stronger assumptions, namely, that f(z) has d + 1 derivatives on the closed interval
from x to a. In this case, we may write

ra(z,a) = /:%f(‘”l)(t) dt (1.6)

in equation (|1.5). Equation (1.6]) is often called the Lagrange form of the remainder. By the
Mean Value Theorem of calculus, there exists * somewhere in the closed interval from x to

a such that
(I _ a)d-i—l
(d+1)!

Expression (|1.7]), since it follows immediately from Equation (1.6)), is also referred to as the
Lagrange form of the remainder.

rq(r,a) = FED (2. (1.7)

To conclude this section, we state the well-known calculus result known as I’'Hopital’s Rule.
This useful Theorem provides an elegant way to prove Theorem [1.18] among other things.
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Theorem 1.19 [’Hépital’s Rule: For a real number ¢, suppose that f(x) and g(x)
are differentiable for all points in a neighborhood containing ¢ except possibly ¢
itself. If lim, . f(x) = 0 and lim,_,. g(x) = 0, then

fl@) . [(x)

lim —= = lim
M gla) T go)

) (1.8)

provided the right-hand limit exists. Similarly, if lim,_,. f(z) = oo and lim, . g(z)
oo, then Equation ((1.8)) also holds. Finally, the theorem also applies if ¢ = +00, in
which case a “neighborhood containing ¢” refers to an interval (a, 00) or (—o0, a).

Example 1.20 Example [I.4] states that

n—o0

lim (1 + %)n = exp(c) (1.9)

for any real number c. Let us prove this fact using ’'Hopital’s Rule. Care is
necessary in this proof, since 'Hopital’s Rule applies to limits of differentiable
functions, whereas the left side of Equation ((1.9) is a function of an integer-valued
n.

Taking logarithms in Equation (1.9)), we shall first establish that nlog(1+c¢/n) —
c as n — 00. Define f(x) =log(1 + cx) and g(x) = x. The strategy is to treat n
as 1/x, so we will see what happens to f(z)/g(z) as x — 0. By I'Hopital’s Rule,
we obtain

log(1 1
lim —og( +cz) = lim —C/< +cz) =c.

x—0 X x—0 1

Since this limit must be valid no matter how x approaches 0, in particular we

may conclude that if we define z,, = 1/n for n =1,2,..., then
log(1 n
lim 20 o (1 + f) —, (1.10)
n—00 Tn n—0o0 n

which was to be proved. Now we use the fact that the exponential function
h(t) = expt is a continuous function, so Equation (1.9) follows from Theorem

once we apply the exponential function to Equation (1.10]).

Fxercises for Section 1.2

Exercise 1.9 The well-known derivative of the polynomial function f(z) = z™ for a
positive integer n is given by nz"~!. Prove this fact directly using Definition [1.17]
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Exercise 1.10 For f(z) continuous in a neighborhood of zg, consider

o 1) = f200 — )

z—o 2(x — xp)

(1.11)

(a) Prove or give a counterexample: When f'(z) exists, limit ((1.11]) also exists
and it is equal to f'(xo).

(b) Prove or give a counterexample: When limit (1.11)) exists, it equals f'(x),
which also exists.

Exercise 1.11 Prove Theorem [[L18

Hint: Let P,(x) denote the Taylor polynomial such that

ro(z,a) = f(z) — Py(z).

Then use I'Hopital’s rule, Theorem [1.19] d — 1 times. (You can do this because
the existence of (@ (a) implies that all lower-order derivatives exist on an interval

containing a.) You cannot use ’'Hopital’s rule d times, but you won’t need to if
you use Definition

Exercise 1.12 Let f(t) = logt. Taking a = 1 and * = a + h, find the explicit
remainder term r4(z,a) in Equation for all values of d € {2,3} and h €
{0.1,0.01,0.001}. Give your results in a table. How does r4(z, a) appear to vary
with d? How does rq(a + h,a) appear to vary with h?

Exercise 1.13 The idea for Exercise [I.10]is based on a numerical trick for accurately
approximating the derivative of a function that can be evaluated directly but for
which no formula for the derivative is known.

(a) First, construct a “first-order” approximation to a derivative. Definition
with d = 1 suggests that we may choose a small h and obtain

f'(a) = f(aJrhf)L_f(a). (1.12)

For f(z) = logz and a = 2, calculate the approximation to f’(a) in Equation
using A € {0.5,0.05,0.005}. How does the difference between the true
value (which you happen to know in this case) and the approximation appear to
vary as a function of A7

(b) Next, expand both f(a + h) and f(a — h) using Taylor’s theorem with
d = 2. Subtract one expansion from the other and solve for f’(a). Ignore the
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remainder terms and you have a “second-order” approximation. (Compare this
approximation with Exercise|1.10] substituting z and z —x for @ and h.) Repeat
the computations of part (a). Now how does the error appear to vary as a function

of h?

(c) Finally, construct a “fourth-order” approximation. Perform Taylor expan-
sions of f(z + 2h), f(x + h), f(x — h), and f(z — 2h) with d = 4. Ignore the
remainder terms, then find constants C; and C5 such that the second, third, and
fourth derivatives all disappear and you obtain

() ~ Cilf(a+h)— f(a—h)] —i—h02 [f(a+2h) — f(a— 2h)]. (1.13)

Repeat the computations of parts (a) and (b) using the approximation in Equation
(T.13).

Exercise 1.14 The gamma function I'(x) is defined for positive real z as

[(z) = /0 Tplet gy (1.14)

[in fact, equation is also valid for complex x with positive real part]. The
gamma function may be viewed as a continuous version of the factorial function
in the sense that I'(n) = (n — 1)! for all positive integers n. The gamma function
satisfies the identity

Mx+1) =al(x) (1.15)

even for noninteger positive values of x. Since I'(x) grows very quickly as x in-
creases, it is often convenient in numerical calculations to deal with the logarithm
of the gamma function, which we term the log-gamma function. The digamma
function ¥(x) is defined to be the derivative of the log-gamma function; this func-
tion often arises in statistical calculations involving certain distributions that use
the gamma function.

(a) Apply the result of Exercise [1.13(b) using h = 1 to demonstrate how to
obtain the approximation

U(z) ~ %log oz — 1)] (1.16)

for z > 2.

Hint: Use Identity (1.15).
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(b) Test Approximation numerically for all z in the interval (2,100) by
plotting the ratio of the approximation to the true ¥(z). What do you no-
tice about the quality of the approximation? If you are using R or Splus, then
digamma (x) gives the value of V(z).

Exercise 1.15 The second derivative of the log-gamma function is called the trigamma
function:

2

V'(z) = —log'(x). (1.17)

" da?
Like the digamma function, it often arises in statistical calculations; for example,

see Exercise [.35]

(a) Using the method of Exercise[l.13{c) with & = 1 [that is, expanding f(z+2h),
f(x +h), f(x — h), and f(x — 2h) and then finding a linear combination that
makes all but the second derivative of the log-gamma function disappear|, show
how to derive the following approximation to ¥'(z) for z > 2:

\If’()Nll e \" (z—2
YR\ T 1

(b) Test Approximation (|1.18)) numerically as in Exercise[l.14|(b). In R or Splus,
trigamma(x) gives the value of W'(z).

. (1.18)

1.3 Order Notation

As we saw in Example [I.3] the limiting behavior of a sequence is not fully characterized
by the value of its limit alone, if the limit exists. In that example, both 1 + (—1)"/n and
1+ (=1)"/n? converge to the same limit, but they approach this limit at different rates. In
this section we consider not only the value of the limit, but the rate at which that limit is
approached. In so doing, we present some convenient notation for comparing the limiting
behavior of different sequences.

Definition 1.21 We say that the sequence of real numbers aq, as, . . . is asymptotically
equivalent to the sequence by, by, .. ., written a,, ~ b,, if (a,,/b,) — 1 as n — 0.

Equivalently, a,, ~ b, if and only if

n_bn
¢ — 0.

Qn
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The expression |(a, — b,)/a,| above is called the relative error in approximating a, by b,.

The definition of asymptotic equivalence does not say that

lima,

I

limb,

the above fraction might equal 0/0 or co/o0o, or the limits might not even exist! (See Exercise
1.17))

Example 1.22 A well-known asymptotic equivalence is Stirling’s formula, which states
n! ~ V2"t exp(—n). (1.19)

There are multiple ways to prove Stirling’s formula. We outline one proof, based
on the Poisson distribution, in Exercise .5

Example 1.23 For any k£ > —1,

n L onkt
ik~ . 1.20
; Pk (1.20)
This is proved in Exercise [1.19, But what about the case k = —17 Let us prove

that

n

1
>~ ~logn. (1.21)

- 7
=1

Proof: Since 1/x is a strictly decreasing function of x, we conclude that

i+1 i
1 1 1

/ —dr < - < / —dx
i X L i-1T

for i =2,3,4,.... Summing on ¢ (and using 1/i = 1 for i = 1) gives
n+1 n n
1 1 1
1+/ —dx<2—,<1+/—dx.
5 T i \ T
Evaluating the integrals and dividing through by logn gives

141 1) — log 2 A 1
+Og(n+ ) Og <Z7,717, <

1.
logn logn logn *

The left and right sides of this expression have limits, both equal to 1 (do you see
why?). A standard trick is therefore to take the limit inferior of the left inequality
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and combine this with the limit superior of the right inequality (remember to
change < to < when doing this; see the discussion following Lemma |1.10)) to
obtain
n 1 n 1
1< liminfL < limsupL < 1.
n logn n logn
This implies that the limit inferior and limit superior are in fact the same, so the
limit exists and is equal to 1. This is what we wished to show. [ ]

The next notation we introduce expresses the idea that one sequence is asymptotically neg-
ligible compared to another sequence.

Definition 1.24 We write a,, = o(b,) (“ay is little-o of b,”) as n — oo if a,, /b, — 0
as n — 0o.

Among other advantages, the o-notation makes it possible to focus on the most important
terms of a sequence while ignoring the terms that are comparatively negligible.

Example 1.25 According to Definition [1.24] we may write

1 2 4 1 1
———+—==—40\- as n — o0.
n n?: n n n

This makes it clear at a glance how fast the sequence on the left tends to zero,
since all terms other than the dominant term are lumped together as o(1/n).

Some of the exercises in this section require proving that one sequence is little-o of another
sequence. Sometimes, 'Hopital’s rule may be helpful; yet as in Example [1.20] care must be
exercised because I’'Hopital’s rule applies to functions of real numbers whereas a sequence is
a function of the positive integers.

Example 1.26 Let us prove that loglogn = o(logn). The function (loglogx)/log x,
defined for x > 1, agrees with (loglogn)/logn on the positive integers; thus,
since I’Hopital’s rule implies

. loglogx
lim ———

T—r00 lOg e T—r00 % T—r00 log T

we conclude that (loglogn)/logn must also tend to 0 as n tends to co as an
integer.

Often, however, one may simply prove a,, = o(b,) without resorting to ’'Hopital’s rule, as in
the next example.
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Example 1.27 Prove that

n=o (i \/E> . (1.22)

Proof: Letting [n/2] denote the largest integer less than or equal to n/2,
> > = —1.
Z Vi > | Y Vi : bJ
=1 i=[n/2]
Since n = o(n+/n), the desired result follows. n

Equation ([1.22]) could have been proved using the result of Example(1.23] in which
Equation ([1.20) with £ = 1/2 implies that

3/2

ZZ;: Vi~ 2"3 (1.23)

However, we urge extreme caution when using asymptotic equivalences like Ex-
pression . It is tempting to believe that expressions that are asymptotically
equivalent may be substituted for one another under any circumstances, and this
is not true! In this particular example, we may write

zyiﬁ - (23%> <3§i/2ﬂ) ’

and because we know that the second fraction in parentheses tends to 1 by Ex-
pression ((1.23) and the first fraction in parentheses tends to 0, we conclude that
the product of the two converges to 0 and Equation ((1.22)) is proved.

We define one additional order notation, the capital O.

Definition 1.28 We write a, = O(b,) (“a, is big-o of b,”) as n — oo if there exist
M > 0 and N > 0 such that |a,/b,| < M for all n > N.

In particular, a,, = o(b,) implies a,, = O(b,). In a vague sense, o and O relate to sequences
as < and < relate to real numbers. However, this analogy is not perfect: For example, note
that it is not always true that either a,, = O(b,) or b, = O(a,,).

Although the notation above is very precisely defined, unfortunately this is not the case with
the language used to describe the notation. In particular, “a, is of order b,” is ambiguous;
it may mean simply that a,, = O(b,,), or it may mean something more precise: Some authors
define a,, < b, or a, = O(b,) to mean that |a,| remains bounded between m|b,| and M]|b,|
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for large enough n for some constants 0 < m < M. Although the language can be imprecise,
it is usually clear from context what the speaker’s intent is.

This latter case, where a,, = O(b,) but a,, # o(b,), is one in which the ratio |a, /b,| remains
bounded and also bounded away from zero: There exist positive constants m and M, and
an integer N, such that

<M foralln> N. (1.24)

m <

an
bn
Some books introduce a special symbol for (1.24)), such as a, < b, or a, = O(b,).

Do not forget that the use of 0, O, or ~ always implies that there is some sort of limit being
taken. Often, an expression involves n, in which case we usually assume n tends to oo even
if this is not stated; however, sometimes things are not so clear, so it helps to be explicit:

Example 1.29 According to Definition a sequence that is o(1) tends to zero.
Therefore, Equation (1.5 of Taylor’s Theorem may be rewritten

(x —a)?

flz) = f(a)+(a:—a)f’(a)+---—|—T{f(d)(a)—l—o(l)} as T — a.

It is important to write “as x — a” in this case.

It is often tempting, when faced with an equation such as a,, = o(b,), to attempt to apply a
function f(z) to each side and claim that f(a,) = o[f(b,)]. Unfortunately, however, this is
not true in general and it is not hard to find a counterexample [see Exercise [l.1§(d)]. There
are certain circumstances in which it is possible to claim that f(a,) = o[f(b,)], and one such
circumstance is particularly helpful. It involves a convex function f(x), defined as follows:

Definition 1.30 We say that a function f(x) is convex if for all z, y and any « € [0, 1],
we have

flaz + (1 —a)y] <af(z)+ (1 —a)f(y). (1.25)

If f(x) is everywhere differentiable and f”(z) > 0 for all z, then f(x) is convex (this is
proven in Exercise [1.24). For instance, the function f(z) = exp(z) is convex because its
second derivative is always positive.

We now see a general case in which it may be shown that f(a,) = o[f(b,)].

Theorem 1.31 Suppose that aq,as,... and by, by, ... are sequences of real numbers
such that a,, — oo, b, — oo, and a,, = o(b,); and f(z) is a convex function such
that f(x) — oo as © — oo. Then f(a,) = o[f(b,)].
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The proof of Theorem [1.31] is the subject of Exercise [1.25

There are certain rates of growth toward oo that are so common that they have names, such
as logarithmic, polynomial, and exponential growth. If o, [, and v are arbitrary positive
constants, then the sequences (logn)®, n?, and (1++)" exhibit logarithmic, polynomial, and
exponential growth, respectively. Furthermore, we always have

(logn)® = o(n”) and n” = o([1 4+ ~]"). (1.26)

Thus, in the sense of Definition logarithmic growth is always slower than polynomial
growth and polynomial growth is always slower than exponential growth.

To prove Statement (1.26), first note that loglogn = o(logn), as shown in Example [1.26]
Therefore, aloglogn = o(5logn) for arbitrary positive constants o and . Since exp(x) is
a convex function, Theorem [1.31] gives

(logn)* = o(n"). (1.27)

As a special case of Equation (1.27), we obtain logn = o(n), which immediately gives
Blogn = o[nlog(1++)] for arbitrary positive constants 8 and . Exponentiating once again
and using Theorem yields

n” = o[(1 +17)"].

Exercises for Section 1.3
Exercise 1.16 Prove that a, ~ b, if and only if |(a, — b,)/a,| — 0.

Exercise 1.17 For each of the following statements, prove the statement or provide
a counterexample that disproves it.

(a) If ap ~ by, then lim, a,/lim, b, = 1.
(b) If lim, a,/lim, b, is well-defined and equal to 1, then a, ~ b,.
(c) If neither lim, a, nor lim, b, exists, then a, ~ b, is impossible.
Exercise 1.18 Suppose that a, ~ b, and ¢, ~ d,,.
(a) Prove that a,c, ~ b,d,.
(b) Show by counterexample that it is not generally true that a, + ¢, ~ b, +d,.
(c) Prove that |a,| + |cn| ~ |bn] + |dn|-

(d) Show by counterexample that it is not generally true that f(a,) ~ f(b,) for
a continuous function f(z).
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Exercise 1.19 Prove the asymptotic relationship in Example [1.23]

Hint: One way to proceed is to prove that the sum lies between two simple-
to-evaluate integrals that are themselves asymptotically equivalent. Consult the

proof of Expression ([1.21]) as a model.

Exercise 1.20 According to the result of Exercise , the limit implies that
the relative difference between )" (1/i) and logn goes to zero. But this does
not imply that the difference itself goes to zero (in general, the difference may
not even have any limit at all). In this particular case, the difference converges to
a constant called Euler’s constant that is sometimes used to define the complex-
valued gamma function.

Evaluate " | (1/i)—logn for various large values of n (say, n € {100, 1000, 10000} )
to approximate the Euler constant.

Exercise 1.21 Let Xi,..., X, be a simple random sample from an exponential dis-
tribution with density f(z) = 0exp(—60zx) and consider the estimator 4,(X) =
Yo Xi/(n+2) of g(f) = 1/6. Show that for some constants ¢; and ¢; depending
on 0,

. . (&)
bias of §,, ~ ¢y (variance of ¢,,) ~ —
n

as n — oco. The bias of §,, equals its expectation minus (1/6).

Exercise 1.22 Let X3,..., X, beindependent with identical density functions f(x) =
029711{0 < x < 1}.

(a) Let d,, be the posterior mean of 8, assuming a standard exponential prior for
0 (ie., p(d) = e ?1{0 > 0}). Compute J,.

Hints: The posterior distribution of 6 is gamma. If Y is a gamma random
variable, then f(y) oc y* 'e7¥? and the mean of Y is a/B. To determine o and
B for the posterior distribution of ¢, simply multiply the prior density times the
likelihood function to get an expression equal to the posterior density up to a
normalizing constant that is irrelevant in determining o and £.

(b) For each n € {10,50, 100,500}, simulate 1000 different samples of size n from
the given distribution with # = 2. Use these to calculate the value of 9,, 1000
times for each n. Make a table in which you report, for each n, your estimate
of the bias (the sample mean of §,, — 2) and the variance (the sample variance
of §,). Try to estimate the asymptotic order of the bias and the variance of
this estimator by finding “nice” positive exponents a and b such that n®|bias,|
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and n’variance,, are roughly constant. (“Nice” here may be interpreted to mean
integers or half-integers.)

Hints: To generate a sample from the given distribution, use the fact that if
Uy, Us, ... is a sample from a uniform (0, 1) density and the continuous distribu-
tion function F'(x) may be inverted explicitly, then letting X; = F~!(U;) results
in X1, X, ... being a simple random sample from F'(x). When using Splus or R, a
sample from uniform (0, 1) of size, say, 50 may be obtained by typing runif (50).

Calculating 9,, involves taking the sum of logarithms. Mathematically, this is
the same as the logarithm of the product. However, mathematically equivalent
expressions are not necessarily computationally equivalent! For a large sample,
multiplying all the values could result in overflow or underflow, so the logarithm
of the product won't always work. Adding the logarithms is safer even though
it requires more computation due to the fact that many logarithms are required
instead of just one.

Exercise 1.23 Let X;, X5, ... be defined as in Exercise [1.22]

(a) Derive a formula for the maximum likelihood estimator of 6 for a sample of
size n. Call it 6,,.

(b) Follow the directions for Exercise M(b) using 6, instead of §,.

Exercise 1.24 Prove that if f(x) is everywhere twice differentiable and f”(z) > 0 for
all z, then f(z) is convex.

Hint: Expand both af(z) and (1 — «)f(y) using Taylor’s theorem with
=1, then add. Use the mean value theorem version of the Lagrange remainder

.
Exercise 1.25 Prove Theorem [1.31l

Hint: Let ¢ be an arbitrary constant for which f(c) is defined. Then in inequality
(L.25), take x = b,, y = ¢, and a = (a, — ¢)/(b, — ¢). Be sure your proof uses all
of the hypotheses of the theorem; as Exercise shows, all of the hypotheses
are necessary.

Exercise 1.26 Create counterexamples to the result in Theorem if the hypothe-
ses of the theorem are weakened as follows:

(a) Find a,, b,, and convex f(x) with lim, . f(z) = oo such that a, = o(b,)

but f(an) # o[f(bn)].

(b) Find a,, b,, and convex f(x) such that a,, — oo, b, — oo, and a,, = o(b,)
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but f(an) # o[f(bn)].

(c¢) Find ay, b,, and f(x) with lim, . f(z) = oo such that a, — oo, b, — o0,
and a, = o(bn) bt f(a,) # olf (b))

Exercise 1.27 Recall that logn always denotes the natural logarithm of n. Assuming
that logn means log;,n will change some of the answers in this exercise!

(a) The following 5 sequences have the property that each tends to co as n — oo,
and for any pair of sequences, one is little-o of the other. List them in order of
rate of increase from slowest to fastest. In other words, give an ordering such that
first sequence = o(second sequence), second sequence = o(third sequence), etc.

n Viogn! S Vi 9logn (log n)lglogn
Prove the 4 order relationships that result from your list.

Hint: Here and in part (b), using a computer to evaluate some of the sequences
for large values of n can be helpful in suggesting the correct ordering. However,
note that this procedure does not constitute a proof!

(b) Follow the directions of part (a) for the following 13 sequences.

log(n!) n? n" 3"

log(logn) n logn 23logn n"/?

n! 22" nlogn (logn)™

Proving the 12 order relationships is challenging but not quite as tedious as it
sounds; some of the proofs will be very short.

1.4 Multivariate Extensions

We now consider vectors in R¥, k > 1. We denote vectors by bold face and their components
by regular type with subscripts; thus, a is equivalent to (aq,...,ax). For sequences of
vectors, we use bold face with subscripts, as in aj, as,.... This notation has a drawback:
Since subscripts denote both component numbers and sequence numbers, it is awkward to
denote specific components of specific elements in the sequence. When necessary, we will
denote the jth component of the ith vector by a;;. In other words, a; = (a;,...,a;)" for
1=1,2,.... We follow the convention that vectors are to be considered as columns instead
of rows unless stated otherwise, and the transpose of a matrix or vector is denoted by a
superscripted T.
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The extension to the multivariate case from the univariate case is often so trivial that it is
reasonable to ask why we consider the cases separately at all. There are two main reasons.
The first is pedagogical: We feel that any disadvantage due to repeated or overlapping
material is outweighed by the fact that concepts are often intuitively easier to grasp in R
than in R*. Furthermore, generalizing from R to R is often instructive in and of itself, as in
the case of the multivariate concept of differentiability. The second reason is mathematical:
Some one-dimensional results, like Taylor’s Theorem for d > 2, need not (or cannot, in
some cases) be extended to multiple dimensions in these notes. In later chapters in these
notes, we will treat univariate and multivariate topics together sometimes and separately
sometimes, and we will maintain the bold-face notation for vectors throughout.

To define a limit of a sequence of vectors, we must first define a norm on R¥. We are
interested primarily in whether the norm of a vector goes to zero, a concept for which any
norm will suffice, so we may as well take the Euclidean norm:

def
la =

k
E a? =Va'a.
i=1

We may now write down the analogue of Definition [1.1}

Definition 1.32 The sequence aj, ay, . .. is said to have limit ¢ € R, written a,, — ¢
as n — oo or lim,_, a, = ¢, if ||a, — c|| — 0 as n — co. That is, a, — ¢ means
that for any € > 0 there exists N such that ||a, —c| < e for all n > N.

It is sometimes possible to define multivariate concepts by using the univariate definition on
each of the components of the vector. For instance, the following lemma gives an alternative
way to define a,, — c:

Lemma 1.33 a, — cif and only if a,; = ¢; for all 1 < j <k.

Proof: Since

la, — ¢l = /(an — 1) + -+ + (ank — cx)?,

the “if” part follows from repeated use of Theorem (which says that the limit of a sum is
the sum of the limits and the limit of a product is the product of the limits) and Theorem 1.16]
(which says that continuous functions preserve limits). The “only if” part follows because
lan; — ¢;] < ||la, — c|| for each j. u

There is no multivariate analogue of Definition [1.2} it is nonsensical to write a, — oo.
However, since |la,|| is a real number, writing ||la,|| — oo is permissible. If we write
lim|x| o f(x) = ¢ for a real-valued function f(x), then it must be true that f(x) tends
to the same limit ¢ no matter what path x takes as [|x|| — oo.

27



Suppose that the function f(x) maps vectors in some open subset U of R¥ to vectors in R,
a property denoted by f : U — R’. In order to define continuity, we first extend Definition
[L11] to the multivariate case:

Definition 1.34 For a function f : U — Rf, where U is open in R*, we write
limy 4 f(x) = c for some a € U and ¢ € R’ if for every ¢ > 0 there exists a
d > 0 such that ||f(x) — c|| < € whenever x € U and 0 < ||x — a|| < .

In Definition [1.34] ||f(x) — c|| refers to the norm on R, while ||x — al| refers to the norm on
RE,

Definition 1.35 A function f : U — R’ is continuous at a € U C R¥ if lim,_,, f(x) =
f(a).

Since there is no harm in letting £ = 1 or £ = 1 or both, Definitions and include
Definitions and [1.14{(a), respectively, as special cases.

The extension of differentiation from the univariate to the multivariate setting is not quite as
straightforward as the extension of continuity. Part of the difficulty lies merely in notation,
but we will also rely on a qualitatively different definition of the derivative in the multivariate
setting. Recall that in the univariate case, Taylor’s Theorem [1.18/implies that the derivative
f'(x) of a function f(z) satisfies

flz+h) — f(z) = hf'(z)
h

—0 ash—0. (1.28)

It turns out that Equation (|1.28) could have been taken as the definition of the derivative
f'(x). To do so would have required just a bit of extra work to prove that Equation (|1.28)
uniquely defines f’(x), but this is precisely how we shall now extend differentiation to the
multivariate case:

Definition 1.36 Suppose that f : U — R’, where U C R is open. For a point a € U,
suppose there exists an ¢ x k matrix Jg(a), depending on a but not on h, such
that

lim f(a+h)—f(a) — Je(a)h

=0. 1.2
lim, Th] (1.29)

Then J¢(a) is unique and we call Jg(a) the Jacobian matrix of f(x) at a. We say

that f(x) is differentiable at the point a, and J¢(x) may be called the derivative

of f(x).
The assertion in Definition that Je(a) is unique may be proved as follows: Suppose that
Jf(l)(a) and Jf(z) (a) are two versions of the Jacobian matrix. Then Equation (1.29) implies
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that

(@ - @)n
lim
h—s0 |||

but h/||h|| is an arbitrary unit vector, which means that (Jf(l)(a) — Jt@(a)> must be the

zero matrix, proving the assertion. m

Although Definition sometimes called the Fréchet derivative, is straightforward and
quite common throughout the calculus literature, there is unfortunately not a universally
accepted notation for multivariate derivatives. Various authors use notation such as f'(x),
f(x), Df(x), or Vf(x) to denote the Jacobian matrix or its transpose, depending on the
situation. In these notes, we adopt perhaps the most widespread of these notations, letting
Vf(x) denote the transpose of the Jacobian matrix Je(x). We often refer to Vf as the
gradient of f.

When the Jacobian matrix exists, it is equal to the matrix of partial derivatives, which are
defined as follows:

Definition 1.37 Let g(x) be a real-valued function defined on a neighborhood of a
in R¥. For 1 <i <k, let e; denote the ith standard basis vector in R, consisting
of a one in the ith component and zeros elsewhere. We define the ith partial
derivative of g(x) at a to be

Og(x)|  der

o 902 he) = g(a)

8$i x—a h—0 h ’

if this limit exists.
Now we are ready to state that the Jacobian matrix is the matrix of partial derivatives.

Theorem 1.38 Suppose f(x) is differentiable at a in the sense of Definition [1.36]
Define the gradient matrix Vf(a) to be the transpose of the Jacobian matrix

Je(a). Then
Ofi(x) ... 9fi(x)
8x1 81'1
Vi(a) = : : (1.30)
ohx) .. 9fx)
Oxy, Oxy, x=a.

The converse of Theorem [1.38is not true, in the sense that the existence of partial derivatives
of a function does not guarantee the differentiability of that function (see Exercise [1.31)).

When f maps k-vectors to f-vectors, Vf(x) is a k x ¢ matrix, a fact that is important to
memorize; it is often very helpful to remember the dimensions of the gradient matrix when
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trying to recall the form of various multivariate results. To try to simplify the admittedly
confusing notational situation resulting from the introduction of both a Jacobian matrix
and a gradient, we will use only the gradient notation Vf(x), defined in Equation (|1.30]),
throughout these notes.

By Definition the gradient matrix satisfies the first-order Taylor formula
f(x) = f(a) + Vf(a)" (x — a) + r(x, a), (1.31)
where r(x,a)/||x —al]| = 0 as x — a.

Now that we have generalized Taylor’s Theorem [I.18|for the linear case d = 1, it is worthwhile
to ask whether a similar generalization is necessary for larger d. The answer is no, except for
one particular case: We will require a second-order Taylor expansion (that is, d = 2) when
f(x) is real-valued but its argument x is a vector. To this end, suppose that U C R¥ is open
and that f(x) maps U into R. Then according to Equation (1.30), V f(x) is a k x 1 vector of
partial derivatives, which means that V f(x) maps k-vectors to k-vectors. If we differentiate
once more and evaluate the result at a, denoting the result by V2 f(a), then Equation ({1.30)
with 0/0x; f(x) substituted for f;(x) gives

Prx) I
Bx% Ox10xy,
V3f(a) = : : (1.32)
’fx) .. Pf®
Oz 0z ox? x—a.

Definition 1.39 The k£ x k matrix on the right hand side of Equation (1.32)), when
it exists, is called the Hessian matrix of the function f(x) at a.

Twice differentiability guarantees the existence (by two applications of Theorem and
symmetry (by Theorem below) of the Hessian matrix. The Hessian may exist for a
function that is not twice differentiable, as seen in Exercise [[.33] but this mathematical
curiosity will not concern us elsewhere in these notes.

We state the final theorem of this section, which extends second-order Taylor expansions to
a particular multivariate case, without proof, but the interested reader may consult Magnus
and Neudecker (1999) for an encyclopedic treatment of this and many other topics involving
differentiation.

Theorem 1.40 Suppose that the real-valued function f(x) is twice differentiable at
some point a € R*. Then V2f(a) is a symmetric matrix, and

F0) = f@) + V(@) (x —a) + 50— ) Vf(@)(x — a) + 1ol a),
where ry(x,a)/||x — a|*> = 0 as x — a.
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Fxercises for Section 1.4

Exercise 1.28 (a) Suppose that f(x) is continuous at 0. Prove that f(te;) is con-
tinuous as a function of ¢ at ¢ = 0 for each i, where e; is the ¢th standard basis
vector.

(b) Prove that the converse of (a) is not true by inventing a function f(x) that
is not continuous at 0 but such that f(te;) is continuous as a function of ¢ at
t =0 for each .

Exercise 1.29 Suppose that a,; — ¢; as n — oo for 5 = 1,...,k. Prove that if
f : R¥ — R is continuous at the point c, then f(a,) — f(c). This proves every
part of Exercise (The hard work of an exercise like [1.1(b) is in showing that

multiplication is continuous).

Exercise 1.30 Prove Theorem [I.38]

Hint: Starting with Equation (1.29)), take x = a + te; and let ¢t — 0, where e;
is defined in Definition [L.37

Exercise 1.31 Prove that the converse of Theorem [1.3§| is not true by finding a
function that is not differentiable at some point but whose partial derivatives at
that point all exist.

Exercise 1.32 Suppose that X, ..., X,, comprises a sample of independent and iden-
tically distributed normal random variables with density

ex —-L T — 2

Floi o) = Pl-gpz (i — 1)}
V2mo?

Let £(p, 0%) denote the loglikelihood function; i.e., £(u, 0?) is the logarithm of the

joint density [, f(X;; u, 0?), viewed as a function of the parameters y and o2.

The score vector is defined to be the gradient of the loglikelihood. Find the score
vector for this example.

Hint: The score vector is a vector with two components and it is a function of
Xi,...,X,, u, and o2. Setting the score vector equal to zero and solving for p
and o2 gives the well-known maximum likelihood estimators of ;1 and o2, namely

X and £ 3°.(X; — X)%
Exercise 1.33 Define
0 ifx =y=0;
fxy) = { y—ry® o erwise.

x2+y2
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Use Theorem to demonstrate that f(x,y) is not twice differentiable at (0, 0)
by showing that V2f(0,0), which does exist, is not symmetric.

Exercise 1.34 (a) Find the Hessian matrix of the loglikelihood function defined in
Exercise .32

(b) Suppose that n = 10 and that we observe this sample:

2.946 0.975 1.333 4.484 1.711
2.627 -0.628 2.476 2.599 2.143

Evaluate the Hessian matrix at the maximum likelihood estimator (j,5?). (A
formula for the MLE is given in the hint to Exercise [1.32)).

(c) As we shall see in Chapter[7] the negative inverse of the Hessian matrix is a
reasonable large-sample estimator of the covariance matrix of the MLE (though
with only n = 10, it is not clear how good this estimator would be in this
example!). Invert your answer from part (b), then put a negative sign in front
and use the answer to give approximate standard errors (the square roots of the
diagonal entries) for i and 62.

Exercise 1.35 Suppose Xi,...,X, is a sample of independent and identically dis-
tributed random variables from a Beta(a, ) distribution, for which the density
function is

flz;a,B) = 11(06—4_/3)360"1(1 — )Pt for 0 <z <1,

INCHINCE))
where a and (3 are assumed to be positive parameters.

(a) Calculate the score vector (the gradient of the loglikelihood) and the Hes-
sian of the loglikelihood. Recall the definitions of the digamma and trigamma

functions in Exercises ((1.14]) and ([1.15]).

Exercise 1.36 The gamma distribution with shape parameter a > 0 and rate pa-
rameter $ > 0 has density function

b p@ e for x > 0.
[(a)

flz;0,8) =

(a) Calculate the score vector for an independent and identically distributed
gamma(a, #) sample of size n.

(b) Using the approximation to the digamma function ¥(z) given in Equation
(1.16)), find a closed-form approximation to the maximum likelihood estimator
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(obtained by setting the score vector equal to zero and solving for a and f).
Simulate 1000 samples of size n = 50 from gamma(5,1) and calculate this ap-
proximation for each. Give histograms of these estimators. Can you characterize
their performance?

The approximation of ¥(z) in Equation (|1.16)) can be extremely poor for z < 2,
so the method above is not a reliable general-purpose estimation procedure.

1.5 Expectation and Inequalities

While random variables have made only occasional appearances in these notes before now,
they will be featured prominently from now on. We do not wish to make the definition of a
random variable rigorous here—to do so requires measure theory—but we assume that the
reader is familiar with the basic idea: A random variable is a function from a sample space
2 into R. (We often refer to “random vectors” rather than “random variables” if the range
space is R¥ rather than R.)

For any random variable X, we denote the expected value of X, if this value exists, by
E X. We assume that the reader is already familiar with expected values for commonly-
encountered random variables, so we do not attempt here to define the expectation operator
E rigorously. In particular, we avoid writing explicit formulas for E X (e.g., sums if X is
discrete or integrals if X is continuous) except when necessary. Much of the theory in these
notes may be developed using only the E X notation; exceptions include cases in which
we wish to evaluate particular expectations and cases in which we must deal with density
functions (such as the topic of maximum likelihood estimation). For students who have not
been exposed to any sort of a rigorous treatment of random variables and expectation, we
hope that the many applications of this theory presented here will pique your curiosity and
encourage you to delve further into the technical details of random variables, expectations,
and conditional expectations. Nearly any advanced probability textbook will develop these
details. For a quick, introductory-level exposure to these intricacies, we recommend the first
chapter of Lange (2003).

Not all random variables have expectations, even if we allow the possibilities E X = +o0:
Let X* = max{X,0} and X~ = max{—X, 0} denote the positive and negative parts of X,
so that X = X+ — X~. Now both E X* and E X~ are always well-defined if we allow oo as
a possibility, but if both X+ and X~ have infinite expectation, then there is no sensible way
to define E X. It is easy to find examples of random variables X for which E X is undefined.
Perhaps the best-known example is a Cauchy random variable (whose density function is
given in Exercise , but we may construct other examples by taking any two independent
nonnegative random variables Y and Y5 with infinite expectation—e.g., let Y; take the value
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2" with probability 27" for all positive integers n—and simply defining X =Y; — V5.

The expectation operator has several often-used properties, listed here as axioms because
we will not derive them from first principles. We assume below that X and Y are defined
on the same sample space 2 and E X and E Y are well-defined.

1. Linearity:  For any real numbers a and b, E (aX +bY) = aE(X)+bE(Y) (and if
aE (X)+ bE (Y) is undefined, then so is E (aX + bY)).

2. Monotonicity: If X(w) <Y (w) for allw € Q, then E X <E Y.

3. Conditioning: If E(X|Y) denotes the conditional expectation of X given Y (which,
as a function of Y, is itself a random variable), then E X = E {E (X|Y)}.

As a special case of the conditioning property, note that if X and Y are independent, then
E(X]Y)=E X, which gives the well-known identity

EXY=E{EXY|Y)}=E{YEX|Y)}=E{YEX}=EXEY,

where we have used the fact that E(XY|Y) = Y E(X|Y), which is always true because
conditioning on Y is like holding it constant.

The variance and covariance operators are defined as usual, namely,
Cov (X, Y)Y E XY —(EX)EY)

and Var (X) & Cov (X, X). The linearity property above extends to random vectors: For
scalars a and b we have E (aX +bY) = a E(X) + bE(Y), and for matrices P and @) with
dimensions such that PX + QY is well-defined, E(PX 4+ QY) = PE(X) + QE(Y). The

covariance between two random vectors is

def

Cov(X, Y)E EXY'  —(EX)(EY)T,

and the variance matrix of a random vector (sometimes referred to as the covariance matrix)
is Var (X) ' Cov (X, X). Among other things, these properties imply that

Var (PX) = P Var (X)P' (1.33)
for any constant matrix P with as many columns as X has rows.

Example 1.41 As a first application of the monotonicity of the expectation operator,
we derive a useful inequality called Chebyshev’s inequality. For any positive
constants a and r and any random variable X, observe that

(XTI > X" H{]X] = a} = o"I{|X] > a},
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where throughout these notes, I{-} denotes the indicator function

1 if expression is true

0 if expression is not true. (1.34)

I{expression} o {

Since E I{|X| > a} = P(|X| > a), the monotonicity of the expectation operator
implies
B X

a’/‘

P(IX|>a) < (1.35)

Inequality ((1.35]) is sometimes called Markov’s inequality. In the special case that
X =Y —EY and r = 2, we obtain Chebyshev’s inequality: For any a > 0 and
any random Y,

Var Y

a?

P(Y —EY|>a) < . (1.36)
Example 1.42 We now derive another inequality, Jensen’s, that takes advantage of
linearity as well as monotonicity. Jensen’s inequality states that

f(EX)<E f(X) (1.37)

for any convex function f(z) and any random variable X. Definition tells
precisely what a convex function is, but the intuition is simple: Any line segment
connecting two points on the graph of a convex function must never go below the
graph (valley-shaped graphs are convex; hill-shaped graphs are not). To prove
inequality [1.37, we require another property of any convex function, called the
supporting hyperplane property. This property, whose proof is the subject of
Exercise [1.38] essentially guarantees that for any point on the graph of a convex
function, it is possible to construct a hyperplane through that point that puts
the entire graph on one side of that hyperplane.

In the context of inequality , the supporting hyperplane property guarantees
that there exists a line g(x) = ax + b through the point [E X, f(E X)] such
that g(z) < f(z) for all = (see Figure [1.2). By monotonicity, we know that
E g(X) < E f(X). We now invoke the linearity of the expectation operator to
conclude that

Eg(X) =g(E X) = f(E X),

which proves inequality ((1.37)).

Fxercises for Section 1.5
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Figure 1.2: The solid curve is a convex function f(z) and the dotted line is a supporting
hyperplane g(x), tangent at © = E X. This figure shows how to prove Jensen’s inequality.

Exercise 1.37 Show by example that equality can hold in inequality

Exercise 1.38 Let f(x) be a convex function on some interval, and let xy be any
point on the interior of that interval.

(a) Prove that

lim L&) = /(@) (1.38)

r—zo+ T — X

exists and is finite; that is, a one-sided derivative exists at z.

Hint: Using Definition m, show that the fraction in expression ((1.38) is non-
increasing and bounded below as x decreases to xy.

(b) Prove that there exists a linear function g(x) = ax+0b such that g(z¢) = f(xo)
and g(z) < f(x) for all z in the interval. This fact is the supporting hyperplane
property in the case of a convex function taking a real argument.

Hint: Let f’(zo+) denote the one-sided derivative of part (a). Consider the line
f(xo) + f'(wo+)(z — o).

Exercise 1.39 Prove Holder’s inequality: For random variables X and Y and positive
p and ¢ such that p+q =1,

E|XY| < (E XM’ (E [V|Y)". (1.39)
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(If p = g = 1/2, inequality ({1.39) is also called the Cauchy-Schwartz inequality.)

Hint: Use the convexity of exp(z) to prove that [abXY| < p|aX|'/? + ¢|bY|'/4
whenever X # 0 and bY # 0 (the same inequality is also true if aX = 0 or
bY = 0). Take expectations, then find values for the scalars a and b that give the
desired result when the right side of inequality is nonzero.

Exercise 1.40 Use Hélder’s Inequality (|1.39)) to prove that if o > 1, then
(E [X])" <E |X]"

Hint: Take Y to be a constant in Inequality (1.39).

Exercise 1.41 Kolmogorov’s inequality is a strengthening of Chebyshev’s inequality
for a sum of independent random variables: If X7, ..., X,, are independent random
variables, define

k

Sp=>» (Xi—EX,)

=1

to be the centered kth partial sum for 1 < k£ < n. Then for a > 0, Kolmogorov’s
inequality states that

a?

P (max |Sk| > a) < Var Sy (1.40)
1<k<n

(a) Let Ay denote the event that |S;| > a for the first time when i = k; that is,
that |Si| > @ and |S;| < a for all j < k. Prove that

1<k<n

a’P (max |Sk| > a) < ZE [I{A}St] -
i=1

Hint: Argue that

g EI{Ai}:P<max ]Sk|2a>
— 1<k<n
and E [[{A;}S?] > a*E I{A.}.

(b) Prove that

E S2> Xn:E [T{A{S; +28k(S, — Sk)}] -

k=1
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Hint: Use the fact that the Ay are nonoverlapping, which implies that 1 >
I(A)) + -+ I(A,). Also use S% = 57 4+ 25,(S, — Sk) + (Sn — Si)2

(c) Using parts (a) and (b), prove inequality (|1.40)).

Hint: By independence,
E [I{Ar}Sk(Sn — Si)] = E [I{ A} Sk] E (Sn — Sk).
What is E (S,, — Sk)?

Exercise 1.42 Try a simple numerical example to check how much sharper Kol-

mogorov’s inequality ((1.40)) is than Chebyshev’s inequality ({1.36]).

(a) Take n = 8 and assume that X3,..., X,, are independent normal random
variables with E X; = 0 and Var X; = 9 — ¢. Take a = 12. Calculate the exact
values on both sides of Chebyshev’s inequality ((1.36)).

(b) Simulate 10* realizations of the situation described in part (a). For each,
record the maximum value attained by |Si| for £ = 1,...,8. Approximate the
probability on the left hand side of Kolmogorov’s inequality . Describe
what you find when you compare parts (a) and (b). How does a histogram of the
maxima found in part (b) compare with the distribution of |S,,|?

Exercise 1.43 The complex plane C consists of all points x + iy, where x and y are
real numbers and i = /—1. The elegant result known as Euler’s formula relates
the points on the unit circle to the complex exponential function:

exp{it} = cost +isint for all t € R. (1.41)

Because e is on the unit circle for all real-valued ¢, the norm (also known as
the modulus) of e, denoted |e|, equals 1. This fact leads to the following
generalization of the triangle inequality: For any real-valued function g(z) and

any real number ¢,
t ) t
<| [ o) as| = [[1oto)] ao
0 0

¢
‘/g(m)eix dx
0

The inequalities below in parts (a) through (d) involving exp{it} will be used
in Chapter . Assume t is a real number, then use Equations and ,
together with Inequality , to prove them. [Since we only claim Equation
to be valid for real-valued functions of real variables, it is necessary here
to use Euler’s formula to separate e into its real and imaginary parts, namely
cost and sin t, then Taylor-expand them separately before reassembling the parts
using Euler’s formula again.|

dx : (1.42)
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(a) In Equation (1.6]), use a = 0 and d = 0 on both cost and sint to show that
for any t € R,

|exp{it} — 1] < [t].
(b) Proceed as above but with d = 1 to show that
lexp{it} — 1 —it| < ¢*/2.
(c) Proceed as above but with d = 2 to show that

1
exp{it}y — 1 — it + §t2 < |t|*/6.

(d) Proceed as above but using d = 1 for sint, then d = 2 together with
integration by parts for cost, to show that

1
exp{it} — 1 — it + §t2 <t

Exercise 1.44 Refer to Exercise Graph the functions |exp{it} —1—it+ %t2 ,
[t|>/6, and ¢ for ¢ in the interval [—10,10]. Graph the three curves on the same
set of axes, using different plotting styles so they are distinguishable from one
another. As a check, verify that the inequalities in Exercises [L.43(c) and (d)
appear to be satisfied.

Hint: The modulus |z| of a complex number z = x + iy equals /22 + y2. Refer
to Equation (1.41)) to deal with the expression exp{it}.

Exercise 1.45 For any nonnegative random variable Y with finite expectation, prove
that

iP(Y > i) <EY. (1.43)

=1

Hint: First, prove that equality holds if Y is supported on the nonnegative
integers. Then note for a general Y that E|Y | < EY, where |x] denotes the
greatest integer less than or equal to x.

Though we will not do so here, it is possible to prove a statement stronger than
inequality ([1.43]) for nonnegative random variables, namely,

/ PY > 1) dt =Y.
0
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(This equation remains true if E Y = 00.) To sketch a proof, note that if we
can prove [E f(Y,t)dt =E [f(Y,t)dt, the result follows immediately by taking
fYt)=HY = t}.
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Chapter 2

Weak Convergence

Chapter (1] discussed limits of sequences of constants, either scalar-valued or vector-valued.
Chapters [2| and [3| extend this notion by defining what it means for a sequence of random
variables to have a limit. As it turns out, there is more than one sensible way to do this.

Chapters [2] and {4 (and, to a lesser extent, Chapter [3|) lay the theoretical groundwork for
nearly all of the statistical topics that will follow. While the material in Chapter [2] is
essential, readers may wish to skip Chapter |3/ on a first reading. As is common throughout
the book, some of the proofs here have been relegated to the exercises.

2.1 Modes of Convergence

Whereas the limit of a sequence of real numbers is unequivocally expressed by Definition
[1.32] in the case of random variables there are several ways to define the convergence of a
sequence. This section discusses three such definitions, or modes, of convergence; Section
presents a fourth. Because it is often easier to understand these concepts in the univariate
case than the multivariate case, we only consider univariate random vectors here, deferring
the analogous multivariate topics to Section [2.3]

2.1.1 Convergence in Probability

What does it mean for the sequence X, Xs,... of random variables to converge to, say,
the random variable X7 Under what circumstances should one write X,, — X7 We begin
by considering a definition of convergence that requires that X,, and X be defined on the
same sample space. For this form of convergence, called convergence in probability, the
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absolute difference |X,, — X/, itself a random variable, should be arbitrarily close to zero
with probability arbitrarily close to one. More precisely, we make the following definition.

Definition 2.1 Let {X,},>; and X be defined on the same probability space. We
say that X, converges in probability to X, written X, B X , if for any € > 0,

P(|X,— X| <€) —1asn— . (2.1)

It is very common that the X in Definition [2.1] is a constant, say X = c. In such cases, we

simply write X, L5 ¢. When we replace X by ¢ in Definition ﬂ we do not need to concern
ourselves with the question of whether X is defined on the same sample space as X,, because
any constant may be defined as a random variable on any sample space. In the most common
statistical usage of convergence to a constant ¢, we take ¢ to be some parameter 6 and X,
to be an estimator of 6:

Definition 2.2 If X, 56, X, is said to be consistent (or weakly consistent) for 6.

As the name suggests, weak consistency is weaker than (i.e., implied by) a condition called
“strong consistency,” which will be defined in Chapter “Consistency,” used without the
word “strong” or “weak,” generally refers to weak consistency. Throughout this book, we
shall refer repeatedly to (weakly) consistent estimators, whereas strong consistency plays a
comparatively small role.

Example 2.3 Suppose that X, X,,... are independent and identically distributed
(i.i.d.) uniform (0, #) random variables, where € is an unknown positive constant.
For n > 1, let X(,,) be defined as the largest value among X, through X,,: That

is, X(n) def maxi<j<p X;. Then we may show that X(,) is a consistent estimator
of 6 as follows:

By Definition 2.1, we wish to show that for an arbitrary € > 0, P(|Xn) — 6] <
€) = 1 as n — oo. In this particular case, we can evalulate P(| X,y — 0| < €)
directly by noting that X(,) cannot possibly be larger than 6, so that

P(’X(n) —9’ < 6) = P(X(n) > 9—6) =1 —P(X(n) < (9—6).
The maximum X, is less than some constant if and only if each of the random

variables X1, ..., X, is less than that constant. Therefore, since the X; are i.i.d.,

P(X <0—€) =[P(X; <0—e)" = {([)1 —(¢/0)]" 10 A 6

Since 1 — (€/0) is strictly less than 1, we conclude that no matter what positive
value € takes, P(X,, <0 —¢) — 0 as desired.
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2.1.2 Probabilistic Order Notation

There are probabilistic analogues of the o and O notations of Section that apply to
random variable sequences instead of real number sequences.

Definition 2.4 We write X,, = 0p(Y,) if X,,/Y, £o.

In particular, op(1) is shorthand notation for a sequence of random variables that converges
to zero in probability, as illustrated in Equation (2.2) below.

Definition 2.5 We write X,, = Op(Y,,) if for every € > 0, there exist M and N such

that
(

As a special case of Definition we refer to any Op(1) sequence as a bounded in probability
sequence:

Xy
Y,

<M)>1—eforalln>N.

Definition 2.6 We say that Xi, Xs, ... is bounded in probability if X,, = Op(1), i.e.,
if for every € > 0, there exist M and N such that P(|X,| < M) > 1—eforn > N.

Definition [2.6] is primarily useful because of the properties of bounded in probability se-
quences established in Exercise [2.2]

Example 2.7 In Example 2.3, we showed that if X;, X5,... are independent and
identically distributed uniform (0, #) random variables, then

P
max X; — 0 as n — 00o.
1<i<n

Equivalently, we may say that

max X; =60 + op(1) as n — 0o. (2.2)
1<i<n

It is also technically correct to write

max X, =60+ 0p(1) as n — 00, (2.3)

though Statement (2.3)) is less informative than Statement (2.2). On the other
hand, we will see in Examplethat Statement (2.3)) may be sharpened considerably—
and made more informative than Statement (2.2))—by writing

1
maxXi:9+Op(—> as n — 00.
n

1<i<n
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Using the op notation defined above, it is possible to rewrite Taylor’s theorem [1.18|in a
form involving random variables. This theorem will prove to be useful in later chapters; for
instance, it is used to prove the result known as the delta method in Section [5.1.1

Theorem 2.8 Suppose that X, Eit Oy for a sequence of random variables X7, X, ...
and a constant 6. Furthermore, suppose that f(z) has d derivatives at the point
0. Then there is a random variable Y,, such that

(X, —6p)?

f(XN) = f(eo) + (Xn - 90)f'(90) toot d!

{£9(00) + Y2} (2.4)
and Y,, = op(1) as n — oo.

The proof of Theorem is a useful example of an “epsilon-delta” proof (named for the e
and ¢ in Definition |1.11)).

Proof: Let
! / n—00)¢ ! :
Y, = (Xvi@o)d [f(X”) — f(00) = (Xn — 00) f'(60) — -~ — (X(d_%;! ] — f9D(0y) if X,, # 0y
0 if X,, = 6,.

Then Equation is trivially satisfied. We will show that Y;, = op(1), which means Y, i 0,
by demonstrating that for an arbitrary ¢ > 0, there exists N such that P(|Y,| <€) >1—¢
for all n > N. By Taylor’s Theorem [1.18] there exists some § > 0 such that |X,, — 6y < §
implies |Y,,| < e (that is, the event {w : |X,(w) — Oy| < 0} is contained in the event {w :
Y, (w)| < €}). Furthermore, because X, L 65, we know that there exists some N such that
P(|X,, — 6| <0) >1—¢for all n > N. Putting these facts together, we conclude that for
alln > N,

P(|Yn| <€) ZP(|Xn_€0| <5) > 1_67
which proves the result. [ ]

In later chapters, we will generally write simply

(Xn B

F(Xn) = f(0o) + (X — 00) f'(00) + -+ + Tﬁo)d {fD(0) +op(1)} asn— oo (2.5)

when referring to the result of Theorem 2.8 A technical quibble with Expression (2.5) is
that it suggests that any random variable Y, satisfying (2.4)) must also be op(1). This is not
quite true: Since Y,, may be defined arbitrarily in the event that X,, = 6y and still satisfy

2a), it
P(X, =60y >c foralln

for some positive constant ¢, then Y, # op(1) may still satisfy (2.4). However, as long as
one remembers what Theorem says, there is little danger in using Expression ({2.5]).
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2.1.3 Convergence in Distribution

As the name suggests, convergence in distribution (also known as convergence in law) has
to do with convergence of the distribution functions (or “laws”) of random variables. Given
a random variable X, the distribution function of X is the function

F(z) = P(X <ux). (2.6)

Any distribution function F(z) is nondecreasing and right-continuous, and it has limits
lim, o F(2) = 0 and lim, . F'(x) = 1. Conversely, any function F'(x) with these proper-
ties is a distribution function for some random variable.

It is not enough to define convergence in distribution as simple pointwise convergence of a
sequence of distribution functions; there are technical reasons that such a simplistic definition
fails to capture any useful concept of convergence of random variables. These reasons are
illustrated by the following two examples.

Example 2.9 Let X,, be normally distributed with mean 0 and variance n. Then
the distribution function of X,, is F,(z) = ®(x/y/n), where ®(z) denotes the
standard normal distribution function. Because ®(0) = 1/2, we see that for any
fixed z, F,,(z) — 1/2 as n — oo. But the function that is constant at 1/2 is not
a distribution function. This example shows that not all convergent sequences of
distribution functions have limits that are distribution functions.

Example 2.10 By any sensible definition of convergence, 1/n should converge to 0
as n — oo. But consider the distribution functions F,(x) = I{x > 1/n} and
F(x) = I{x > 0} corresponding to the constant random variables 1/n and 0. We
do not have pointwise convergence of F,(z) to F(x), since F,,(0) = 0 for all n but
F(0) = 1. However, F,,(x) — F(z) is true for all z # 0. Not coincidentally, the
point = 0 where convergence of F,(z) to F(x) fails is the only point at which
the function F'(z) is not continuous.

To write a sensible definition of convergence in distribution, Example demonstrates that
we should require that the limit of distribution functions be a distribution function itself,
say F'(x), while Example suggests that we should exclude points where F(x) is not
continuous. We therefore arrive at the following definition:

Definition 2.11 Suppose that X has distribution function F(z) and that X, has
distribution function F,(x) for each n. Then we say X,, converges in distribution
to X, written X, -% X, if F,(x) — F(x) as n — oo for all x at which F(z) is
continuous. Convergence in distribution is sometimes called convergence in law
and written X, ='e
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The notation of Definition [2.11 may be stretched a bit; sometimes the expressions on either

side of the % symbol may be distribution functions or other notations indicating certain
distributions, rather than actual random variables as in the definition. The meaning is
always clear even if the notation is not consistent.

However, one common mistake should be avoided at all costs: If A (or L or any other “limit
arrow” ) indicates that n — oo, then n must never appear on the right side of the arrow. See
Expression ([2.8]) in Example for an example of how this rule is sometimes violated.

Example 2.12 The Central Limit Theorem for i.i.d. sequences: Let Xi,..., X, be
independent and identically distributed (i.i.d.) with mean g and finite variance
o?. Then by a result that will be covered in Chapter 4| (but which is perhaps
already known to the reader),

vn (% ZX - u) 4 N(0,0?), (2.7)

where N(0,0%) denotes a normal distribution with mean 0 and variance o2

[N(0,0%) is not actually a random variable; this is an example of “stretching

the -5 notation” referred to above.]

Because Equation may be interpreted as saying that the sample mean X,
has approximately a N(u,o?/n) distribution, it may seem tempting to “rewrite”

Equation (2.7)) as
1< 2
S x AN (u, ‘7—) . (2.8)
n n

Resist the temptation to do this! As pointed out above, n should never appear
on the right side of a limit arrow (as long as that limit arrow expresses the idea
that n is tending to co).

By the result of Exercise 2.2 the limit statement (2.7) implies that the left side
of that statement is Op(1). We may therefore write (after dividing through by

v/n and adding p)

1 < 1
H;Xi =u+0p (%> as n — oo. (2.9)

Unlike Expression ({2.8)), Equation ({2.9)) is perfectly legal; and although it is less
specific than Expression (2.7)), it expresses at a glance the \/n-rate of convergence
of the sample mean to u.
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Unlike X, Ax , the expression X, 4 X does not require X,, — X to be a random variable;

in fact, X, 4 X s possible even if X,, and X are not defined on the same sample space.
Even if X,, and X do have a joint distribution, it is easy to construct an example in which
X, X but X, does not converge to X in probability: Take Z; and Z5 to be independent
and identically distributed standard normal random variables, then let X,, = Z; for all n
and X = Z,. Since X,, and X have ezxactly the same distribution by construction, X, 4 x
in this case. However, since X,, — X is a N(0,2) random variable for all n, we do not have

X, 5 x.

We conclude that X, 4 X cannot possibly imply X, Lx (but see Theorem [2.14|for a special
case in which it does). However, the implication in the other direction is always true:

Theorem 2.13 If X, E)X, then X, 4 X

Proof: Let F,(x) and F(z) denote the distribution functions of X,, and X, respectively.

Assume that X,, = X. We need to show that F,(t) — F(t), where t is any point of continuity
of F(x).

Choose any € > 0. Whenever X,, < ¢, it must be true that either X <t+eor | X, — X| > €.
This implies that

F,(t) < F(t+e€) + P(|X,, — X| > e).
Similarly, whenever X <t — ¢, either X,, <t or |X,, — X| > ¢, implying

F(t—e¢) < F,(t)+ P(|X,, — X| > ¢).
We conclude that for arbitrary n and € > 0,

Flt—e)—P(|X,—X|>¢) < F,(t) < F(t+e€)+ P(| X, — X| >¢). (2.10)
Taking both the liminf, and the limsup, of the above inequalities, we conclude [since
X, 5 X implies P(|X,, — X| > €) — 0] that
F(t—e¢) < lim inf F,(t) < limsup F,(t) < F(t+¢)

for all e. Since ¢ is a continuity point of F(z), letting € — 0 implies
F(t) = liminf F, (t) = limsup F,(t),
so we conclude F,(t) — F(t) and the theorem is proved. n

We remarked earlier that Xni>X could not possibly imply Xn£>X because the latter
expression requires that X,, and X be defined on the same sample space for every n. However,
a constant ¢ may be considered to be a random variable defined on any sample space; thus,

it is reasonable to ask whether X, e implies X, £ ¢ The answer is yes:
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Theorem 2.14 X, A ¢ if and only if X, Ke

Proof: We only need to prove that X, L implies X, Ei ¢, since the other direction is a
special case of Theorem If F(x) is the distribution function I{z > ¢} of the constant
random variable ¢, then ¢ + ¢ and ¢ — € are points of continuity of F(z) for any ¢ > 0.
Therefore, X, % ¢ implies that F.ic—¢) = F(c—¢)=0and F,(c+¢) = F(c+¢€) =1 as
n — 0o. We conclude that

P(—e< X, —c<e)=F,(c+e¢)— F,(c—¢€) — 1,
which means Xn£>c. [

When we speak of convergence of random variables to a constant in this book, most com-
monly we refer to convergence in probability, which (according to Theorem is equivalent
to convergence in distribution. On the other hand, when we speak of convergence to a ran-
dom variable, we nearly always refer to convergence in distribution. Therefore, in a sense,
Theorem makes convergence in distribution the most important form of convergence in
this book. This type of convergence is often called “weak convergence”.

2.1.4 Convergence in Mean

The third and final mode of convergence in this chapter is useful primarily because it is
sometimes easy to verify and thus gives a quick way to prove convergence in probability, as
Theorem below implies.

Definition 2.15 Let a be a positive constant. We say that X, converges in ath mean
to X, written X,, — X, if

E|X, —X|*—0asn— oco. (2.11)
Two specific cases of Definition deserve special mention. When a = 1, we normally omit
mention of the a and simply refer to the condition E |X,, — X| — 0 as convergence in mean.
Convergence in mean is not equivalent to E X,, — E X: For one thing, E X,, - E X is

possible without any regard to the joint distribution of X,, and X, whereas E |X,, — X| — 0
clearly requires that X,, — X be a well-defined random variable.

Even more important than a = 1 is the special case a = 2:

Definition 2.16 We say that X,, converges in quadratic mean to X, written X, = X,
if

E|X, - X*— 0asn — oo.
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Convergence in quadratic mean is important for two reasons. First, it is often quite easy
to check; in Exercise , you are asked to prove that X, = ¢ if and only if E X,, — ¢
and Var X,, — 0 for some constant ¢. Second, quadratic mean convergence (indeed, ath
mean convergence for any a > 0) is stronger than convergence in probability, which means
that weak consistency of an estimator may be established by checking that it converges in
quadratic mean. This latter property is a corollary of the following result:

Theorem 2.17 (a) For a constant ¢, X,, 2 cif and only if E X,, — cand Var X,, — 0.
(b) For fixed a > 0, X,, % X implies X, 5 X.

Proof: Part (a) is the subject of Exercise . Part (b) relies on Markov’s inequality (1.35)),
which states that

1
P(X, - X|>¢) < —E X, — X|° (2.12)
6(1

for an arbitrary fixed e > 0. If X,, = X, then by definition the right hand side of inequality

2.12)) goes to zero as n — 00, so the left side also goes to zero and we conclude that X, L x
by definition. -

Example 2.18 Any unbiased estimator is consistent if its variance goes to zero. This
fact follows directly from Theorem [2.17(a) and (b). As an example, consider a
sequence of independent and identically distributed random variables X7, Xo, ...
with mean p and finite variance o2. The sample mean

_ 1 <
Xn:ﬁ;Xi

has mean p and variance o2/n. Therefore, X, is unbiased and its variance goes

to zero, so we conclude that it is consistent; i.e., X,, R . This fact is the Weak
Law of Large Numbers (see Theorem [2.19) for the case of random variables with
finite variance.

Exercises for Section 2.1
Exercise 2.1 For each of the three cases below, prove that X, L1
(a) X, =14 nY,, where Y, is a Bernoulli random variable with mean 1/n.
(b) X, =Y, /logn, whereY,, is a Poisson random variable with mean )., (1/3).

(¢) X, = +>",Y? where the Y; are independent standard normal random
variables.
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Exercise 2.2 This exercise deals with bounded in probability sequences; see Defini-
tion 2.6

(a) Prove that if X, % X for some random variable X , then X, is bounded in
probability.

Hint: You may use the fact that any interval of real numbers must contain a
point of continuity of F'(x). Also, recall that F(z) — 1 as x — oo.

(b) Prove that if X,, is bounded in probability and Y, i 0, then XY, £o.

Hint: For fixed € > 0, argue that there must be M and N such that P(]X,| <
M) >1—¢/2 and P(|Y,| < ¢/M) > 1—¢/2 for all n > N. What is then the
smallest possible value of P(|X,,| < M and |Y,| < ¢/M)? Use this result to prove

X,Y, 50.
Exercise 2.3 The Poisson approximation to the binomial:

(a) Suppose that X, is a binomial random variable with n trials, where the
probability of success on each trial is A/n. Let X be a Poisson random variable

with the same mean as X,,, namely A. Prove that X, 4 x

Hint: Argue that it suffices to show that P(X, = k) — P(X = k) for all
nonnegative integers k. Then use Stirling’s formula ([1.19).

(b) Part (a) can be useful in approximating binomial probabilities in cases where
the number of trials is large but the success probability is small: Simply consider
a Poisson random variable with the same mean as the binomial variable. Assume
that X, is a binomial random variable with parameters n and 2/n. Create a plot
on which you plot P(Xj9 = k) for k = 0,...,10. On the same set of axes, plot
the same probabilities for X5, X509, and the Poisson variable we’ll denote by X .
Try looking at the same plot but with the probabilities transformed using the
logit (log-odds) transformation logit(t) = log(t) — log(1 — ¢). Which plot makes
it easier to characterize the trend you observe?

Exercise 2.4 Suppose that Xi,..., X, are independent and identically distributed
Uniform(0, 1) random variables. For a real number ¢, let

Go(t) = znjf{x,- <1,

=1

(a) What is the distribution of G, (¢) if 0 <t < 17

(b) Suppose ¢ > 0. Find the distribution of a random variable X such that
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Gn(c/n) %X, Justify your answer.

(c) How does your answer to part (b) change if X3,..., X, are from a stan-
dard exponential distribution instead of a uniform distribution? The standard
exponential distribution function is F(t) =1 — e,

Exercise 2.5 For each of the three examples in Exercise does X, &317 Justify
your answers.

Exercise 2.6 Prove Theorem [2.17(a).

Exercise 2.7 The converse of Theorem [2.17(b) is not true. Construct a counterex-

ample in which Xng() but E X,, = 1 for all n (by Theorem [2.17} if E X,, = 1,
then X, cannot converge in quadratic mean to 0).

Hint: The mean of a random variable may be strongly influenced by a large
value that occurs with small probability (and if this probability goes to zero,
then the mean can be influenced in this way without destroying convergence in
probability).

Exercise 2.8 Prove or disprove this statement: If there exists M such that P(|X,| <
M) =1 for all n, then X, Le implies X,, 2 c.

Exercise 2.9 (a) Prove that if 0 < a < b, then convergence in bth mean is stronger

than convergence in ath mean; i.e., X, END'S implies X,, = X.
Hint: Use Exercise with a = b/a.

b) Prove l)y counterexample that the conclusion of part a) is not true in general
g
if0<b<a.

2.2 Consistent Estimates of the Mean

For a sequence of random vectors X, X, ..., we denote the nth sample mean by

- det 1L
X, & E;X,.

We begin with a formal statement of the weak law of large numbers for an independent
and identically distributed sequence. Later, we discuss some cases in which the sequence of
random vectors is not independent and identically distributed.
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2.2.1 The Weak Law of Large Numbers

Theorem 2.19 Weak Law of Large Numbers (univariate version): Suppose that
X1, X5, ... are independent and identically distributed and have finite mean pu.

Then X, KR L

The proof of Theorem in its full generality is beyond the scope of this chapter, though it
may be proved using the tools in Section However, by tightening the assumptions a bit,
a proof can be made simple. For example, if the X; are assumed to have finite variance (not
a terribly restrictive assumption), the weak law may be proved in a single line: Chebyshev’s

inequality ((1.36)) implies that

Var X,,  Var X,

P(|Xn—pl =€) < 2

— 0
- e ne ’
so X, ER p follows by definition. (This is an alternative proof of the same result in Example
2.18))

Example 2.20 If X ~ binomial(n,p), then X/n Ei p. Although we could prove this
fact directly using the definition of convergence in probability, it follows imme-
diately from the Weak Law of Large Numbers due to the fact that X/n is the
sample mean of n independent and identically distributed Bernoulli random vari-
ables, each with mean p.

Example 2.21 Suppose that X, X5, ... are independent and identically distributed
with mean p and finite variance o2. Then the estimator

1 n
2 2

is consistent for 0 because of the Weak Law of Large Numbers: The (X; — u)?

are independent and identically distributed and they have mean o?.

Ordinarily, of course, we do not know i, so we replace 1 by X,, (and often replace
% by ﬁ) to obtain the sample variance. We need a bit more theory to establish
the consistency of the sample variance, but we will revisit this topic later.

2.2.2 Independent but not Identically Distributed Variables

Let us now generalize the conditions of the previous section: Suppose that X, X, ... are
independent but not necessarily identically distributed but have at least the same mean, so
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that E X; = p and Var X; = 02. When is X, consistent for_ u? Since X, is unbiased, the
result of Example tells us that we may conclude that X, is consistent as long as the

variance of X,, tends to 0 as n — oo. (However, X, LY 1 does not imply Var X,, — 0; see

Exercise [2.10}) Since

_ 1 &
Var X, = — > ot (2.13)
=1

we conclude that X, =y if S-7, 02 = o(n?).

What about alternatives to the sample mean? Suppose we restrict attention to weighted
mean estimators of the form

n
i, = D im CiXi
n n
Dic Ci
for some sequence of positive constants ¢y, ¢, . ... The fi,, estimator above is unbiased, so we

consider whether its variance tends to zero. By independence, we may write

no 2 9
Zi:l Ci0;

(Z?:l Ci)Z.

How may we obtain the smallest possible variance for [, To find the answer, we may set
v = ¢/ Y i ¢ and finding partial derivatives of Var fi,, with respect to 1, ..., v,—1 (after
making the substitution v, =1 —~; — -+ —v,_1). Setting these partial derivatives equal to
zero gives the equations

Var fi,, =

V0 = 02 for1<:<n—1.

After checking to ensure that the solution is indeed a minimizer of the variance, we con-
clude that Var fi,, is minimized when each ¢; is proportional to 1/¢Z. Thus, the variance is
minimized by

5, = Lz 20 (2.14)
Zj:l 1/032‘

which attains the variance

1
2 1/o}

An interesting fact about n Var X,, and n Var 4, is that they are, respectively, the arithmetic

and harmonic means of o%,...,02. In other words, our conclusion that Var §, < Var X,,,

Var 6, = (2.15)
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with equality only when the o are all equal, is simply a restatement of a well-known math-
ematical inequality relating the harmonic and arithmetic means! See Exercise for a
particularly compelling demonstration of the discrepancy between these two means.

Suppose for a sequence of independent random variables that instead of estimating their
mean p, we wish to estimate their conditional mean, given a covariate. This is exactly the
case in regression:

Example 2.22 In the case of simple linear regression, let
Y; = fo + bz + €,

where we assume the z; are known covariates and the ¢; are independent and
identically distributed with mean 0 and finite variance 0. (This implies that the
Y; are independent but not identically distributed.) If we define

i — Zn n 1 - n
w™ = S and UZ( P T

' 2?11(2]‘ —Zn)? n v

then the least squares estimators of 5y and (; are

n

BOn = sz(n)yz and Bln - sz(n)y;7 (216)
=1

i=1

respectively. One may prove, as in Exercise M(a), that BOn and Bln are unbiased
estimators of 3y and 31, so Example tells us that they are consistent as long
as their variances tend to zero as n — oo. It is therefore possible to show, as in

Exercise [2.14(b), that o, is consistent if

n —0 (2.17)

and [, is consistent if

SEECE — 0. (2.18)

2.2.3 Identically Distributed but not Independent Variables

Suppose that Xi, Xo,... have the same mean, say p, but that they are not necessarily
independent. Since the unbiasedness of X, does not rely on independence, we still have
E X, = u, so X, is consistent if its variance tends to zero. A direct calculation gives
o 1 n n
Var X, = — > ) Cov (X, X;). (2.19)

i=1 j=1

o4



Suppose we also assume that the X; are identically distributed. In the presence of inde-
pendence (the first “i” in “i.i.d”), the “i.d.” assumption is sufficient to specify the joint
distribution of the X;. However, in the case of dependent random variables, assuming they
are identically distributed (with, say, variance o) allows only a small simplification of Equa-

tion ([2.19):

- o 2
Var X, = —+ EZZCOV (Xi, X;).

1<j

In order to deal with the (’;) covariances above, all of which could in principle be distinct,
it would help to make some additional assumptions beyond “identically distributed”. One
possibility is to assume that the X7, X5, ... are exchangeable:

Definition 2.23 Let 7 denote an arbitrary permutation on n elements (that is, a
function that maps {1,...,n} onto itself). The finite sequence Xj,..., X, is
said to be exchangeable if the joint distribution of the permuted random vector
(Xx(1)s - - -» Xa(n)) is the same no matter which 7 is chosen. The infinite sequence
X1, X5, ... is said to be exchangeable if any finite subsequence is exchangeable.

Under exchangeability, the covariance between X; and X is always the same, say Cov (X, X»),
when i # j. Therefore, Equation (2.19)) reduces to

Var Yn _ 0'_2 i (n — 1) Cov (Xl,XQ),
n n

and we conclude that exchangeability implies Var X,, — Cov (X1, X5) as n — co. Since this
is a nonzero limit unless the X; are pairwise uncorrelated, exchangeability appears to be too
stringent a condition to place on the X; in the context of searching for consistent estimators
of p.

Thus, we turn to a weaker concept than exchangeability:

Definition 2.24 The sequence X1, X5, ... is said to be stationary if, for a fixed k& > 0,
the joint distribution of (Xj, ..., X;4x) is the same no matter what positive value
of i is chosen.

We see that i.i.d. implies exchangeability, which implies stationarity, which implies identically
distributed. To obtain an interesting simplification of Equation ([2.19)), it turns out that
stationarity is just about the right level in this hierarchy.

Under stationarity, Cov (X;, X;) depends only on the “gap” j —i. For example, stationarity
implies Cov (X7, Xy) = Cov (X, X5) = Cov (X5, Xg) = ---. Therefore, Equation ({2.19))
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becomes

L 0_2 9 n—1
Var X,, = E+ﬁ;(n—k) Cov (X1, X14k)- (2.20)

Lemma 2.25 Expression (2.20) tends to 0 asn — oo if 02 < oo and Cov (X1, X ,1) —
0 as k — oo.

Proof: It is immediate that 0%/n — 0 if 02 < co. Assuming that Cov (X, X;44) — 0,
select € > 0 and note that if N is chosen so that | Cov (X7, X1.%)| < €/2 for all & > N, we
have

n—1 N n—1
2 2 2
= ;(n — k) Cov (X1, X14)| < ~ ; [Cov (X1, Xy4)| + ~ k_ZNH ICov (X1, X144)| -

The second term on the right is strictly less than /2, and the first term is a constant divided
by n, which may be made smaller than €¢/2 by choosing n large enough. (This lemma is also
a corollary of the result stated in Exercise [L.3]) ]

Because of Lemma it is sensible to impose conditions guaranteeing that Cov (X7, X14)
tends to zero as k — co. For instance, we might consider sequences for which Cov (X7, X;,)
is exactly equal to zero for all k larger than some cutoff value, say m. This is the idea of
m-~dependence:

Definition 2.26 For a fixed nonnegative integer m, the sequence X1, X, ... is called
m-dependent if the random vectors (X7, ..., X;) and (X, X;41,...) are indepen-
dent whenever 7 — i > m.

Any stationary m-dependent sequence trivially satisfies Cov (X1, X11x) — 0 as k — oo,
so by Lemma [2.25| X, is consistent for any stationary m-dependent sequence with finite
variance. As a special case of m-dependence, any independent sequence is 0-dependent.

Exercises for Section 2.2

Exercise 2.10 The goal of this Exercise is to construct an example of an independent

sequence X1, Xo,... with E X; = p such that Yni,u but Var X, does not
converge to 0. There are numerous ways we could proceed, but let us suppose
that for some positive constants ¢; and p;, X; = ¢;Y;(2Z; — 1), where Y; and Z;
are independent Bernoulli random variables with E Y; = p; and E Z; = 1/2.

(a) Verify that E X; = 0 and find Var X,,.
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(b) Show that X, 0 if

1 n
=3 ep = 0. (2.21)
n i=1

Hint: Use the triangle inequality to show that if Condition (2.21)) is true, then
X, converges in mean to 0 (see Definition [2.15]).

(c) Now specify ¢; and p; so that Var X,, does not converge to 0 but Condition
(2.21)) holds. Remember that p; must be less than or equal to 1 because it is the
mean of a Bernoulli random variable.

Exercise 2.11 Suppose that X;, Xy, ... are independent with mean zero and Var X; =
(1 4+ 1)log(i + 1). Let 6, be the minimum variance linear estimator defined in
Equation and let X,, denote the sample mean. Find the relative efficiency
of 6, with respect to X,, (defined as Var X,,/ Var d,) for n = 10, k = 1,...,6.
What seems to be happening? Find, with proof, the limits of Var X,, and Var 6,
as n — oo to try to verify your conjecture.

Exercise 2.12 Suppose Xi, Xy, ... are independent and identically distributed with
mean 4 and finite variance 0. Let V; = X; = (3°_, Xj)/i.

(a) Prove that Y, = (3.7, ¥;)/n is a consistent estimator of .

(b) Compute the relative efficiency ey, . of Y7, to X,,, defined as Var (X,,)/ Var (Y5,),
for n € {5,10,20, 50,100, 00} and report the results in a table. For n = oo, give
the limit (with proof) of the efficiency.

Exercise 2.13 Let Y7,Y5,... be independent and identically distributed with mean
p and variance 02 < oo. Let

Yo+ Yi+Ys+ Y
Xy=21 0176

Xi=Y), Xy,=
1 1 2 2 ) 3 3

etc.

Define ¢,, as in Equation (2.14)).
(a) Show that §, and X,, are both consistent estimators of .

(b) Calculate the relative efficiency ex, 5 of X, to d,,, defined as Var (4,,)/ Var (X,),
for n = 5,10, 20, 50,100, and oo and report the results in a table. For n = oo,
give the limit (with proof) of the efficiency.

(c) Using Example m, give a simple expression asymptotically equivalent
to ex ;5.- Report its values in your table for comparison. How good is the
approximation for small n?
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Exercise 2.14 Consider the case of simple linear regression in Example [2.22]

(a) Prove that the least squares regression estimators defined in equation ([2.16)
are unbiased. In other words, show that E £y, = By and E 51, = 1.

Hint: Prove and use the facts that . , w§”) =0and >, wgn)zi = 1.

(b) Prove consistency of B()n and ﬂAm under conditions 1) and {D respec-
tively.

2.3 Convergence of Transformed Sequences

Many statistical estimators of interest may be written as functions of simpler statistics whose
convergence properties are known. Therefore, results that describe the behavior of trans-
formed sequences have central importance for the study of statistical large-sample theory.
We begin with some results about continuous transformations of univariate random variable
sequences. Yet the important result near the end of this section, called Slutsky’s theorem,
is intrinsically multivariate in nature. For this reason, after presenting a few results on con-
tinuous transformations, we will extend these and other univariate concepts from earlier in
this chapter to the k-dimensional setting for k£ > 1.

2.3.1 Continuous Transformations: The Univariate Case

Just as they do for sequences of real numbers, continuous functions preserve convergence
of sequences of random variables. We state this result formally for both convergence in
probability and convergence in distribution.

Theorem 2.27 Suppose that f(z) is a continuous function.
(a) If X, 5 X, then f(X,) D F(X).
(b) If X, % X, then f(X,)-% f(X).

Theorem is the random-variable analogue of Theorem which is proved using a
straightforward e-§ argument. It is therefore surprising that proving Theorem is quite
difficult. Indeed, each of its two statements relies on an additional theorem for its proof.
For statement (a), this additional theorem (Theorem involves almost sure convergence,
a mode of convergence not defined until Chapter . Statement (b) about convergence in
distribution, on the other hand, follows from a powerful characterization of convergence in

distribution (its proof is the subject of Exercises and [2.16)).
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Theorem 2.28 X, % X if and only if E 9(X,) = E g(X) for all bounded and con-
tinuous real-valued functions g(z).

The forward half of Theorem [2.28] the fact that X, % X implies E 9(X,) — E g(X) if g(z)
is bounded and continuous, is called the Helly-Bray theorem. Taken as a whole, the theorem
establishes a condition equivalent to convergence in distribution, and in fact this condition is

sometimes used as the definition of X, LX. Ttis very important to remember that Theorem
2.28) does not say that X, % X implies E X, = E X (because the function g(t) = ¢, while

certainly continuous, is not bounded). In fact, the special conditions under which X, A x
implies E X,, — E X are the subject of Section [3.3

Using Theorem [2.28, Theorem [2.27|(b) follows quickly.

Proof of Theorem [2.27(b) Let g(z) be any bounded and continuous function. By
Theorem [2.28 it suffices to show that E g[f(X,)] — E g[f(X)]. Since f(z) is continuous,
the composition x +— g[f(z)] is bounded and continuous. Therefore, another use of Theorem
2.28 proves that E g[f(X,)] — E g[f(X)] as desired. n

2.3.2 Multivariate Extensions

We now extend our notions of random-vector convergence to the multivariate case. Several
earlier results from this chapter, such as the weak law of large numbers and the results
on continuous functions, generalize immediately to this case. Note the use of bold type
to signify random vectors: Whereas X,, and X denote univariate random variables, the
possibly-multidimensional analogues are X,, and X.

A k-dimensional random vector is a function X(w), usually abbreviated X, that maps a
probability space € into k-dimensional Euclidean space R¥. As we remarked in Section
1.5 it is not possible to develop a coherent theory if we consider all possible functions
X(w) to be random vectors; therefore, strictly speaking we must restrict attention only to
measurable functions X (w). Yet a reasonable treatment of measurability is beyond the scope
of this book, and instead of delving into technicalities we rest assured that basically every
interesting function X(w) is a legitimate random variable. (Indeed, it is a fairly challenging
mathematical exercise to construct a nonmeasurable function.)

The multivariate definitions of convergence in probability and convergence in ath mean
are both based on the sequence ||X,, — X]||, which is a wunivariate sequence, so they are
straightforward and require no additional development:

Definition 2.29 X, converges in probability to X (written X, Rt X)) if for any € > 0,
P(|X, —X] <€) = 1asn— oo.
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Definition 2.30 For a > 0, X,, converges in ath mean to X (written X, % X) if

E ||IX, — X||* = 0 as n — oc.

Convergence in quadratic mean, written X,, =5 X, is the special case of Definition when
a = 2. Since ||c||* = c'¢, X,, converges in quadratic mean to X if

E[(X,—-X) (X, —X)] = 0asn— . (2.22)

Because Definitions and rely only on the univariate random variables ||X,, — X]||,
Theorem immediately implies that (a) X, % ¢ if and only if E | X, — c|| — 0 and

Var || X,, — c|| = 0; and (b) if X,, % X, then X, £ X. However, fact (a) is less useful than
in the univariate setting; consider the comments following the proof of Theorem below.

As an immediate application of the above results, we may extend the weak law of large
numbers to the multivariate case. For a sequence X;, Xo, ..., define the nth sample mean
to be

< def 1 o

Theorem 2.31 The Weak Law of Large Numbers: Suppose that X;, X, ... are in-
dependent and identically distributed and have finite mean p. Then X, EA u.

Partial Proof: We do not prove this theorem in full generality until Section 4.1l However,
in the special (and very common) case in which the k x k covariance matrix ¥ = Var X;
has only finite entries,

T

n

Z(Xz — )

=1

E(XH_N>T(Xn_N) = iE [Z(Xz_ﬂ)

n? :
=1

1 1
= S EXi—m) (X - ) = () - 0
i=1

as n — oo. Therefore, X,, & p by definition, which implies that X, R . [ ]

It is instructive to compare the proof outlined in the univariate Example to the multi-
variate proof above because the former method may not be adapted to the latter situation.
It is still true that any unbiased estimator whose covariance matrix converges to the zero
matrix is consistent [by Equation (2.22]) with X replaced by E X,,|, but an argument for this
cannot easily be based on Theorem [2.17|(a): The fact that an estimator like X,, is unbiased
for p does not immediately imply that E HXn — p,H =0.
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To extend convergence in distribution to random vectors, we need the multivariate analogue
of Equation (22.6]), the distribution function. To this end, let

F(x) ¥ P(X <x),

where X is a random vector in R? and X < x means that X; < z; for all 1 < i < d.

Definition 2.32 X, converges in distribution to X (written X, KA X) if for any point
¢ at which F(x) is continuous,

F,(c) = F(c) as n — oc.

There is one subtle way in which the multivariate situation is not quite the same as the
univariate situation for distribution functions. In the univariate case, it is very easy to
characterize the points of continuity of F(z): The distribution function of the univariate
random variable X is continuous at z if and only if P(X = x) = 0. However, this simple
characterization no longer holds true for random vectors; a point x may be a point of
discontinuity yet still satisfy P(X = x) = 0. The task in Exercise is to produce an
example of this phenomenon.

We may now extend Theorems [2.14] and to the multivariate case. The proofs
of these results do not differ substantially from their univariate counterparts; all necessary
modifications are straightforward. For instance, in the proofs of Theorems and [2.14]
the scalar e should be replaced by the vector € = €1, each of whose entries equals ¢€; with
this change, modified statements such as “whenever X,, < t, it must be true that either
X <t+eor X, —X]| > € remain true.

Theorem 2.33 X, Ax implies X, X, Furthermore, if ¢ is a constant, then
P . . d
X,, — c if and only if X,, = c.

Theorem 2.34 Suppose that f : S — R’ is a continuous function defined on some
subset S C R*, X,, is a k-component random vector, and P(X € S) = 1.

(a) If X, 5 X, then f(X,) 5 £(X).
(b) If X, %X, then £(X,) % £(X).

The proof of Theorem is basically the same as in the univariate case. For proving part
(b), we use the multivariate version of Theorem [2.28

Theorem 2.35 X, -% X if and only if E 9(X,) = E ¢(X) for all bounded and con-
tinuous real-valued functions ¢ : R¥ — R.
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Proving Theorem [2.35| involves a few complications related to the use of multivariate distri-
bution functions, but the essential idea is the same as in the univariate case (the univariate

proof is the subject of Exercises and [2.16)).

2.3.3 Slutsky’s Theorem

As we have seen in the preceding few pages, many univariate definitions and results concern-
ing convergence of sequences of random vectors are basically the same as in the univariate
case. Here, however, we consider a result that has no one-dimensional analogue.

At issue is the question of when we may “stack” random variables to make random vectors
while preserving convergence. It is here that we encounter perhaps the biggest surprise of
this section: Convergence in distribution is not preserved by “stacking”.

To understand what we mean by “stacking” preserving convergence, consider the case of
convergence in probability. By definition, it is straightforward to show that

X, X
X, 5 X and Y, 5Y together imply that (Y ) ER (Y) (2.23)
Thus, two convergent-in-probability sequences X,, and Y,, may be stacked, one on top of the
other, to make a vector, and this vector must still converge in probability to the vector of
stacked limits.

Example 2.36 Statement (2.23]) gives a way to show that the multivariate Weak
Law of Large Numbers (Theorem [2.31)) follows immediately from the univariate
version (Theorem [2.19)).

Example 2.37 If X, X,,... are independent and identically distributed with mean p
and positive variance o2, we often take as an estimator of o2 the so-called sample
variance

n

1 — \2
Si:n—1;(X"_X”) .

We may use Statement (2.23) and Theorem [2.34fa), together with the univariate
2.19)

Weak Law of Large Numbers (Theorem , to prove that s? is a consistent
estimator of o2.

To accomplish this, we first rewrite s? as

=" F Y (XK=’ = (X — M)2] :

T n—11n
i=1
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The WLLN tells us that X,, — s 0, from which we deduce that (X, — p)? Lo
by Theorem [2.27(a). Since E (X; — p)? = 02, the Weak Law also tells us that

(1/n) 32,(X; — )2 5 62 Combining these two facts by “stacking” as in (2.23

yields
YL (X P g (o
(yn — p)? 0/
We now apply the continuous function f(a,b) = a — b to both sides of the above
result, as allowed by Theorem [2.34|a), to conclude that

1 « —
N X - ) = (X = p)? S0 -0, (2.24)
n

=1

Finally, we may perform a similar stacking operation using Equation (2.24) to-
gether with the fact that n/(n—1) 24 1, whereupon multiplication yields the final

: P
conclusion that s2 = 0.

If it seems as though we spent too much time in the above proof worrying about
“obvious” steps such as stacking followed by addition or multiplication, we did so

. : P d . .
in order to make a point: When we replace — by —, the “obvious” is no longer
correct.

The converse of (2.23) is true by Theorem because the function f(z,y) = z is a con-
tinuous function from R? to R. By induction, we can therefore stack or unstack arbitrarily
many random variables or vectors without distrurbing convergence in probability. Combin-

ing this fact with Theorem yields a useful result; see Exercise By Definition [2.30]
Statement remains true if we replace R by % throughout the statement for some a > 0.

However, Statement is not true if 5 is replaced by % Consider the following simple
counterexample.

Example 2.38 Take X,, and Y,, to be independent standard normal random variables
for all n. These distributions do not depend on n at all, and it is correct to write

X, % 7 and Y, 5 Z, where Z ~ N(0,1). But it is certainly not true that

)+

since the distribution on the left is bivariate normal with correlation 0, while the
distribution on the right is the (degenerate) bivariate normal with correlation 1.
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Expression is untrue precisely because the marginal distributions do not in general
uniquely determine the joint distribution. However, there are certain special cases in which
the marginals do determine the joint distribution. For instance, if random variables are
independent, then their marginal distributions uniquely determine their joint distribution.
Indeed, we can say that if X,, - X and Y,, — Y, where X,, is independent of Y,, and X is

independent of Y, then statement ([2.23)) remains true when B is replaced by < (see Exercise
2.23). As a special case, the constant ¢, when viewed as a random variable, is automatically

independent of any other random variable. Since Y, s equivalent to Y,, Le by Theorem
[2.14] it must be true that

n C

X, X
X, 4 X and Y, e implies that (Y > N ( > (2.26)

if X, is independent of Y,, for every n. The content of a powerful theorem called Slutsky’s
Theorem is that statement remains true even if the X,, and Y,, are not independent.
Although the preceding discussion involves stacking only random (univariate) variables, we
present Slutsky’s theorem in a more general version involving random vectors.

Theorem 2.39 Slutsky’s Theorem: For random vectors X,,, Y, and X and a con-
stant c, if X, X and Y, Bcasn— oo, then

&)= )

A proof of Theorem [2.39]is outlined in Exercise [2.24

Putting several of the preceding results together yields the following corollary.

Corollary 2.40 If X is a k-vector such that X, iX, and Y,; £>cj for 1 < j <m,

then
X\ 4 X
f f
() ()

for any continuous function f : S C R¥™ — R,

It is very common practice in statistics to use Corollary to obtain a result, then state
that the result follows “by Slutsky’s Theorem”. In fact, there is not a unanimously held
view in the statistical literature about what precisely “Slutsky’s Theorem” refers to; some
consider the Corollary itself, or particular cases of the Corollary, to be Slutsky’s Theorem.
These minor differences are unimportant; the common feature of all references to “Slutsky’s
Theorem” is some combination of one sequence that converges in distribution with one or
more sequences that converge in probability to constants.
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Example 2.41 Asymptotic normality of the t-statistic: Let Xi,..., X, be indepen-
dent and identically distributed with mean p and finite positive variance o%. By

Example [2.12, \/n(X,, — p) -3 N(0,02). Suppose that 2 is any consistent esti-

n

mator of o2; that is, 625> 2. (For instance, we might take 62 to be the usual
unbiased sample variance estimator s2 of Example [2.37, whose asymptotic prop-
erties will be studied later.) If Z denotes a standard normal random variable,

Theorem [2.39 implies
<‘/E(X” N /“‘>> 4 (UZ). (2.27)

52 2
(ot o

Therefore, since f(a,b) = a/b is a continuous function for b > 0 (and &2 is
assumed positive),

X, —
vV & u)g)Z_
U?’L

It is common practice to skip step (2.27)), attributing equation ([2.28)) directly to
“Slutsky’s Theorem”.

(2.28)

Fxercises for Section 2.3

Exercise 2.15 Here we prove half (the “only if” part) of Theorem 2.28 If X, 4 X
and ¢(z) is a bounded, continuous function on R, then E ¢(X,,) = E ¢g(X). (This
half of Theorem is sometimes called the univariate Helly-Bray Theorem.)

Let F,(x) and F(x) denote the distribution functions of X,, and X, as usual. For
€ > 0, take b < ¢ to be constant real numbers such that F'(b) < e and F'(c) > 1—e.
First, we note that since g(x) is continuous, it must be uniformly continuous on
[b, c]: That is, for any € > 0 there exists ¢ > 0 such that |g(x)—g(y)| < € whenever
|z —y| < §. This fact, along with the boundedness of g(x), ensures that there
exists a finite set of real numbers b = t5 < t; < --- < t,,, = ¢ such that:

e Each ¢; is a continuity point of F'(x).

o F(ty) <eand F(t,) >1—c¢.

e For 1 <i<m,|g(x)—g(t;)| <eforall zelt_i,t]
(a) Asin Figure[2.1] define

_ gty iftiy <ax<t; for some 1 <i<m.
h(z) = .
0 otherwise.
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Figure 2.1: The solid curve is the function g(x), assumed to be bounded by —M and M for
all x, and the horizontal segments are the function h(z). The points ty, ..., ts are chosen so

that |g(x) — h(x)| is always less than €. The t; are continuity points of F(z), and both F(ty)
and 1 — F(tg) are less than e.

Prove that there exists N such that |E h(X,) — E h(X)| < e for all n > N.

Hint: Use the fact that for any random variable Y,

m

Eh(Y)=> g(t)P(tia <Y <t;).

=1

Also, please note that we may not write E h(X,,) — E h(X) as E[h(X,,) — h(X)]
because it is not necessarily the case that X, and X are defined on the same
sample space.

(b) Prove that E ¢g(X,,) — E g(X).
Hint: Use the fact that
+|E h(X) = E g(X)].

Exercise 2.16 Prove the other half (the “if” part) of Theorem [2.28 which states
that if E ¢(X,,) — E ¢g(X) for all bounded, continuous functions g : R — R, then

X, % X,
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(a) Let ¢t be any continuity point of F'(x). Let € > 0 be arbitrary. Show that
there exists d > 0 such that F'(t — ) > F(t) —e and F(t +0) < F(t) + e.

(b) Show how to define continuous functions g, : R — [0,1] and g, : R — [0, 1]
such that for all < ¢, g1(z) = go(z — 0) = 1 and for all x > ¢, g1(x + ) =
g2(z) = 0. Use these functions to bound the difference between F,(t) and F(t)
in such a way that this difference must tend to 0.

Exercise 2.17 To illustrate a situation that can arise in the multivariate setting
that cannot arise in the univariate setting, construct an example of a sequence
(X, Yy,), a joint distribution (X,Y), and a connected subset S € R? such that

(i) (X Ya) H(X,Y);
(ii) every point of R? is a continuity point of the distribution function of (X, Y);
(iii) P[(X,,Y,) € S] does not converge to P[(X,Y) € S].

Hint: Condition (ii) may be satisfied even if the distribution of (X,Y’) is con-
centrated on a line.

Exercise 2.18 If X is a univariate random variable with distribution function F'(x),
then F'(z) is continuous at ¢ if and only if P(X = ¢) = 0. Prove by counterex-
ample that this is not true if variables X and ¢ are replaced by vectors X and
c.

Exercise 2.19 Suppose that (X, Y) is a bivariate normal vector such that both X and
Y are marginally standard normal and Corr (X,Y) = p. Construct a computer
program that simulates the distribution function F,(x,y) of the joint distribution
of X and Y. For a given (z,y), the program should generate at least 50,000
random realizations from the distribution of (X,Y’), then report the proportion
for which (X,Y) < (x,y). (If you wish, you can also report a confidence interval
for the true value.) Use your function to approximate F5(1,1), Fo5(—1,—1), and
F75(0,0). As a check of your program, you can try it on Fy(z,y), whose true
values are not hard to calculate directly for an arbitrary x and y assuming your
software has the ability to evaluate the standard normal distribution function.

Hint: To generate a bivariate normal random vector (X,Y’) with covariance

matrix <; [1) ), start with independent standard normal U and V', then take

X=UandY = pU + /1 — p?V.

Exercise 2.20 Adapt the method of proof in Exercise to the multivariate case,
proving half of Theorem [2.35t If X,, %X, then E 9(X,) — E ¢g(X) for any
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bounded, continuous g : R¥ — R.

Hint: Instead of intervals (a;_i,a;] as in Exercise [2.15] use small regions {x :
a; ;-1 < x; < a;; for all i} of R*. Make sure these regions are chosen so that their
boundaries contain only continuity points of F'(x).

Exercise 2.21 Construct a counterexample to show that Slutsky’s Theorem may
not be strengthened by changing Y, L to Y, Ly,

Exercise 2.22 (a) Prove that if f : R*¥ — R’ is continuous and X,,; £>Xj for all
1 < j <k, then f(X,) = f(X).

(b) Taking f(a,b) = a + b for simplicity, construct an example demonstrating
that part (a) is not true if L is replaced by .

Exercise 2.23 Prove that if X, is independent of Y,, for all n and X is independent
of Y, then

X X
X, % X and Y, % Y implies that (Y”) a4 (Y)

Hint: Be careful to deal with points of discontinuity: If X,, and Y,, are indepen-
dent, what characterizes a point of discontinuity of the joint distribution?

Exercise 2.24 Prove Slutsky’s Theorem, Theorem [2.39], using the following approach:
(a) Prove the following lemma:

Lemma 2.42 Let V,, and W,, be k-dimensional random vectors on the
same sample space.

fV,%Vand W, 50, then V,, + W,, 5 V.

Hint: For € > 0, let € denote the k-vector all of whose entries are e. Take
a € R* to be a continuity point of Fy/(v). Now argue that a, since it is a point
of continuity, must be contained in a neighborhood consisting only of points of
continuity; therefore, ¢ may be taken small enough so that a — € and a + € are
also points of continuity. Prove that

P(V,<a—¢€)— P(|W.| >¢ P(V,+W, <a)

<
< P(V,<a+e¢€)+ P(|W.| >e).

Next, take lim sup,, and liminf,,. Finally, let € — 0.
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(b) Show how to prove Theorem using Lemma [2.42]

Hint: Consider the random vectors

X, 0
V, = d W, = .
(&) e w=(y)
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Chapter 3

Strong convergence

There are multiple ways to define the convergence of a sequence of random variables. Chapter
introduced convergence in probability, convergence in distribution, and convergence in
quadratic mean. We now consider a fourth mode of convergence, almost sure convergence
or convergence with probability one. We will see that almost sure convergence implies both
convergence in probability and convergence in distribution, which is why we sometimes use
the term “strong” for almost sure convergence and “weak” for the other two.

The terms “weak” and “strong” do not indicate anything about their importance; indeed,
the “weak” modes of convergence are used much more frequently in asymptotic statistics
than the strong mode. Because weak convergence dominates the remainder of this book
beginning with Chapter |4, a reader may safely skip much of the material in the current
chapter if time is limited; however, the quantile function and the Dominated Convergence
Theorem of Section are used elsewhere, and at least these topics should be reviewed
before moving on. Due to the technical nature of the material of this chapter, the exercises
are almost exclusively devoted to proofs.

3.1 Strong Consistency Defined

A random variable like X,, or X is a function on a sample space, say 2. Suppose that we
fix a particular element of that space, say wp, so we obtain the real numbers X,,(wy) and
X(wp). If X, (wo) = X(wp) as n — oo in the sense of Definition then wy is contained in
the event

S={we: X,(w) - X(w)}. (3.1)
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If the probability of S—that is, E I{X, — X}—equals 1, then we say that X, converges
almost surely to X:

Definition 3.1 Suppose X and Xi, X, ... are random variables defined on the same
sample space ) (and as usual P denotes the associated probability measure). If

Pwe: X, (w) = X(w)}) =1,

then X, is said to converge almost surely (or with probability one) to X, denoted
X, B X or X, - X as. or X,, » X w.p. L.

In other words, convergence with probability one means exactly what it sounds like: The
probability that X,, converges to X equals one. Later, in Theorem [3.3] we will formulate
an equivalent definition of almost sure convergence that makes it much easier to see why
it is such a strong form of convergence of random variables. Yet the intuitive simplicity of

Definition makes it the standard definition.

As in the case of convergence in probability, we may replace the limiting random variable
X by any constant ¢, in which case we write X,, 23 ¢. In the most common statistical usage
of convergence to a constant, the random variable X, is some estimator of a particular
parameter, say 0:

Definition 3.2 If X, %36, X,, is said to be strongly consistent for 4.

As the names suggest, strong consistency implies consistency (also known as weak consis-
tency), a fact we now explore in more depth.

3.1.1 Strong Consistency versus Consistency

As before, suppose that X and X;, X, ... are random variables defined on the same sample
space, 2. For given n and € > 0, define the events
A, ={w e Q: | Xp(w) — X(w)| <eforall k>n} (3.2)
and
B, ={w € Q:|X,(v) — X(w)| < €}. (3.3)

First, note that A,, must be contained in B,, and that both A,, and B,, imply that X, is close
to X as long as € is small. Therefore, both P(A,,) — 1 and P(B,,) — 1 seem like reasonable
ways to define the convergence of X,, to X. Indeed, as we have already seen in Definition
, convergence in probability means precisely that P(B,) — 1 for any € > 0.

Yet what about the sets A,? One fact is immediate: Since A, C B,, we must have
P(A,) < P(B,). Therefore, P(A,) — 1 implies P(B,) — 1. In other words, if we were to
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take P(A,) — 1 for all € > 0 to be the definition of a new form of convergence of random
sequences, then this form of convergence would be stronger than (i.e., it would imply) con-
vergence in probability. By now, the reader may already have guessed that this new form of
convergence is actually equivalent to almost sure convergence:

Theorem 3.3 With A, defined as in Equation (3.2)), P(A,) — 1 for any € > 0 if and
only if X, 23 X.

Proving Theorem [3.3]is the subject of Exercise 3.1 The following corollary now follows from
the preceding discussion:

Corollary 3.4 If X,*3 X, then X, 2 x.

The converse of Corollary is not true, as the following example illustrates.

N

J Jz Ja

Js Je J7 Jg N

JlO ‘]ll ‘]12 ‘]13 Jl4 J15 J16

J17 Jig J19 Joo Jo1 Jap Joz Jos Jos

...and so on

Figure 3.1: Ezample in which P(J,) — 0 as n — oo, which means that [{Jn}g().
However, the intervals J,, repeatedly cover the entire interval (0, 1], so the subset of (0,1] on
which 1{J,} converges to 0 is empty!

Example 3.5 Take €2 to be the half-open interval (0, 1], and for any interval J C €2,
say J = (a,b], take P(J) = b — a to be the length of that interval. Define a
sequence of intervals Ji, Js, ... as follows (see Figure [B.1)):

S = (07 1]
Jo through Jy = (0.1],(1.2],(2.4]



Js through Jy = (0,1], (2,

. 1 2
Jm241 through Jon 12 = <() —} e < mn 1]

Note in particular that P(J,) = 1/(2m + 1), where m = [v/n — 1] is the largest
integer not greater than v/n — 1. Now, define X,, = I{J,} and take 0 < e < 1.
Then P(|X, — 0] < €) is the same as 1 — P(.J,). Since P(J,) — 0, we conclude

Xn Lo by definition.

However, it is not true that X,, =¥ 0. Since every w €  is contained in infinitely
many .J,, the set A,, defined in Equation is empty for all n. Alternatively,
consider the set S = {w : X,,(w) — 0}. For any w, X,,(w) has no limit because
Xp(w) =1 and X, (w) = 0 both occur for infinitely many n. Thus S is empty.
This is not convergence with probability one; it is convergence with probability
zero!

3.1.2 Multivariate Extensions

We may extend Definition to the multivariate case in a completely straightforward way:

Definition 3.6 X,, is said to converge almost surely (or with probability one) to X
(X, 33 X) if

P(X, »Xasn—o0)=1.

Alternatively, since the proof of Theorem applies to random vectors as well
as random variables, we say X,, 3 X if for any € > 0,

P (| Xy —X]|| <eforal k>n)—1asn— oo. (3.4)

We saw in Theorems and that continuous functions preserve both convergence in
probability and convergence in distribution. Yet these facts were quite difficult to prove.
Fortunately, the analogous result for almost sure convergence follows immediately from the
results of Chapter [1} Similarly, unlike with convergence in distribution, there is no problem
“stacking” random sequences into vectors while preserving almost sure convergence. The
following theorem is really just a corollary of earlier results (specifically, Theorem and

Lemma [1.33)).
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Theorem 3.7 (a) Suppose that f : S — R’ is a continuous function defined on some
subset S C R¥, X,, is a k-component random vector, and the range of X and of
each X, is contained in S with probability 1. If X,, =3 X, then f(X,,) %3 f(X).

(b) X, %3 X if and only if X,,; >3 X, for all j.

We conclude this section with a simple diagram summarizing the implications among the
modes of convergence defined so far. In the diagram, a double arrow like = means “implies”.
Note that the picture changes slightly when convergence is to a constant c rather than a
random vector X.

X, BX X, ¢
) I
X, X = X,5X = X,5%X X, %c = X,5c & X,5%¢

Exercises for Section 3.1

Exercise 3.1 Let S be the set defined in equation 1' so X, 23 X is equivalent to
P(S) =1 by definition.

(a) Let A, be defined as in Equation ({3.2). Prove that
wo € Up? 1A, for all e >0

if and only if wy € S.

Hint: Use Definition [L.1l

(b) Prove Theorem [3.3]

Hint: Note that the sets A,, are increasing in n, so that by the lower continuity
of any probability measure (which you may assume without proof), lim, P(A,)
exists and is equal to P(US°, A,).

Exercise 3.2 The diagram at the end of this section suggests that neither X, %3 X
nor X,, = X implies the other. Construct two counterexamples, one to show that
X, %3 X does not imply X,, = X and the other to show that X, = X does not
imply X, 23 X.

3.2 The Strong Law of Large Numbers

Some of the results in this section are presented for univariate random variables and some are
presented for random vectors. Take note of the use of bold print to denote vectors. Nearly
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all of the technical proofs are posed as exercises (with hints, of course).

Theorem 3.8 Strong Law of Large Numbers: Suppose that Xy, X, ... are indepen-
dent and identically distributed and have finite mean p. Then X, %% p.

It is possible to use fairly simple arguments to prove a version of the Strong Law under more
restrictive assumptions than those given above. See Exercise for details of a proof of the
univariate Strong Law under the additional assumption that E X! < co. To aid the proof of
the Strong Law, with or without such an additional assumption, we first establish a useful
lemma.

Lemma 3.9 If Y72, P(| Xy — X|| > €) < oo for any € > 0, then X,, “3 X.

Proof: The proof relies on the countable subadditivity of any probability measure, an axiom
stating that for any sequence C4, (s, ... of events,

P (G (Jk> < ip(ok). (3.5)
k=1 k=1

To prove the lemma using (3.4)), we must demonstrate that P (|| Xy — X|| < € for all k > n) —
1 asn — oo, which (taking complements) is equivalent to P (|| X — X|| > € for some k > n) —
0. Letting C) denote the event that || X, — X]| > €, countable subadditivity implies

P (Cy, for some k > n) —P(G Ck) Sip(ck),

and the right hand side tends to 0 as n — oo because it is the tail of a convergent series. m

Lemma [3.9] is nearly the same as a famous result called the First Borel-Cantelli Lemma,
or sometimes simply the Borel-Cantelli Lemma; see Exercise [3.3] Lemma [3.9] is extremely
useful for establishing almost sure convergence of sequences. As an illustration of the type of
result this lemma helps to prove, consider the following theorem (see Exercise for hints
on how to prove it).

Theorem 3.10 X, £ X if and only if each subsequence X,,,, X,,,, ... contains a fur-
ther subsequence that converges almost surely to X.

Using Theorem [3.10| it is now—finally—possible to prove that continuous transformations
preserve convergence in probability. This fact was stated in Theorem [2.27|(a) (for the uni-
variate case) and Theorem [2.34(a) (for the multivariate case). It suffices to complete the
proof for the multivariate case.

Proof of Theorem [2.34(a): If X, 5 X and f (x) is continuous, it suffices to prove
that each subsequence f(X,,), f(X,,),... contains a further subsequence that converges
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almost surely to f(X). But we know that X,,,,X,,,... must contain a further subsequence,

say X, s Xy - - - such that X, 23X and therefore f(Xni(j))a;S?f(X) as j — oo by
Theorem [3.7|(a). This proves the theorem! u

To conclude this section, we provide a proof of the Strong Law (Theorem [3.8). The approach
we give here is based on a powerful theorem of Kolmogorov:

Theorem 3.11 Kolmogorov’s Strong Law of Large Numbers: Suppose that X;, Xo, ...
are independent with mean p and

o0

ZV&I‘ Xz < 0.

'2
=1

1
Then X, 23 .

Note that there is no reason the X; in Theorem [3.11{must have the same means: If E X; = pu;,
then the conclusion of the theorem becomes (1/n) . (X; — ;) 3 0. Theorem may be
proved using Kolmogorov’s inequality from Exercise [1.41; this proof is the focus of Exercise

B.7
The key to completing the Strong Law of Large Numbers for an independent and identically
distributed sequence using Theorem [3.11]is to introduce truncated versions of X, Xs,... as

in the following lemmas, which are proved in Exercises [3.5 and

Lemma 3.12 Suppose that X, Xs,... are independent and identically distributed
and have finite mean p. Define X = X,;T{|X;| < i}. Then

=\ Var X*
Yy o (3.6)

'2
=1

]

Lemma 3.13 Under the assumptions of Lemma m, let X, = (1/n)3°7, X;. Then
X, - X, 0.

Finally, it is possible to put the preceding results together to prove the Strong Law of Large
Numbers:

Proof of Theorem [3.8: Let Xj, X»,... be independent and identically distributed with
finite mean ., and let X = X, I{|X;| < i}. Then Lemma and Theorem together
imply that X, *3 4. From Lemma we obtain X, — X, *30. Adding these two limit
statements (which is legal because of Theorem [3.7]), we obtain

X, =X +(X,-X) %,
which establishes the Strong Law for the univariate case. Since “stacking” sequences presents

no problems for almost sure convergence [Theorem [3.7(b)], the multivariate version follows
immediately. [ ]
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Fxercises for Section 3.2

Exercise 3.3 Let By, Bs, ... denote a sequence of events. Let B, i.o., which stands
for B,, infinitely often, denote the set

B, io. ¥ {w € Q: for every n, there exists k > n such that w € By}.

Prove the First Borel-Cantelli Lemma, which states that if Y ° P(B,) < oo,
then P(B, i.0.) = 0.

Hint: Argue that

Bn 1.0. = ﬁ [j Bk,

n=1k=n

then adapt the proof of Lemma [3.9]

Exercise 3.4 Use the steps below to prove a version of the Strong Law of Large
Numbers for the special case in which the random variables X, Xs,... have a
finite fourth moment, E X} < ooc.

(a) Assume without loss of generality that E X; = 0. Expand E (X; +...+X,)?
and then count the nonzero terms.

Hint: The only nonzero terms are of the form E X} or (E X?)2.

(b) Use Markov’s inequality with 7 = 4 to put an upper bound on
P(%]> o)

involving E (X, + ...+ X,)*.

(c) Combine parts (a) and (b) with Lemma [3.9|to show that X, 3 0.

Hint: Use the fact that > >, n™? < .

Exercise 3.5 Lemmas B.12] and [3.13] make two assertions about the random vari-
ables X = X;I{|X;| < i}, where X;, Xs,... are independent and identically
distributed with finite mean pu.

(a) Prove that for an arbitrary real number c,

CQZZ,—QJ{M <i} <1+
=1

Hint: Bound the sum on the left hand side by an easy-to-evaluate integral.
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(b) Prove Lemma which states that

i\/ar X

, i?
=1

Hint: Use the fact that
Var X; < E(X})? = E X7I{|Xy| < i}
together with part (a) and the fact that E | X;| < oco.
Exercise 3.6 Assume the conditions of Exercise 3.5

(a) Prove that X,, — X *30.

Hint: Note that X,, and X do not have bars here. Use Exercise together
with Lemma 3.9

(b) Prove Lemma which states that
X, - X, 2o

n

Hint: Use Exercise [[.3]
Exercise 3.7 Prove Theorem [3.11] Use the following steps:
(a) For k=1,2,..., define

Yy = max |[X,—pul

2k—1<pn< 2k

Use the Kolmogorov inequality from Exercise to show that

(b) Use Lemma to show that Y}, 230, then argue that this proves X, %3 .

Hint: Letting [log, 7| denote the smallest integer greater than or equal to log, i
(the base-2 logarithm of i), verify and use the fact that

oo

1 4
2 Fs3e

k=[logy i]
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Exercise 3.8 Prove Theorem B.10k

(a) To simplify notation, let Y; = X,,,,Ys = X,,,... denote an arbitrary
subsegence of Xy, X, . ...

Prove the “only if” part of Theorem , which states that if X, ER X, then there
exists a subsequence Y, Yp,, ... such that Y,,, X as j — oo.

Hint: Show that there exist my, msy,... such that
1
P([Y, = X]| > ¢) < o,

then use Lemma [3.91

(b) Now prove the “if” part of the theorem by arguing that if X,, does not
converge in probability to X, there exists a subsequence Y; = X,,,, Yo = X,,, . ..
and € > 0 such that

P([Yr —X]|| >€) > ¢

for all k. Then use Corollary to argue that Y;,Ys, ... does not have a
subsequence that converges almost surely.

3.3 The Dominated Convergence Theorem

In this section, the key question is this: When does XniX imply E X, — E X7 The
answer to this question impacts numerous results in statistical large-sample theory. Yet
because the question involves only convergence in distribution, it may seem odd that it is
being asked here, in the chapter on almost sure convergence. We will see that one of the

most useful conditions under which E X,, — E X follows from X, LS's , the Dominated
Convergence Theorem, is proved using almost sure convergence.

3.3.1 Moments Do Not Always Converge

It is easy to construct cases in which X, % X does not imply E X,, — E X, and perhaps
the easiest way to construct such examples is to recall that if X is a constant, then 4 X and

B X are equivalent: For X, £ ¢ means only that X, is close to c with probability approaching
one. What happens to X,, when it is not close to ¢ can have an arbitrarily extreme influence

on the mean of X,. In other words, X, e certainly does not imply that E X,, — ¢, as the
next two examples show.
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Example 3.14 Suppose that U is a standard uniform random variable. Define

n  with probability 1/n

0 with probability 1 — 1/n. (3.7)

X, =nl{U < 1/n}={

We see immediately that X, Loasn— 00, but the mean of X,,, which is 1 for
all n, is certainly not converging to zero!. Furthermore, we may generalize this
example by defining

- | ¢, with probability p,
X, =c,I {U < pn} - { 0  with probability 1 — p,.

In this case, a sufficient condition for X, £0is pn — 0. But the mean E X,, =
cnpn may be specified arbitrarily by an appropriate choice of ¢,, no matter what
nonzero value p,, takes.

Example 3.15 Let X, be a contaminated standard normal distribution with mixture
distribution function

Fu(z) = (1 _ l) B(z) + %Gn(x), (3.8)

n

where ®(x) denotes the standard normal distribution function. No matter how

the distribution functions G,, are defined, X, 4 0. However, letting p,, denote
the mean of G,,, E X,, = u,,/n may be set arbitrarily by an appropriate choice of
G

Consider Example , specifically Equation , once again. Note that each X, in that
example can take only two values, 0 or n. In particular, each X,, is bounded, as is any
random variable with finite support. Yet taken as a sequence, the X, are not uniformly
bounded—that is, there is no single constant that bounds all of the X, simultaneously.

On the other hand, suppose that a sequence Xy, X, ... does have some uniform bound, say,
M such that | X,,| < M for all n. Then define the following function:

gty =<3t  ifl<M

{M ift>M
-M ift<—M.

Note that ¢(t) is bounded and continuous. Therefore, X, -5 X implies that E 9(X,) —
E ¢g(X) by the Helly-Bray Theorem (see Theorem . Because of the uniform bound on
the X, we know that ¢g(X,) is always equal to X,,. We conclude that E X,, — E ¢(X), and
furthermore it is not difficult to show that | X | must be bounded by M with probability 1, so
E ¢g(X) = E X. We may summarize this argument by the following Corollary of Theorem

2. 238
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Corollary 3.16 If X, Xs,... are uniformly bounded (i.e., there exists M such that
1 X,,| < M for all n) and X,,-% X, then E X,, » E X.

Corollary gives a vague sense of the type of condition—a uniform bound on the X,—

sufficient to ensure that X, 4 X implies E X,, - E X. However, the corollary is not very
broadly applicable, since many common random variables are not bounded. In Example
, for instance, the X,, could not possibly have a uniform bound (no matter how the G,
are defined) because the standard normal component of each random vector is supported
on all of R and is therefore not bounded. It is thus desirable to generalize the idea of
a “uniform bound” of a sequence. There are multiple ways to do this, but probably the
best-known generalization is the Dominated Convergence Theorem introduced later in this
section. To prove this important theorem, we must first introduce quantile functions and
another theorem called the Skorohod Representation Theorem.

3.3.2 Quantile Functions and the Skorohod Representation The-
orem

Roughly speaking, the ¢ quantile of a variable X, for some ¢ € (0,1), is a value &, such
that P(X < ¢,) = q. Therefore, if F'(x) denotes the distribution function of X, we ought to
define ¢, = F~'(¢q). However, not all distribution functions F(x) have well-defined inverse
functions F~'(q). To understand why not, consider Example .

Example 3.17 Suppose that U ~ Uniform(0, 1) and V' ~ Binomial(2,0.5) are inde-
pendent random variables. Let X = V/4+UV?/8. The properties of X are most
easily understood by noticing that X is either a constant 0, uniform on (1/4, 3/8),
or uniform on (1/2,1), conditional on V' =0, V =1, or V = 2, respectively. The
distribution function of X, F(z), is shown in Figure 3.2]

There are two problems that can arise when trying to define F~!(q) for an ar-
bitrary ¢ € (0,1) and an arbitrary distribution function F'(x), and the current
example suffers from both: First, in the range ¢ € (0, 1/4), there is no z for which
F(z) equals ¢ because F'(z) jumps from 0 to 1/4 at = 0. Second, for ¢ = 1/4
or ¢ = 3/4, there is not a unique = for which F(z) equals ¢ because F'(x) is flat
(constant) at 1/4 and again at 3/4 for whole intervals of x values.

From Example[3.17, we see that a meaningful general inverse of a distribution function must
deal both with “jumps” and “flat spots”. The following definition does this.

Definition 3.18 If F(z) is a distribution function, then we define the quantile func-
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1.0

0.0 0.5 1.0

Figure 3.2: The solid line is a distribution function F(z) that does not have a uniquely
defined inverse F~1(q) for all ¢ € (0,1). However, the dotted quantile function F~(q) of
Definition 3.1 is well-defined. Note that F'~(q) is the reflection of F(x) over the line ¢ = x,
so “jumps” in F(x) correspond to “flat spots” in F~(q) and vice versa.

tion F~:(0,1) — R by

F(q) ¥ inf{z eR:q< F(a)} (3.9)

With the quantile function thus defined, we may prove a useful lemma:
Lemma 3.19 ¢ < F(z) if and only if F'~(q) < z.

Proof: Using the facts that F~(-) is nondecreasing and F~[F(z)] < z by definition,
q < F(x) implies F~(q) < F[F(x)] <z,

which proves the “only if” statement. Conversely, assume that F~(¢) < z. Since F(-) is
nondecreasing, we may apply it to both sides of the inequality to obtain

FIF~(q)] < F(x).

Thus, ¢ < F(x) follows if we can prove that ¢ < F[F~(¢)]. To this end, consider the
set {x € R : ¢ < F(z)} in Equation (3.9). Because any distribution function is right-
continuous, this set always contains its infimum, which is F'~(¢) by definition. This proves
that ¢ < F[F~(q)]. n
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Corollary 3.20 If X is a random variable with distribution function F'(x) and U is
a uniform(0, 1) random variable, then X and F~(U) have the same distribution.

Proof: For any x € R, Lemma implies that
PIF~(U) < 4] = PU < F(x)] = F(x).
[

Assume now that X7, X, ... is a sequence of random variables converging in distribution to
X, and let F,(x) and F'(z) denote the distribution functions of X,, and X, respectively. We
will show how to construct a new sequence Y, Ys, ... such that Y, 23 Y and Y, ~ F,(-) and

Y ~ F().

Take 2 = (0,1) to be a sample space and adopt the probability measure that assigns to each
interval subset (a,b) C € its length (b — a). [There is a unique probability measure on (0, 1)
with this property, a fact we do not prove here.] Then for every w € €, define

Y,() ¥ Frw) and Y(w) € F(w). (3.10)

n

Note that the random variable defined by U(w) = w is a uniform(0,1) random variable,
so Corollary demonstrates that Y, ~ F,(-) and Y ~ F(-). It remains to prove that
Y, 23Y, but once this is proven we will have established the following theorem:

Theorem 3.21 Skorohod Representation Theorem: Assume F, Fy, F5, ... are distri-
bution functions and anF. Then there exist random variables Y, Y7, Ys, ...

such that
1. P(Y, <t)=F,(t) for all n and P(Y <t)= F(t);
2. Y, Y.

A completion of the proof of Theorem [3.21]is the subject of Exercise [3.10]

Having thus established the Skorohod Represenation Theorem, we now introduce the Dom-
inated Convergence Theorem.

Theorem 3.22 Dominated Convergence Theorem: If for a nonnegative random vari-
able Z, | X,| < Zforallnand E Z < oo, then X, % X implies that E X,, — E X.

Proof: Use the Skorohod Representation Theorem to construct a sequence Y,, converging to
Y almost surely such that Ynan for all n and YZX. Furthermore, construct a nonnegative

random variable Z* on the same sample space satisfying 727 and Y, < Z*; this is
possible by defining Z* = sup,, |Y,| + W, where W is constructed to have the distribution

83



of Z — sup,, | X,,| using the idea of expression l} In other words, we now have Y, 23V,
V,| < Z* and E Z* < 00. Since E X,, = E Y,, for all n and E X = E Y, it suffices to prove
now that EY,, - E Y.

Fatou’s Lemma (see Exercise [3.11)) states that

E liminf|Y,| <liminf E |Y,|. (3.11)

A second application of Fatou’s Lemma to the nonnegative random variables Z*—1Y,,| implies

E Z*—Elimsup|Y,| <E Z* —limsupE |Y,,|.

Because E Z* < oo, subtracting E Z* preserves the inequality, so we obtain

limsupE |Y,,| < E limsup |Y,]. (3.12)

Together, inequalities (3.11)) and (3.12]) imply

E liminf |Y,| <liminf E |V, | < limsupE |Y,| < E limsup |Y,].
Since Y, *3Y, both liminf, |Y,| and limsup,, |Y,| are equal to |Y| with probability one, so
we conclude that lim E |Y,,| exists and is equal to E |Y]. m

The Dominated Convergence Theorem essentially tells us when it is possible to interchange
the operations of limit and expectation, that is, when the limit of the expectations (of the
X,) equals the expectation of their limit.

Exercises for Section 3.3

Exercise 3.9 Prove that any nondecreasing function must have countably many points
of discontinuity. (This fact is used in proving the Skorohod Representation The-
orem.)

Hint: Use the fact that the set of rational numbers is a countably infinite set
and that any real interval must contain a rational number.

Exercise 3.10 To complete the proof of Theorem [3.21] it only remains to show that
Y, 23V, where Y,, and Y are defined as in Equation 1}

(a) Let 6 >0 and w € (0,1) be arbitrary. Show that there exists Ny such that
Y(w) — 6 < Y,(w) (3.13)
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for all n > Nj.

Hint: There exists a point of continuity of F'(x), say xg, such that
Y(w) =6 <zg <Y(w).

Use the fact that F,(z9) — F(zo) together with Lemma to show how this
fact leads to the desired conclusion.

(b) Take § and w as in part (a) and let € > 0 be arbitrary. Show that there
exists Ny such that

Yo(w) <Y(w+e)+46 (3.14)
for all n > Ns.
Hint: There exists a point of continuity of F(z), say x1, such that
Y(w+e) <z <Y(w+e)+0.

Use the fact that F,(z1) — F(x;) together with Lemma to show how this
fact leads to the desired conclusion.

(c) Suppose that w € (0,1) is a continuity point of F(z). Prove that Y, (w) —
Y (w).

Hint: Take liminf, in Inequality (3.13]) and limsup,, in Inequality (3.14). Put
these inequalities together, then let 6 — 0. Finally, let € — 0.

(d) Use Exercise [3.9/ to prove that Y, 23V

Hint: Use countable subadditivity, Inequality (3.5)), to show that the set of
discontinuity points of F(x) has probability zero.

Exercise 3.11 Prove Fatou’s lemma:

E liminf | X,| < liminf E |X,,]|. (3.15)

Hint: Argue that E |X,,| > E infy>, | Xx|, then take the limit inferior of each
side. Use (without proof) the monotone convergence property of the expectation
operator: If

0<Xj(w) < Xo(w) <+ and X,(w) = X(w) foralweQ,

then E X,, = E X.
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Exercise 3.12 If Yni>Y, a sufficient condition for E Y,, — E Y is the uniform
integrability of the Y,,.

Definition 3.23 The sequence Y7, Y5, ... of random variables is said to
be uniformly integrable if

sup E (Y, I{|Y.] > a}) = 0 as a — oc.

Use the following steps to prove that if Y, XY and the Y, are uniformly inte-
grable, then EY,, - E Y.

(a) Prove that if Ay, As,... and By, By, ... are both uniformly integrable se-
quences defined on the same probability space, then A; + By, As + B, ... is a
uniformly integrable sequence.

Hint: First prove that

la + b|I{|la+b| > a} < 2|a|ll{|a] > a/2} + 2]b|1{|b] > a/2}.
(b) Define Z,, and Z such that Z, has the same distribution as Y;,, Z has the
same distribution as Y, and Z,, %3 Z. (We know that such random variables exist

because of the Skorohod Representation Theorem.) Show that if X,, = |Z,, — Z|,
then X7, Xy, ... is a uniformly integrable sequence.

Hint: Use Fatou’s Lemma (Exercise [3.11) to show that E |Z] < oo, i.e., Z is
integrable. Then use part (a).

(c) By part (b), the desired result now follows from the following result, which
you are asked to prove: If X, Xy, ... is a uniformly integrable sequence with
X, %30, then E X,, — 0.

Hint: Use the Dominated Convergence Theorem and the fact that
E X, =E X, I[{|X,| > a} + E X, [{|X,] < a}.

Exercise 3.13 Prove that if there exists ¢ > 0 such that sup, E |V,|'™ < oo, then
Y1, Ys, ... is a uniformly integrable sequence.

Hint: First prove that
1
Yo I{|Yn] > a} < _|Yn|1+€'
aE

Exercise 3.14 Prove that if there exists a random variable Z such that E |Z] = u <
oo and P(|Y,| > t) < P(|Z] > t) for all n and for all ¢ > 0, then Y3,Ys,... is a
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uniformly integrable sequence. You may use the fact (without proof) that for a
nonnegative X,

BE(X) = /OOOP(X > t) dt.

Hints: Consider the random variables |Y,|I{|Y,| > t} and |Z|I{|Z] > t}. In
addition, use the fact that

E|Z| = ZE (|1Z|1{i—1< |Z| <i})

to argue that E (|Z]1{|Z| < a}) = E |Z| as a — 0.
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Chapter 4

Central Limit Theorems

The main result of this chapter, in Section [4.2] is the Lindeberg-Feller Central Limit Theo-
rem, from which we obtain the result most commonly known as “The Central Limit Theorem”
as a corollary. As in Chapter |3 we mix univariate and multivariate results here. As a general
summary, much of Section is multivariate and most of the remainder of the chapter is
univariate. The interplay between univariate and multivariate results is exemplified by the
Central Limit Theorem itself, Theorem [£.9] which is stated for the multivariate case but
whose proof is a simple combination of the analagous univariate result with Theorem [4.12]
the Cramér-Wold theorem.

Before we discuss central limit theorems, we include one section of background material for
the sake of completeness. Section [4.1]introduces the powerful Continuity Theorem, Theorem
[4.3], which is the basis for proofs of various important results including the Lindeberg-Feller
Theorem. This section also defines multivariate normal distributions.

4.1 Characteristic Functions and Normal Distributions

While it may seem odd to group two such different-sounding topics into the same section,
there are actually many points of overlap between characteristic function theory and the
multivariate normal distribution. Characteristic functions are essential for proving the Cen-
tral Limit Theorems of this chapter, which are fundamentally statements about normal
distributions. Furthermore, the simplest way to define normal distributions is by using their
characteristic functions. The standard univariate method of defining a normal distribution
by writing its density does not work here (at least not in a simple way), since not all normal
distributions have densities in the usual sense. We even provide a proof of an important
result—that characteristic functions determine their distributions uniquely—that uses nor-

88



mal distributions in an essential way. Thus, the study of characteristic functions and the
study of normal distributions are so closely related in statistical large-sample theory that it
is perfectly natural for us to introduce them together.

4.1.1 The Continuity Theorem

Definition 4.1 For a random vector X, we define the characteristic function ¢x :
R¥ — C by

¢x(t) = Eexp(it'X) = E cos(t'X) +iE sin(t' X),
where i2 = —1 and C denotes the complex numbers.

The characteristic function, which is defined on all of R¥ for any X (unlike the moment
generating function, which requires finite moments), has some basic properties. For instance,
¢x(t) is always a continuous function with ¢x(0) = 1 and |¢x(t)| < 1. Also, inspection of
Definition reveals that for any constant vector a and scalar b,

dxra(t) = exp(it'a)gx(t) and ¢px(t) = ¢x(bt). (4.1)
Also, if X and Y are independent,
¢X+Y(t) = ¢X(t)¢Y(t)- (4-2)

One of the main reasons that characteristic functions are so useful is the fact that they
uniquely determine the distributions from which they are derived. This fact is so important
that we state it as a theorem:

Theorem 4.2 The random vectors X; and X, have the same distribution if and only
if ¢x, (t) = ¢x,(t) for all t.

Now suppose that XniX, which implies tTXnitTX. Since both sinx and cosx are
bounded continuous functions, Theorem implies that ¢x, (t) — ¢x(t). The converse,
which is much harder to prove, is also true:

Theorem 4.3 Continuity Theorem: X, % X if and only if ¢x, (t) — ¢x(t) for all t.

Here is a partial proof that ¢x, (t) — ¢x(t) implies X, % X. First, we note that the
distribution functions F,, must contain a convergent subsequence, say F,, — G as k — 00,
where G : R — [0, 1] must be a nondecreasing function but G is not necessarily a true
distribution function (and, of course, convergence is guaranteed only at continuity points of
G). Tt is possible to define the characteristic function of G—though we will not prove this
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assertion—and it must follow that ¢p, (t) — ¢g(t). But this implies that ¢c(t) = éx(t)
because it was assumed that ¢x,, (t) = ¢x(¢). By Theorem [1.2] G must be the distribution
function of X. Therefore, every convergent subsequence of {X,,} converges to X, which gives
the result.

Theorem is an extremely useful tool for proving facts about convergence in distribution.
Foremost among these will be the Lindeberg-Feller Theorem in Section [£.2] but other results
follow as well. For example, a quick proof of the Cramér-Wold Theorem, Theorem [4.12] is
possible (see Exercise [1.3)).

4.1.2 Moments

One of the facts that allows us to prove results about distributions using results about
characteristic functions is the relationship between the moments of a distribution and the
derivatives of a characteristic function. We emphasize here that all random variables have
well-defined characteristic functions, even if they do not have any moments. What we will
see is that existence of moments is related to differentiability of the characteristic function.

We derive 0¢x (t)/0t; directly by considering the limit, if it exists, of

(s he}i) ~oxt) _ {exp{itTX} (exp{ithj} - 1”

as h — 0, where e; denotes the jth unit vector with 1 in the jth component and 0 elsewhere.
Note that

Xj
/ exp{iht} dt' < 1Xj],
h 0

eplit X} (SPUGLEL) ‘ _

so if E |X;| < oo then the dominated convergence theorem, Theorem [3.22 implies that

%¢X(t) —E lim {exp{itTX} (eXp{ithﬂ'} - 1)} =B [X;exp{it'X}] .

We conclude that

Lemma 4.4 If E ||X]| < oo, then V¢x(0) =iE X.

A similar argument gives

Lemma 4.5 If E XX < oo, then VZ¢x(0) = —E XX'.

It is possible to relate higher-order moments of X to higher-order derivatives of ¢x(t) using
the same logic, but for our purposes, only Lemmas [4.4] and [4.5] are needed.
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4.1.3 The Multivariate Normal Distribution

It is easy to define a univariate normal distribution. If x4 and o2 are the mean and vari-

ance, respectively, then if 02 > 0 the corresponding normal distribution is by definition the
distribution whose density is the well-known function

)= s e { oo}

If 02 = 0, on the other hand, we simply take the corresponding normal distribution to be the
constant . However, it is not quite so easy to define a multivariate normal distribution. This
is due to the fact that not all nonconstant multivariate normal distributions have densities
on R* in the usual sense. It turns out to be much simpler to define multivariate normal
distributions using their characteristic functions:

Definition 4.6 Let X be any symmetric, nonnegative definite, £ x k matrix and let p
be any vector in R¥. Then the normal distribution with mean g and covariance
matrix ¥ is defined to be the distribution with characteristic function

¢x(t) = exp (nm — t?t) . (4.3)

Definition [4.6) has a couple of small flaws. First, because it does not stipulate k # 1, it offers a
definition of univariate normality that might compete with the already-established definition.
However, Exercise [.1|(a) verifies that the two definitions coincide. Second, Definition
asserts without proof that equation actually defines a legitimate characteristic function.
How do we know that a distribution with this characteristic function really exists for all
possible ¥ and p? There are at least two ways to mend this flaw. One way is to establish
sufficient conditions for a particular function to be a legitimate characteristic function, then
prove that the function in Equation satisfies them. This is possible, but it would take
us too far from the aim of this section, which is to establish just enough background to
aid the study of statistical large-sample theory. Another method is to construct a random
variable whose characteristic function coincides with equation ; yet to do this requires
that we delve into some linear algebra. Since this linear algebra will prove useful later, this
is the approach we now take.

Before constructing a multivariate normal random vector in full generality, we first consider
the case in which ¥ is diagonal, say 3 = D = diag(dy, . .., dx). The stipulation in Definition
that ¥ be nonnegative definite means in this special case that d; > 0 for all i. Now
take Xi,..., X\ to be independent, univariate normal random variables with zero means
and Var X; = d;. We assert without proof—the assertion will be proven later—that X =
(Xi,...,Xj) is then a multivariate normal random vector, according to Definition 4.6, with
mean 0 and covariance matrix D.
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To define a multivariate normal random vector with a general (non-diagonal) covariance
matrix Y, we make use of the fact that any symmetric matrix may be diagonalized by an
orthogonal matrix. We first define orthogonal, then state the diagonalizability result as a
lemma that will not be proven here.

Definition 4.7 A square matrix @ is orthogonal if Q! exists and is equal to Q.

Lemma 4.8 If A is a symmetric k£ x k matrix, then there exists an orthogonal matrix
@ such that QAQ" is diagonal.

Note that the diagonal elements of the matrix QAQ" in the matrix above must be the
eigenvalues of A. This follows since if )\ is a diagonal element of QAQ", then it is an
eigenvalue of QAQT. Hence, there exists a vector  such that QAQ "z = Az, which implies
that A(QTx) = A\(Q ") and so X is an eigenvalue of A.

Taking > and p as in Definition [4.6] Lemma [4.8] implies that there exists an orgthogonal
matrix @ such that QXQT is diagonal. Since we know that every diagonal entry in QXQT
is nonnegative, we may define Y = (Y1,...,Y%), where Yj,..., Y} are independent normal
random vectors with mean zero and Var Y; equal to the ith diagonal entry of @QXQ". Then
the random vector

X=p+Q'Y (4.4)

has the characteristic function in equation , a fact whose proof is the subject of Exercise
4.1 Thus, Equation (4.3|) of Definition always gives the characteristic function of an
actual distribution. We denote this multivariate normal distribution by N (u, ), or simply
N(u,o0?)if k= 1.

To conclude this section, we point out that in case ¥ is invertible, then Np(p,Y) has a
density in the usual sense on R¥:

1 Lo }

X) = —————=expq —=(x— X (x — , 4.5

00 = e exp { — e )" E N x— (45

where || denotes the determinant of ¥. However, this density will be of little value in the
large-sample topics to follow.

4.1.4 Asymptotic Normality

Now that Ny (u,Y) is defined, we may use it to state one of the most useful theorems in all of
statistical large-sample theory, the Central Limit Theorem for independent and identically
distributed (iid) sequences of random vectors. We defer the proof of this theorem to the next
section, where we establish a much more general result called the Lindeberg-Feller Central
Limit Theorem.
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Theorem 4.9 Central Limit Theorem for independent and identically distributed mul-
tivariate sequences: If Xy, Xy, ... are independent and identically distributed
with mean pu € R and covariance Y, where Y has finite entries, then

VX, — ) 5 Ny(0,%).

Although we refer to several different theorems in this chapter as central limit theorems of
one sort or another, we also employ the standard statistical usage in which the phrase “The
Central Limit Theorem,” with no modifier, refers to Theorem |.9| or its univariate analogue.

Before exhibiting some examples that apply Theorem [£.9] we discuss what is generally meant
by the phrase “asymptotic distribution”. Suppose we are given a sequence Xi, X, ... of
random variables and asked to determine the asymptotic distribution of this sequence. This

might mean to find X such that X, L X, However, depending on the context, this might

not be the case; for example, if X, ¢ for a constant ¢, then we mean something else by
“asymptotic distribution”.

In general, the “asymptotic distribution of X,,” means a nonconstant random variable X,

along with real-number sequences {a,} and {b,}, such that a, (X, — b,) % X. In this case,
the distribution of X might be referred to as the asymptotic or limiting distribution of either
X, or of a,(X,, — by,), depending on the context.

Example 4.10 Suppose that X, is the sum of n independent Bernoulli(p) random

variables, so that X,, ~ binomial(n,p). Even though we know that X, /n £>p
by the weak law of large numbers, this is not generally what we mean by the
asymptotic distribution of X, /n. Instead, the asymptotic distribution of X, /n
is expressed by

N (% —p) 4 N{0,p(1 - p)},

which follows from the Central Limit Theorem because a Bernoulli(p) random
variable has mean p and variance p(1 — p).

Example 4.11 Asymptotic distribution of sample variance: Suppose that X1, X, ...
are independent and identically distributed with E (X;) = u, Var (X;) = 02, and
Var {(X; — p)?} = 72 < co. Define

1 & —
Sy = EZ(Xi_Xn)Q- (4.6)
1=1

We wish to determine the asymptotic distribution of S2.
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Since the distribution of X; — X,, does not change if we replace each X; by
X; — p, we may assume without loss of generality that ¢ = 0. By the Central
Limit Theorem, we know that

1 & d
— X2 _ 52 N(0.72).
f(Z Z a)% 0.7

Furthermore, the Central Limit Theorem and the Weak Law imply 1/n(X,,) 4N (0,0?%)
and X, Rt 0, respectively, so Slutsky’s theorem implies \/n (71) Lo T herefore,

Vi(s2 —o?) =\/ﬁ<%ixf—02> Vi (X)),

Slutsky’s theorem implies that \/n (S? — o?) 4N (0,72), which is the desired re-
sult.

Note that the definition of S? in Equation is not the usual unbiased sample
variance, which uses the denominator n — 1 instead of n. However, since

a

g2 2 (st o?) 4+ YT g2
n—1 n—1

and /n/(n — 1) — 0, we see that the simpler choice of n does not change the
asymptotic distribution at all.

4.1.5 The Cramér-Wold Theorem

Suppose that X, X,,... is a sequence of random k-vectors. By Theorem [2.34] we see
immediately that

X, % X implies a' X,, % a "X for any a € R*. (4.7)

This is because multiplication by a constant vector a’ is a continuous transformation from
R* to R. It is not clear, however, whether the converse of statement (4.7)) is true. Such a
converse would be useful because it would give a means for proving multivariate convergence
in distribution using only univariate methods. As the counterexample in Example[2.38|shows,
multivariate convergence in distribution does not follow from the mere fact that each of the
components converges in distribution. Yet the converse of statement is much stronger
than the statement that each component converges in distribution; could it be true that
requiring all linear combinations to converge in distribution is strong enough to guarantee
multivariate convergence? The answer is yes:
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Theorem 4.12 Cramér-Wold Theorem: X, % X if and only if a" X, 4 aTX for all
a c R

Using the machinery of characteristic functions, to be presented in Section [4.1], the proof of
the Cramér-Wold Theorem is immediate; see Exercise [£.3] This theorem in turn provides
a straightforward method for proving cerain multivariate theorems using univariate results.
For instance, once we establish the univariate Central Limit Theorem (Theorem [£.19)), we
will show how to use the Cramér-Wold Theorem to prove the multivariate CLT, Theorem [4.9]

Exercises for Section 4.1
Exercise 4.1 (a) Prove thatif Y ~ N(0,0?) with 02 > 0, then ¢y (t) = exp (—3t%0?).
Argue that this demonstrates that Definition [4.6|is valid in the case k = 1.

Hint: Verify and solve the differential equation ¢ (t) = —to?¢y(t). Use inte-
gration by parts.

(b) Using part (a), prove that if X is defined as in Equation (4.4]), then ¢x(t) =
exp (it"p — 3t73t).

Exercise 4.2 We will prove Theorem [4.2] which states that chacteristic functions
uniquely determine their distributions.

(a) First, prove the Parseval relation for random X and Y:

E [exp(—ia'Y)¢x(Y)] = E ¢v(X — a).

Hint: Use conditioning to evaluate E exp{i(X —a)'Y}.

(b) Suppose that Y = (Y3, ...,Y%), where Y3,... Y} are independent and iden-
tically distributed normal random variables with mean 0 and variance o2. That
is, Y has density

fy(y) = (V2mo?) " exp(~y "y /207).
Show that X 4+ Y has density

fx+x(s) =E fy(s = X).
(c) Use the result of Exercise [4.1] along with part (b) to show that

friv(s) = (Varo?) * E by (5 - i) |

o2 g2
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Argue that this fact proves ¢x(t) uniquely determines the distribution of X.

Hint: Use parts (a) and (b) to show that the distribution of X +Y depends on
X only through ¢x. Then note that X +Y 4 X as 02 — 0.

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, The-
orem [4.12

Hint: a'X, %a'X implies that Patx, (1) = Parx(1).
Exercise 4.4 Suppose X ~ Ni(p,Y), where ¥ is invertible. Prove that
(X =) 57X = ) ~ xg

Hint: If Q diagonalizes 3, say QXQ" = A, let A'/? be the diagonal, nonnegative
matrix satisfying AY/2A1/2 = A and consider Y'Y, where Y = (AY2)71Q(X—p).

Exercise 4.5 Let Xj, X,,... be independent Poisson random variables with mean
A = 1. Define Y,, = /n(X,, — 1).

(a) Find E (Y1), where Y7 =Y, I{Y,, > 0}.

(b) Find, with proof, the limit of E (Y,) and prove Stirling’s formula
n! ~ V2rntt2em

Hint: Use the result of Exericse B.12

Exercise 4.6 Use the Continuity Theorem to prove Theorem [2.19, the univariate
Weak Law of Large Numbers.

Hint: Use a Taylor expansion (1.5) with d = 2 for both the real and imaginary
parts of the characteristic function of X,,.

Exercise 4.7 Use the Cramér-Wold Theorem along with the univariate Central Limit
Theorem (from Example [2.12)) to prove Theorem

4.2 The Lindeberg-Feller Central Limit Theorem

The Lindeberg-Feller Central Limit Theorem states in part that sums of independent random
variables, properly standardized, converge in distribution to standard normal as long as a
certain condition, called the Lindeberg Condition, is satisfied. Since these random variables
do not have to be identically distributed, this result generalizes the Central Limit Theorem

for independent and identically distributed sequences.
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4.2.1 The Lindeberg and Lyapunov Conditions

Suppose that X, X,,... are independent random variables such that E X,, = pu, and
Var X,, = 02 < co. Define

Yn - Xn — HUn,
T, = Z?:l Y;,
2 = VarT, =", 02

i=1"1

Instead of defining Y,, to be the centered version of X,,, we could have simply taken pu,, to be
zero without loss of generality. However, when these results are used in practice, it is easy
to forget the centering step, so we prefer to make it explicit here.

Note that T;,/s, has mean zero and variance 1. We wish to give sufficient conditions that

ensure T, /s, 4N (0,1). We give here two separate conditions, one called the Lindeberg con-
dition and the other called the Lyapunov condition. The Lindeberg Condition for sequences
states that

1 n
for every € > 0, — ZE (Y2I{]Y;| > es,}) = 0 as n — oc; (4.8)
s
no=1
the Lyapunov Condition for sequences states that

. RN
there exists > 0 such that pores Z E (JYi|*"’) = 0 as n — <. (4.9)

n i=1

We shall see later (in Theorem [4.16] the Lindeberg-Feller Theorem) that Condition
implies T},/s, — N(0,1). For now, we show only that Condition (4.9)—the Lyapunov
Condition—is stronger than Condition . Thus, the Lyapunov Condition also implies
T./sn — N(0,1):

Theorem 4.13 The Lyapunov Condition (4.9)) implies the Lindeberg Condition ({4.8]).

Proof: Assume that the Lyapunov Condition is satisfied and fix € > 0. Since |Y;| > es,
implies |Y;/es,|® > 1, we obtain

1 & 1 <
SO BTV > esn}) < S5 Y B (GPPI{Y] > esa})
n =1 n =1
1 n
< é;{9_2+(SZE(|Y;|2—|—5)
n =1

Since the right hand side tends to 0, the Lindeberg Condition is satisfied. m

97



Example 4.14 Suppose that we perform a series of independent Bernoulli trials with
possibly different success probabilities. Under what conditions will the proportion
of successes, properly standardized, tend to a normal distribution?

Let X,, ~ Bernoulli(p,), so that Y,, = X,, — p,, and 02 = p,(1 — p,). As we shall
see later (Theorem [4.16)), either the Lindeberg Condition (4.8) or the Lyapunov

Condition (4.9) will imply that S0, ¥;/s, % N (0, 1).

Let us check the Lyapunov Condition for, say, 6 = 1. First, verify that
E ’Ynlg = pa(l _pn>3 + (1 _pn>pfl = UZ[“ - pn)2 +pi] < U’?L'

Using this upper bound on E [Y,|?, we obtain )" | E [Y;|* < s2. Therefore, the
Lyapunov condition is satisfied whenever s2/s3 — 0, which implies s,, — co. We
conclude that the proportion of successes tends to a normal distribution whenever

which will be true as long as p, (1 — p,) does not tend to 0 too fast.

4.2.2 Independent and Identically Distributed Variables

We now set the stage for proving a central limit theorem for independent and identically
distributed random variables by showing that the Lindeberg Condition is satisfied by such
a sequence as long as the common variance is finite.

Example 4.15 Suppose that X, X5, ... are independent and identically distributed
with E (X;) = p and Var (X;) = 0? < co. The case 0 = 0 is uninteresting, so we
assume o2 > 0.

Let V; = X; —p and s2 = Var ) .| Vi = no?. Fix e > 0. The Lindeberg
Condition states that

1 n
— E E (Y2I{]Y;| > eay/n}) = 0 asn — oco. (4.10)
no
i=1

Since the Y; are identically distributed, the left hand side of expression (4.10))
simplifies to

LB (VI > co/i}) (4.11)
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To simplify notation, let Z, denote the random variable Y2I{|Y;| > eo+/n}.
Thus, we wish to prove that E Z,, — 0. Note that Z,, is nonzero if and only if
|Y1] > eoy/n. Since this event has probability tending to zero as n — oo, we

conclude that 7, 20 by the definition of convergence in probability. We can also
see that |Z,] < Y, and we know that E Y < co. Therefore, we may apply the
Dominated Convergence Theorem, Theorem [3.22] to conclude that E Z,, — 0.
This demonstrates that the Lindeberg Condition is satisfied.

The preceding argument, involving the Dominated Convergence Theorem, is quite common
in proofs that the Lindeberg Condition is satisfied. Any beginning student is well-advised
to study this argument carefully.

Note that the assumptions of Example are not strong enough to ensure that the Lya-
punov Condition is satisfied. This is because there are some random variables that
have finite variances but no finite 2 + ¢ moment for any 6 > 0. Construction of such an
example is the subject of Exercise [4.10] However, such examples are admittedly somewhat
pathological, and if one is willing to assume that X, X, ... are independent and identically
distributed with E |X|?**° = v < oo for some ¢ > 0, then the Lyapunov Condition is much
easier to check than the Lindeberg Condition. Indeed, because s, = o4/n, the Lyapunov
Condition reduces to

ny _ i
(n02)1+5/2 T nd/2g2+6 — 0,

which follows immediately.

4.2.3 Triangular Arrays

It is sometimes the case that Xi,...,X,, are independent random variables—possibly even
identically distributed—but their distributions depend on n. Take the simple case of the
binomial(n, p,,) distribution as an example, where the probability p, of success on any trial
changes as n increases. What can we say about the asymptotic distribution in such a
case? It seems that what we need is some way of dealing with a sequence of sequences, say,
X1, .., Xpp for n > 1. This is exactly the idea of a triangular array of random variables.

Generalizing the concept of “sequence of independent random variables,” a triangular array
or random variables may be visualized as follows:

X1 <+ independent
Xo1 Xoo <+ independent
X31 X32 X33 — independent
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Thus, we assume that for each n, X,,1,..., X, are independent. Carrying over the notation
from before, we assume E X,,; = p,; and Var X,,; = 02, < co. Let

Ym’ == Xm' — HUni,
n
T, = Zi:l Yo,
2 2
s, = VarT,=>" 0.,

As before, T,, /s, has mean 0 and variance 1; our goal is to give conditions under which

I 4 vo, 1), (4.12)

Sn

Such conditions are given in the Lindeberg-Feller Central Limit Theorem. The key to this
theorem is the Lindeberg condition for triangular arrays:

1 n

For every ¢ > 0, — E E (Y2I{|Ya] > e€sn}) — 0asn — oco. (4.13)
s
n =1

Before stating the Lindeberg-Feller theorem, we need a technical condition that says essen-
tially that the contribution of each X,; to s> should be negligible:

1
— max oy, — 0 as n — . (4.14)
Sn i<n

Now that Conditions (4.12), (4.13), and (4.14)) have been written, the main result may be

stated in a single line:

Theorem 4.16 Lindeberg-Feller Central Limit Theorem: Condition (4.13) holds if
and only if Conditions (4.12)) and (4.14]) hold.

A proof of the Lindeberg-Feller Theorem is the subject of Exercises and [£.9] In most
practical applications of this theorem, the Lindeberg Condition (4.13)) is used to establish
asymptotic normality (4.12]); the remainder of the theorem’s content is less useful.

Example 4.17 As an extension of Example [4.14} suppose X,, ~ binomial(n, p,). The
calculations here are not substantially different from those in Example 4.14] so
we use the Lindeberg Condition here for the purpose of illustration. We claim
that

Xn - n
—Zn P 2 N(0, 1) (4.15)
npn(l _pn)

whenever np, (1 — p,) — oo as n — oo. In order to use Theorem to prove
this result, let Y,1,...,Y,, be independent and identically distributed with

P<Ym':1_pn):1_P(Ym:_pn>:pn'
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Then with X,, = np, + > _._, Y, we obtain X,, ~ binomial(n, p,) as specified.
Furthermore, E Y,,; = 0 and Var Y,; = p,(1 — p,), so the Lindeberg condition
says that for any € > 0,

ZE ( {|Ym‘| > ey/npu(1 —pn)}> — 0. (4.16)

npn 1 _pn

Since |Y,;| < 1, the left hand side of expression (4.16)) will be identically zero
whenever ey/np,(1 —p,) > 1. Thus, a sufficient condition for to hold is
that np,(1 — p,) — oo. One may show that this is also a necessary condition
(this is Exercise [1.11]).

Note that any independent sequence Xi, X5,... may be considered a triangular array by
simply taking X,,; = X for all n > 1, X, = X5 for all n > 2, and so on. Therefore,
Theorem applies equally to the Lindeberg Condition for sequences. Furthermore,
the proof of Theorem [4.13| is unchanged if the sequence Y; is replaced by the array Y,,;.
Therefore, we obtain an alternative means for checking asymptotic normality:

Corollary 4.18 Asymptotic normality (4.12)) follows if the triangular array above
satisfies the Lyapunov Condition for triangular arrays:

. 1 ¢
there exists > 0 such that o ZE (!Ym\2+5) —0asn—o0.  (4.17)

n =1

Combining Theorem [4.16{ with Example 4.15] in which the Lindeberg condition is verified for
a sequence of independent and identically distributed variables with finite positive variance,
gives the result commonly referred to simply as “The Central Limit Theorem”:

Theorem 4.19 Univariate Central Limit Theorem for iid sequences: Suppose that
X1, Xo, ... are independent and identically distributed with E(X;) = u and
Var (X;) = 0? < co. Then

Vi (X, — 1) 5 N(0,0%). (4.18)

The case 0% = 0 is not covered by Example .15, but in this case limit (4.18]) holds auto-
matically.

We conclude this section by generalizing Theorem 9 to the multivariate case, Theorem

. The proof is straightforward using theorem 4 along with the Cramér-Wold theorem,
theorem 412 Recall that the Cramér-Wold theorem allows us to establish multivariate
convergence in distribution by proving univariate convergence in distribution for arbitrary
linear combinations of the vector components.
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Proof of Theorem [4.9} Let X ~ N;(0,%) and take any vector a € R*. We wish to show
that

a' [vn (X, —p)] 4aTX.

But this follows immediately from the univariate Central Limit Theorem, since a' (X; —

p),a’ (Xy — p),... are independent and identically distributed with mean 0 and variance
7

aXa =

We will see many, many applications of the univariate and multivariate Central Limit The-
orems in the chapters that follow.

Exercises for Section 4.2

Exercise 4.8 Prove that (4.13]) implies both (4.12) and (4.14)) (the “forward half” of
the Lindeberg-Feller Theorem). Use the following steps:

(a) Prove that for any complex numbers aq, ..., a, and by,...,b, with |a;| < 1
and |bz| S 1,
|a1"'an_bl"'bn|§Z|ai_bi|' (4.19)
i=1

Hint: First prove the identity when n = 2, which is the key step. Then use
mathematical induction.

(b) Prove that

t t202, elt|®o?,  t? )
Hint: Use the results of Exercise [L.43] parts (c) and (d), to argue that for any
Y,
ity ity £2Y? Y| |y ty'\?
exp i QY (L <|—| IS|—|<ep+|{— ) I{lY] > esn}
S S, 252 Sp S Sn

(c) Prove that (4.13)) implies (4.14)).
Hint: For any ¢, show that
Oni _ 2 B (VAI{|Yal > €sn})

—Z’ <€+ 5
Sn STL

102



(d) Use parts (a) and (b) to prove that, for n large enough so that t> max; 02,/s2 <

e (4) 16 )

=1

< elt)? + 3 ZE (Y2I{|Voi| > €s2}) -

(e) Use part (a) to prove that

n t22
(-5 - Lew (-5 | < aig ot < sy v i

Hint: Prove that for x <0, [1 + 2 — exp(z)| < 2%

(f) Now put it all together. Show that
t ﬁ 202, 0
A—=)=1]exp (=2
"\ sy , P 252 ’
i=1
proving (L12).

Exercise 4.9 In this problem, we prove the converse of Exercise 4.8 which is the
part of the Lindeberg-Feller Theorem due to Feller: Under the assumptions of
the Exercise the variance condition @ and the asymptotic normality
together imply the Lindeberg condition @

(a) Define
i = Py, (t/8n) —
Prove that
max || < 2 max P (| Y| > €sn) + 2¢|t]
and thus

max |a,;| — 0 asn — oc.
1<i<n

Hint: Use the result of Exercise|l.43((a) to show that |exp{it}—1| < 2min{1, |t|}
for t € R. Then use Chebyshev’s inequality along with condition (4.14]).
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(b) Use part (a) to prove that

n
> Jawl* =0
=1
as n — oQ.

Hint: Use the result of Exercise [L.43|[b) to show that || < t202,/s2. Then
write [ami|? < o] max; o).

(c) Prove that for n large enough so that max; |a,;| < 1/2,
Hexp(am) — H(l + )| < Z |t
i=1 i=1 i=1

Hint: Use the fact that |exp(z — 1)] = exp(Re z — 1) < 1 for |z| < 1 to argue
that Inequality (4.19) applies. Also use the fact that |exp(z) — 1 — z| < |z|?* for
|z] < 1/2.

(d) From part (c) and condition (4.12)), conclude that
ZRQ (am) — —Et .
i=1

(e) Show that

u tY,,; 2Y2
OSE E(cos —1+2—;“)—>0.
Sn, s
=1 n

(f) For arbitrary € > 0, choose ¢ large enough so that t2/2 > 2/€*. Show that

Y., 12?2
2 ni
(_ - 6_2) 2 § :E Yol{[ Yl > esn}) < E E (cos o 14— 7 ) ,

=1 n

which completes the proof.

Hint: Bound the expression in part (e) below by using the fact that —1 is a
lower bound for cosz. Also note that |Y,,;| > es, implies —2 > —2Y2/(e*s?).
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Exercise 4.10 Give an example of an independent and identically distributed se-
quence to which the Central Limit Theorem 4.19| applies but for which the Lya-
punov condition is not satisfied.

Exercise 4.11 In Example we show that np,(1 — p,) — oo is a sufficient con-
dition for (4.15) to hold. Prove that it is also a necessary condition. You may
assume that p,(1 — p,) is always nonzero.

Hint: Use the Lindeberg-Feller Theorem.

Exercise 4.12 (a) Suppose that X, Xy, ... are independent and identically dis-
tributed with E X; = g and 0 < Var X; = 0 < co. Let a,,, ..., a,, be constants
satisfying

2
maxi;<n a,;

Z?:l aij

Let T,, = >, an;X;, and prove that (7,, — E T,,)/+/Var T, A N(0,1).

— 0 asn — oo.

(b) Reconsider Example [2.22] the simple linear regression case in which

Bon = i v"Y; and fy, = i w"Y,
=1 i=1

where
(n) %~ Zn m_L1 _ m
w, = and v’ = — — Z, W,
for constants zi, zs,.... Using part (a), state and prove sufficient conditions

on the constants z; that ensure the asymptotic normality of \/ﬁ(BOH — Bo) and
Vn(B1n — B1). You may assume the results of Example , where it was shown

that E ﬁOn = Bo and E Bln = ﬂl-

Exercise 4.13 Give an example (with proof) of a sequence of independent random
variables 71, Zs,... with E(Z;) = 0, Var (Z;) = 1 such that /n(Z,) does not
converge in distribution to N (0, 1).

Exercise 4.14 Let (aq,...,a,) be a random permutation of the integers 1,..., n. If
a; < a; for some i < j, then the pair (7, j) is said to form an inversion. Let X,
be the total number of inversions:

n j—1

X, = ZZ[{aj < a;}.

§=2 i=1
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For example, if n = 3 and we consider the permutation (3,1,2), there are 2
inversions since 1 = ay < a; = 3 and 2 = a3 < a; = 3. This problem asks you to
find the asymptotic distribution of X,,.

(a) Define Yy =0 and for j > 1, let

j—1
Y, = ) Ha<a}
=1

be the number of a; greater than a; to the left of a;. Then the Y; are independent
(you don’t have to show this; you may wish to think about why, though). Find
E(Y;) and Var Y.

(b) Use X, =Y; +Y5+---+Y, to prove that

3 4X, d

5\/5 ( - 1> — N(0,1).

(c) For n = 10, evaluate the distribution of inversions as follows. First, simulate
1000 permutations on {1,2,...,10} and for each permutation, count the number
of inversions. Plot a histogram of these 1000 numbers. Use the results of the
simulation to estimate P(Xjp < 24). Second, estimate P(X;o < 24) using a
normal approximation. Can you find the exact integer ¢ such that 101P(X;y <

24) = ¢?

Exercise 4.15 Suppose that X, Xo, X3 is a sample of size 3 from a beta (2,1) dis-
tribution.

(a) Find P(X; + X3 + X3 < 1) exactly.

(b) Find P(X; + X3+ X3 < 1) using a normal approximation derived from the
central limit theorem.

(c) Let Z =I{X;+ Xy + X3 < 1}. Approximate E Z = P(X; + X» + X3 <1)
by Z = 32,2 Z;/1000, where Z; = I{Xy + Xi2 + Xi3 < 1} and the X;; are
independent beta (2,1) random variables. In addition to Z, report Var Z for

your sample. (To think about: What is the theoretical value of Var Z7)

(d) Approximate P(X; + Xs 4+ X3 < 2) using the normal approximation and
the simulation approach. (Don’t compute the exact value, which is more difficult
to than in part (a); do you see why?)

Exercise 4.16 Lindeberg and Lyapunov impose sufficient conditions on moments so
that asymptotic normality occurs. However, these conditions are not necessary;
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it is possible to have asymptotic normality even if there are no moments at all.
Let X,, assume the values +1 and —1 with probability (1 —27")/2 each and the
value 2% with probability 2=% for k& > n.

(a) Show that E (X/) = oo for all positive integers j and n.
(b) Show that /7 (X,) % N(0,1).

Exercise 4.17 Assume that elements (“coupons”) are drawn from a population of
size n, randomly and with replacement, until the number of distinct elements
that have been sampled is r,,, where 1 < r, < n. Let S,, be the drawing on which
this first happens. Suppose that r,,/n — p, where 0 < p < 1.

(a) Suppose k — 1 distinct coupons have thus far entered the sample. Let X,
be the waiting time until the next distinct one appears, so that

Tn

S, = Z Xk
k=1

Find the expectation and variance of X,.
(b) Let m, =E(S,) and 72 = Var (S,,). Show that

Sn - n
2n M N0, 1).
Tn

Tip: One approach is to apply Lyapunov’s condition with § = 2. This involves
demonstrating an asymptotic expression for 72 and a bound on E [X,,; — E(X,i)]".
There are several ways to go about this.

Exercise 4.18 Suppose that X, Xs, ... are independent binomial(2, p) random vari-
ables. Define Y; = I{X; = 0}.

(a) Find a such that the joint asymptotic distribution of

AlF) -

is nontrivial, and find this joint asymptotic distribution.

(b) Using the Cramér-Wold Theorem, Theorem [4.12, find the asymptotic dis-
tribution of \/n(X, +Y, —1—p?).
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4.3 Stationary m-Dependent Sequences

Here we consider sequences that are identically distributed but not independent. In fact, we
make a stronger assumption than identically distributed; namely, we assume that X;, X, ...
is a stationary sequence. (Stationary is defined in Definition M) Denote E X; by p and
let 02 = Var X;.

We seek sufficient conditions for the asymptotic normality of Vn(X, — ). The variance of
X, for a stationary sequence is given by Equation ([2.20). Letting v, = Cov (X1, X141), we
conclude that

Var {v/n(X, —p)} =0+ %i(n — k)Y (4.21)
k=1

Suppose that

i
L

(n—Fk)y —~ (4.22)

S

e
Il

as n — 00. Then based on Equation (4.21)), it seems reasonable to ask whether

V(X = p) 5 N(0,0% + 7).
The answer, in many cases, is yes. This section explores one such case.

Recall from Definition that Xy, Xo,... is m-dependent for some m > 0 if the vector
(Xi,...,X;) is independent of (X;y;, Xi+jt1,...) whenever j > m. Therefore, for an m-
dependent sequence we have 7, = 0 for all £ > m, so limit (4.22)) becomes

n—1 m
%;(n — k) — 2;%.

For a stationary m-dependent sequence, the following theorem asserts the asymptotic nor-
mality of X,, as long as the X, are bounded:

Theorem 4.20 If for some m > 0, X, X,, ... is a stationary m-dependent sequence
of bounded random variables with E X; = p and Var X; = o2, then

VX, — )5 N (0,02 4+ ZZCOV [X1,X1+k]) :

k=1
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The assumption in Theoremthat the X; are bounded is not necessary, as long as 0% < c0.
However, the proof of the theorem is quite tricky without the boundedness assumption, and
the theorem is strong enough for our purposes as it stands. See, for instance, Ferguson (1996)
for a complete proof. The theorem may be proved using the following strategy: For some

integer k,, define random variables Vi, Vs, ... and Wy, W, ... as follows:
Vi=Xi+- -+ Xg,, Wi = X1+ + Xppym,

Vo = Xiptmt1 + -+ Xok, +m, Wo = Xok, 4m+1 + - + Xok,+2m, (4.23)

In other words, each V; is the sum of k, of the X; and each W; is the sum of m of the Xj.
Because the sequence of X; is m-dependent, we conclude that the V; are independent. For
this reason, we may apply the Lindeberg-Feller theorem to the V;. If k,, is defined carefully,
then the contribution of the W, may be shown to be negligible. This strategy is implemented
in Exercise [4.19 where a proof of Theorem [4.20| is outlined.

Example 4.21 Runs of successes: Suppose X1, Xo, ... are independent Bernoulli(p)
variables. Let 7T, denote the number of runs of successes in Xi,...,X,,, where
a run of successes is defined as a sequence of consecutive X;, all of which equal
1, that is both preceded and followed by zeros (unless the run begins with X; or
ends with X,,). What is the asymptotic distribution of 7,,7

We note that

n
T, = Z I{run starts at ¢th position}
i=1

- X1 + ZXZ(l - Xi_1>,
i=2
since a run starts at the ith position for ¢ > 1 if and only if X; =1 and X;,_; = 0.

Letting ¥; = Xi11(1 — X;), we see immediately that Y1,Ys,... is a stationary
1-dependent sequence with E Y; = p(1 — p), so that by Theorem VY, —

p(l—p)} A N(0,72), where
7> = Var Y] +2Cov (Y7, Y3)

= EY? - (EY)*+2E VY, —2(E ;)2
= EYi-3(EY1)® = p(1-p)-3p°(1-p)*

Since

Tn - np(l - p)
\/ﬁ

X\~ Y,
v

=vn{Y, —p(1—-p)} +
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we conclude that

Fxercises for Section 4.3

Exercise 4.19 We wish to prove theorem [4.20, Suppose X, Xs,... is a station-
ary m-dependent sequence of bounded random variables such that Var X; =

o%. Without loss of generality, assume E X; = 0. We wish to prove that

V(X)) % N(0,72), where

=0+ QZCOV (X1, Xi1k)-

k=1

For all n, define k,, = [n'/*| and ¢, = |n/(k, +m)| and t,, = £, (k, +m). Define
Vi,..., Vo, and Wy, ..., W, asin Equation (4.23). Then

n

12 L n
— 1 «— 1 &« 1
Vi) = =3 Vs =S w3 x.
(a) Prove that
= Xn: X, 5o (4.24)
Vi AT

Hint: Bound the left hand side of expression (4.24)) using Markov’s inequality
(1.35) with » = 1. What is the greatest possible number of summands?

(b) Prove that

! anPO

Bl

Hint: For k, > m, the W, are independent and identically distributed with dis-
tributions that do not depend on n. Use the central limit theorem on (1//7,,) Zfll W;.
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(c) Prove that

1

n

L
S Vi S N0,
=1

Bl

then use Slutsky’s theorem to prove theorem [4.20]

Hint: Use the Lindeberg-Feller theorem.

Exercise 4.20 Suppose Xy, X1, ... is an independent sequence of Bernoulli trials with
success probability p. Suppose X is the indicator of your team’s success on rally
¢ in a volleyball game. Your team scores a point each time it has a success that
follows another success. Let S,, = Z?:l X;_1X; denote the number of points your
team scores by time n.

(a) Find the asymptotic distribution of S,,.

(b) Simulate a sequence X, X1, ..., Xj000 as above and calculate Sjgoo for p = 4.
Repeat this process 100 times, then graph the empirical distribution of Syggg ob-
tained from simulation on the same axes as the theoretical asymptotic distribution
from (a). Comment on your results.

Exercise 4.21 Let Xj, X,... be independent and identically distributed random
variables from a continuous distribution F'(z). Define Y; = I{X; < X;_; and X; < X;1}.
Thus, Y; is the indicator that X; is a relative minimum. Let S, = """ | V.

(a) Find the asymptotic distribution of S,,.

(b) Let n = 5000. For a sample Xy, ..., X501 of size 5002 from the uniform (0, 1)
random number generator in R, compute an approximate two-sided p-value based
on the observed value of S, and the answer to part (a). The null hypothesis is
that the sequence of “random” numbers generated is independent and identically
distributed. (Naturally, the “random” numbers are not random at all, but are
generated by a deterministic formula that is supposed to mimic randomness.)

4.4 Univariate extensions

This section discusses two different extensions of Theorem [4.19] the univariate Central Limit
Theorem. As in the statement of that theorem, we assume here that X, Xs,... are inde-
pendent and identically distributed with E (X;) = y and Var (X;) = 2.
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4.4.1 The Berry-Esseen theorem

Let us define Y; = (X;—p)/o and S,, = \/nY,,. Furthermore, let G,,(s) denote the cumulative
distribution function of S,, i.e., Gy,(s) = P(S, < s). Then the Central Limit Theorem tells
us that for any real number s, G,,(s) — ®(s) as n — oo, where as usual we let ¢ denote the
cumulative distribution function of the standard normal distribution. Since ®(s) is bounded
and continuous, we know that this convergence is uniform, which is to say that

sup |G, (s) — ®(s)| = 0 asn — oo.

seR
Of course, this limit result says nothing about how close the left and right sides must be
for any fixed (finite) n. However, theorems discovered independently by Andrew Berry and
Carl-Gustav Esseen in the early 1940s do just this (each of these mathematicians actually
proved a result that is slightly more general than the one that typically bears their names).
The so-called Berry-Esseen Theorem is as follows:

Theorem 4.22 There exists a constant ¢ such that if Y7,Y5, ... are independent and
identically distributed random variables with mean 0 and variance 1, then

cE |V
sup |Gp(s) — ®(s)] <
up [ (5) — 0(s) <

for all n, where G, (s) is the cumulative distribution function of \/nY,,.

Notice that the inequality is vacuously true whenever E |Y}| is infinite. In terms of the
original sequence X1, X5, ..., the theorem is therefore sometimes stated by saying that when
A=E |X}| < oo,

_ <
sup [G(s) — B(s)] < 5

We will not give a proof of Theorem here, though the interested reader might wish to
consult papers by Ho and Chen (1978, Annals of Probability, pp. 231-249) and Stein (1972,
Proceedings of the Sizth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 2, pp. 583-602). The former authors give a proof of Theorem based on the
Stein paper that gives the value ¢ = 6.5. However, they do not prove that 6.5 is the
smallest possible value of ¢, and in fact an interesting aspect of the Berry-Esseen Theorem
is that the smallest possible value is not known. Currently, one author (Irina Shevtsova,
arXiv:1111.6554v1) has shown that the inequality is valid for ¢ = 0.4748. Furthermore,
Esseen himself proved that ¢ cannot be less than 0.4097. For the sake of simplicity, we may
exploit the known results by taking ¢ = 1/2 to state with certainty that

E |§ 13|
Gn(s) — < .
Sslelng' (5) = 2(s)l 2y/n
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4.4.2 Edgeworth expansions

As in the previous section, Let us define Y; = (X; — u)/o and S,, = \/nY,,. Furthermore, let
y=EY? and 7=EY}
and suppose that 7 < co. The Central Limit Theorem says that for every real y,
P(S, <y)=®(y) +0o(l) asn — oo.

But we would like a better approximation to P(S, < y) than ®(y), and we begin by con-
structing the characteristic function of .S,,:

s, (1) = E exp{ (it/v/n) ZY} [y (t/Vn)]", (4.25)

where 9y (t) = E exp{itY} is the characteristic function of V;.

Before proceeding with an examination of Equation (4.25)), we first establish four preliminary
facts:

1. Sharpening a well-known limit: We already know that (1 4+ a/n)" — €*. But how
good is this approximation? The binomial theorem shows (after quite a bit of algebra)
that for a fixed nonnegative integer k,

(1+ %)H — e (1 - W) +o (%) (4.26)

2. Hermite polynomials: If ¢(x) denotes the standard normal density function, then
we define the Hermite polynomials Hy(x) by the equation

as n — 0.

(1) 6(w) = Hila)o() (4.27)

Thus, by simply differentiating ¢(x) repeatedly, we may verify that Hy(x) = x, Hy(x) =

22— 1, Hy(z) = 2* — 3z, and so on. By differentiating Equation (4.27)) itself, we obtain
the recursive formula

% [Hy(2)¢(x)] = —Hy1 () (). (4.28)
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3. An inversion formula for characteristic functions: Suppose Z ~ G(z) and ¢4 (t)
denotes the characteristic function of Z. If [*_|14(t)|dt < oo, then g(z) = G'(2) exists
and

g(2) ! /Ooe_it'z@/)z(t) dt. (4.29)

:% B

We won'’t prove Equation (4.29) here, but a proof can be found in most books on
theoretical probability.

4. An identity involving ¢(x): For any positive integer k,

1 [~ _ —1)k dk e
- €_ltx€_t2/2(it)k dt = ( ) / 6—1tw6—t2/2 dt

2T 27 ﬁ

= (Do) (4.30)
= Hifx)ola), (1.31)

where (4.30)) follows from (4.29)) since e~*/? is the characteristic function for a standard
normal distribution, and (4.31)) follows from (4.27)).

Returning to Equation (4.25]), we next use a Taylor expansion of exp{itY/y/n}: As n — oo,

by (L) _ E{1+ﬂ+(it)2}/2+(it)3Y3+(it)4Y4}+0<i)

vn Vn 2n 6ny/n 24n? n?
t? it)? it* 1
(B G 1y
2n 6nyn  24n? n?
If we raise this tetranomial to the nth power, most terms are o(1/n):
¢ n t2 n tQ n—1 it 3 it 4
o (T [ Y (1 Y (G, G
NG 2n 2n 6v/n  24n
£2\"7% (n—1)(it)%~? 1
1—— —— — . 4.32
+( 2n> 72n? ] o (n) (432)

By Equations (4.26]) and (4.32)), we conclude that

Ys, (t) et/ {1 — é—; + %?;y 022: + (1?2632} +o0 (%)
R SRR ICEG A R
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If we apply these three approximations to equation (4.32)), we obtain

R A M-
- e (U D G (1)

Putting (4.33)) together with (4.29), we obtain the following density function as an approxi-
mation to the distribution of S,,:

1 o oo . 5
gly) = — (/ e et/ 2 gy 4 1 e_‘tye_t /Q(it)3 dt
2\ J_ 6\/_
-3 00 2 oo
—1—7—24 / e e 2 (i) dit + 772 / e e 2 (it)O dt). (4.34)
n —00

Next, combine ) with - to yield

o) = o) (1+’YH3( y) , (1 =3)Ha(y) +72H6(y)>-

6y/1 * 24n 2n
By (4.28)), the antiderivative of g(y) equals
2
6l = o(s) —oly) (Zopd Tl )
— 3y - 6y) <7(y2 —1) =37 =3y) 2P 1047+ 15y)) .
6v/n 24n 2n
The expression above is called the second-order Edgeworth expansion. By carrying out the

expansion in (4.33)) to more terms, we may obtain higher-order Edgeworth expansions. On
the other hand, the first-order Edgeworth expansion is

Gly) = By) - o(y) (”(Z,—Jﬁ”) (4.36)

(see Exercise [4.23). Thus, if the distribution of Y is symmetric, we obtain v = 0 and

therefore in this case, the usual (zero-order) central limit theorem approximation given by
®(y) is already first-order accurate.

(4.35)

Incidentally, the second-order Edgeworth expansion explains why the standard definition of
kurtosis of a distribution with mean 0 and variance 1 is the unusual-looking 7 — 3.

Exercises for Section 4.4
Exercise 4.22 Verify Equation (4.26)).

Exercise 4.23 Verify that Equation (4.36)) is the first-order Edgeworth approxima-
tion to the distribution function of S,,.
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Chapter 5

The Delta Method and Applications

5.1 Local linear approximations

Suppose that a particular random sequence converges in distribution to a particular con-
stant. The idea of using a first-order (linear) Taylor expansion of a known function, in the
neighborhood of that constant limit, is a very useful technique known as the delta method.
This chapter introduces the method, named for the A in g(z + Az) = g(x) + Azg'(x), and
discusses some of its applications.

5.1.1 Asymptotic distributions of transformed sequences

In the simplest form of the Central Limit Theorem, Theorem [4.19, we consider a sequence

X1, Xs, ... of independent and identically distributed (univariate) random variables with
finite variance o2. In this case, the Central Limit Theorem states that
VX, —p) 502, (5.1)

where 4 = E X; and Z is a standard normal random variable.

In this chapter, we wish to consider the asymptotic distribution of some function of X,,. In
the simplest case, the answer depends on results already known: Consider a linear function
g(t) = at+b for some known constants a and b. Since E X,, = y, clearly E g(X,,) = au+b =
g(p) by the linearity of the expectation operator. Therefore, it is reasonable to ask whether
Vnlg(Xy) — g(i)] tends to some distribution as n — co. But the linearity of g(t) allows one
to write

Vi [g(Xn) = g(w)] = avn (X — p) .
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We conclude by Theorem that

-~ d
vn [g(Xn) — g(,uﬂ —acZ.
Of course, the distribution on the right hand side above is N (0, a*c?).

None of the preceding development is especially deep; one might even say that it is obvious
that a linear transformation of the random variable X,, alters its asymptotic distribution
by a constant multiple. Yet what if the function g(¢) is nonlinear? It is in this nonlinear
case that a strong understanding of the argument above, as simple as it may be, pays real
dividends. For if X, is consistent for u (say), then we know that, roughly speaking, X,
will be very close to u for large n. Therefore, the only meaningful aspect of the behavior of
g(t) is its behavior in a small neighborhood of u. And in a small neighborhood of v, g(1)
may be considered to be roughly a linear function if we use a first-order Taylor expansion.
In particular, we may approximate

g(t) = g(p) +g' () (t — )

for ¢t in a small neighborhood of p. We see that ¢'(p) is the multiple of ¢, and so the logic of
the linear case above suggests

Vi{g(Xa) = g(m)} % g (o Z. (52)

Indeed, expression ([5.2) is a special case of the powerful theorem known as the delta method,
which we now state and prove:

Theorem 5.1 Delta method: 1f ¢'(a) exists and n®(X,, — a) % X for b > 0, then

n* {g(X,) — gla)} 5 ¢'(a) X.

Proof: By Slutsky’s Theorem, X, —a - 0 because X, —a = n~tnb(X,—a) and n=°(X) < 0(X) =
0. Therefore, we may apply Theorem [2.8, which is Taylor’s theorem as it applies to random
variables. Taking d = 1 in Equation (2.5) gives

n’{9(Xa) —g(a)} = n’(Xa —a){g'(a) +op(1)}

as n — oo. Therefore, Slutsky’s theorem together with the fact that n®(X,, —a) A x proves
Theorem [5.1] -

Expression (5.2)) may be reexpressed as a corollary of Theorem :

Corollary 5.2 The often-used special case of Theorem in which X is normally
distributed states that if ¢/(u) exists and /n(X, — ) A N(0,0?%), then

Vi {g(Xo) — g(u)} % N {0, 0% (1)*} .
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Ultimately, we will extend Theorem [5.1|in two directions: Theorem |5.5/deals with the special
case in which ¢'(a) = 0, and Theorem [5.6]is the multivariate version of the delta method. But
we first apply the delta method to a couple of simple examples that illustrate a principle that
we discussed in Section [1.1.4f When we speak of the “asymptotic distribution” of a sequence
of random variables, we generally refer to a nontrivial (i.e., nonconstant) distribution. For
example, in the case of an independent and identically distributed sequence X, Xs, ... of
random variables with finite variance, the phrase “asymptotic distribution of X,” generally
refers to the fact that

Vi (X, —E X;) 3 N(0, Var X;),

not the fact that X, B X;.

Example 5.3 Asymptotic distribution of YZ Suppose X1, Xs,... are independent
and identically distributed with mean p and finite variance o2. Then by the
central limit theorem,

VX, — )5 N(0,0?).

Therefore, the delta method gives
V(X = 1) 5 N(0,4°0%). (5.3)

However, this is not necessarily the end of the story. If ¢ = 0, then the normal
limit in is degenerate—that is, expression ([5.3) merely states that \/ﬁ(YfL)
converges in probability to the constant 0. This is not what we mean by the
asymptotic distribution! Thus, we must treat the case u = 0 separately, noting

in that case that \/nX, AN (0,0%) by the central limit theorem, which implies
that
nYi A o2 X2

Example 5.4 FEstimating binomial variance: Suppose X,, ~ binomial(n, p). Because
X, /n is the maximum likelihood estimator for p, the maximum likelihood esti-
mator for p(1—p) is 6, = X,,(n— X,,)/n?. The central limit theorem tells us that

Vn(X,/n—p) KN NA{0,p(1 — p)}, so the delta method gives

Vi {8, —p(1—p)} 5 N {0,p(1 - p)(1 - 2p)*}.

Note that in the case p = 1/2, this does not give the asymptotic distribution of
0n. Exercise [5.1] gives a hint about how to find the asymptotic distribution of 9,
in this case.
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We have seen in the preceding examples that if ¢’(a) = 0, then the delta method gives
something other than the asymptotic distribution we seek. However, by using more terms
in the Taylor expansion, we obtain the following generalization of Theorem

Theorem 5.5 If g(¢) has r derivatives at the point a and ¢'(a) = ¢"(a) = --- =
g(r—l)(a) = 0, then n®(X,, —a) X for b >0 implies that

2 {9(X0)  gla)} S gV (@)X

It is straightforward using the multivariate notion of differentiability discussed in Definition

to prove the following theorem:

Theorem 5.6 Multivariate delta method: 1f g : R¥ — R’ has a derivative Vg(a) at

a c R* and

nt (X, —a)->Y
for some k-vector Y and some sequence X, X, ... of k-vectors, where b > 0,
then

n’ {g(X,) —g(a)} > [Vg() Y.

The proof of Theorem involves a simple application of the multivariate Taylor expansion
of Equation (|1.31]).

5.1.2 Variance stabilizing transformations

Often, if E (X;) = u is the parameter of interest, the central limit theorem gives

VX, — 1) % N{0,0(1)}.

In other words, the variance of the limiting distribution is a function of u. This is a problem
if we wish to do inference for u, because ideally the limiting distribution should not depend
on the unknown p. The delta method gives a possible solution: Since

Vi {g(Xa) = g()} 5 N {0,0%(u)g' (1)?} |

we may search for a transformation g(x) such that ¢’(u)o(p) is a constant. Such a transfor-
mation is called a variance stabilizing transformation.
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Example 5.7 Suppose that Xl,Xg, ... are independent normal random variables
with mean 0 and variance 2. Let us define 72 = Var X2, which for the normal

1)

distribution may be seen to be 20, (To verify this, try showing that E X} = 304
by differentiating the normal characteristic function four times and evaluating at
zero.) Thus, Example shows that

1 — d
=N X252 N(0,20%).
ﬂ(n;Z 0)—) (0,20%)

To do inference for 02 when we believe that our data are truly independent and
identically normally distributed, it would be helpful if the limiting distribution
did not depend on the unknown o?. Therefore, it is sensible in light of Corollary
to search for a function g(#) such that 2[¢’(c?)]?c* is not a function of o2. In
other words, we want ¢/(t) to be proportional to vt=2 = [t|~!. Clearly g(t) = logt
is such a function. Therefore, we call the logarithm function a variance-stabilizing
function in this example, and Corollary shows that

{log( ZX) log (o )}&N(o,m.

Exercises for Section 5.1

Exercise 5.1 Let d,, be defined as in Example [5.4] Find the asymptotic distribution
of 9§, in the case p = 1/2. That is, find real-valued sequences a, and b, and a

nontrivial random variable X such that a, (3, — b,) LYY

Hint: Let Y, = X, — (n/2). Apply the central limit theorem to Y, then
transform both sides of the resulting limit statement so that a statement involving
0, results.

Exercise 5.2 Prove Theorem [5.5

Exercise 5.3 Suppose X,, ~ binomial(n,p), where 0 < p < 1.

(a) Find the asymptotic distribution of g(X,,/n)—g(p), where g(x) = min{z, 1 —

(b) Show that h(z) = sin~'(y/z) is a variance-stabilizing transformation for
X, /n. This is called the arcsine transformation of a sample proportion.

Hint: (d/du)sin™!(u) = 1/v/1 — 2.
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Exercise 5.4 Let X, X», ... be independent from N(u,c?) where p # 0. Let
R li(x--? )2
n n — (2 n .

Find the asymptotic distribution of the coefficient of variation S, /X,,.

Exercise 5.5 Let X,, ~ binomial(n,p), where p € (0,1) is unknown. Obtain confi-
dence intervals for p in two different ways:
(a) Since \/n(X,/n—p) A N[0, p(1—p)], the variance of the limiting distribution

depends only on p. Use the fact that X, /n Lt p to find a consistent estimator of
the variance and use it to derive a 95% confidence interval for p.

(b) Use the result of problem [5.3(b) to derive a 95% confidence interval for p.

(c) Evaluate the two confidence intervals in parts (a) and (b) numerically for
all combinations of n € {10,100,1000} and p € {.1,.3,.5} as follows: For 1000
realizations of X ~ bin(n, p), construct both 95% confidence intervals and keep
track of how many times (out of 1000) that the confidence intervals contain p.
Report the observed proportion of successes for each (n,p) combination. Does
your study reveal any differences in the performance of these two competing
methods?

5.2 Sample Moments

The weak law of large numbers tells us that If X, X5, ... are independent and identically
distributed with E | X;|* < oo, then

1 n
N XFSE XT
ni:l

That is, sample moments are (weakly) consistent. For example, the sample variance, which
we define as

1< - 1< -
2= (XX =) XP— (X)) 5.4
Sn niﬂ( ) n 2N (Xn)7, (5.4)

is consistent for Var X; = E X? — (E X;)%
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However, consistency is not the end of the story. The central limit theorem and the delta
method will prove very useful in deriving asymptotic distribution results about sample mo-
ments. We consider two very important examples involving the sample variance of Equation

(5.4).

Example 5.8 Distribution of sample T statistic: Suppose Xi, Xs,... are indepen-
dent and identically distributed with E (X;) = p and Var (X;) = 0% < co. Define
s as in Equation ({5.4)), and let

Letting

and B, = o/s,, we obtain T,, = A, B,. Therefore, since An—dﬂ\f(o7 1) by the
central limit theorem and B, R by the weak law of large numbers, Slutsky’s

theorem implies that T, AN (0,1). In other words, T statistics are asymptotically
normal under the null hypothesis.

Example 5.9 Let X;, X5,... be independent and identically distributed with mean
p, variance o2, third central moment E (X; — u)® = v, and Var (X; — p)? =
72 < 0o. Define S2 as in Equation (4.6). We have shown earlier that /n(S2 —

o?) 4N (0,72). The same fact may be proven using Theorem [4.9| as follows.

First, let V; = X; — p and Z; = Y?. We may use tl@ multi\Lariate central limit
theorem to find the joint asymptotic distribution of Y,, and Z,,, namely

Yn O d 0'2 Y
() (e (S 2))
Note that the above result uses the fact that Cov (Y1, Z1) = 7.

We may write S2 = Z,, — (Y,,)2. Therefore, define the function g(a,b) = b — a?
and observe that this gives Vg(a,b) = (—=2a,1)". To use the delta method, we
should evaluate

w(o,gy("j ;)Vg(0,02) — (0 1)(‘772 772) (2) _

We conclude that

AE) (1)) w20

Zn o2

as we found earlier (using a different argument) in Example [1.11]
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Fxercises for Section 5.2

Exercise 5.6 Suppose that X;, Xs,... are independent and identically distributed
Normal (0, ¢%) random variables.

(a) Based on the result of Example , Give an approximate test at o = .05 for
Hy:0*=02vs. H,: 0% # o}.

(b) For n = 25, estimate the true level of the test in part (a) for o2 = 1 by
simulating 5000 samples of size n = 25 from the null distribution. Report the
proportion of cases in which you reject the null hypothesis according to your test
(ideally, this proportion will be about .05).

5.3 Sample Correlation

Suppose that (Xi,Y7), (X2, Y2),... are independent and identically distributed vectors with
E X! < o0 and EY* < co. For the sake of simplicity, we will assume without loss of
generality that E X; = E Y; = 0 (alternatively, we could base all of the following derivations
on the centered versions of the random variables).

We wish to find the asymptotic distribution of the sample correlation coefficient, r. If we let

My E?:l Xi

My 1 Zn?:l le

Mg == Zin:l Xi2 (5.5)
My Zizl Y,

May Z:’L—l XiY;

and

2 _ 2 2 _ 2 _
Sy = Mag — My, 8y = My — My, and Sgy = Mgy, — MMy, (5.6)

then r = s,,/(5,5,). According to the central limit theorem,

My 8 8 Cov (X1, X1) - Cov(X1,X.V7)
My Cov (Y1, X -« Cov (Y1, XY,
Vil me | = 2 [ V5N 0], (,1 1) , (1, i) (5.7)
Moy % X Cov(X'Y X)) .. Cov(XY X,Y7)
mmy Umy O 141, 1 141, 141

Let ¥ denote the covariance matrix in expression (5.7). Define a function g : R® — R3 such
that g applied to the vector of moments in Equation (5.5)) yields the vector (s2,s7, s,,) as

xr Ty
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defined in expression (5.6). Then

a —2a 0 —b
b 0 -2b —a
Vg | ¢ = 1 0 0
d 0 1 0
e 0 0 1
Therefore, if we let
I 0\]" 0
0 0
¥ = |Vg| o2 Y |Vg | o2
oy oy
L Oy Oy
Cov (X3, X3) Cov (X2, Y?)  Cov (X% X1Y1)
= Cov (}/12aX12) Cov (Y?,Y?) Cov (}/127X1}/1) ’

Cov (Xl}/i,X%) Cov (le,}/?) Cov (le.l,le,l>
then by the delta method,

82 O'2
Vi | o2 | = o2 | p 5 Ns(0,5). (5.8)
Szy Oy

As an aside, note that expression (5.8) gives the same marginal asymptotic distribution for
Vn(s? —o2) as was derived using a different approach in Example |4.11] since Cov (X7, X?)
is the same as 72 in that example.

Next, define the function h(a,b,c) = c¢/vab, so that we have h(s2, s, s,,,) = . Then

xr Ty

[Vh(a,b,c)]" = % (\/_a%b JG% \/Q(I_b) ,

so that

—Oyy —O 1 —p —p 1
[Vh(az,az,aw:( y O ):( ' ) (5.9)

3, 27
2030, 2033% 00y 202 20y 00y

Therefore, if A denotes the 1 x 3 matrix in Equation (5.9, using the delta method once
again yields

Vn(r —p) iN(O, ASFAT).

To recap, we have used the basic tools of the multivariate central limit theorem and the
multivariate delta method to obtain a univariate result. This derivation of univariate facts
via multivariate techniques is common practice in statistical large-sample theory.
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Example 5.10 Consider the special case of bivariate normal (X;,Y;). In this case,
we may derive

2041 2p Ufc 2paiao,
¥* = | 20%020; 20, 2p0,0) : (5.10)
2p030,  2pogoy (14 p*)oio;

In this case, AX*AT = (1 — p?)2, which implies that
d
Vn(r —p) = N{0, (1 — p?)*}. (5.11)

In the normal case, we may derive a variance-stabilizing transformation. Accord-
ing to Equation ((5.11]), we should find a function f(z) satisfying f'(z) = (1—2%)~%.
Since

1 1 1

1— a2 _2(1—x)+2(1+x)’

we integrate to obtain

flr) = glog .

This is called Fisher’s transformation; we conclude that

1 1 1 1
\/ﬁ(—log jLT——log —l—p) N(0,1).

1—r 2 1—0p

Fxercises for Section 5.3

Exercise 5.7 Verify expressions (5.10]) and (5.11]).

Exercise 5.8 Assume (X1,Y)),...,(X,,Y,) are independent and identically distributed
from some bivariate normal distribution. Let p denote the population correlation
coefficient and r the sample correlation coefficient.

(a) Describe a test of Hy : p = 0 against H; : p # 0 based on the fact that
d
valf(r) = f(p)] = N(0,1),

where f(z) is Fisher’s transformation f(x) = (1/2)log[(1 + z)/(1 — z)]. Use
a = .05.

(b) Based on 5000 repetitions each, estimate the actual level for this test in the
case when E (X;) = E (Y;) =0, Var (X;) = Var (Y;) = 1, and n € {3, 5,10, 20}.
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Exercise 5.9 Suppose that X and Y are jointly distributed such that X and Y
are Bernoulli (1/2) random variables with P(XY = 1) = 6 for 6 € (0,1/2).
Let (X1,Y7), (X3,Y3),... be independent and identically distributed with (X;,Y;)
distributed as (X,Y).

(a) Find the asymptotic distribution of v/n [(X,,Y,) — (1/2,1/2)].

(b) If r, is the sample correlation coefficient for a sample of size n, find the
asymptotic distribution of v/n(r, — p).

(c) Find a variance stabilizing transformation for r,,.
(d) Based on your answer to part (c), construct a 95% confidence interval for 6.

(e) For each combination of n € {5,20} and 0 € {.05,.25, .45}, estimate the true
coverage probability of the confidence interval in part (d) by simulating 5000
samples and the corresponding confidence intervals. One problem you will face
is that in some samples, the sample correlation coefficient is undefined because
with positive probability each of the X; or Y; will be the same. In such cases,
consider the confidence interval to be undefined and the true parameter therefore
not contained therein.

Hint: To generate a sample of (X,Y), first simulate the X’s from their marginal
distribution, then simulate the Y’s according to the conditional distribution of
Y given X. To obtain this conditional distribution, find P(Y =1 | X = 1) and
PY=1|X=0).

126



Chapter 6

Order Statistics and Quantiles

Consider an “ordering” function on n real numbers, a vector-valued function f, that maps
R™ — R" so that if we let y = f,,(x), then the values yi,...,y, are simply a permutation
of the values x1,...,z, such that y; < --- < y,. In this chapter, we consider the order
statistics, which are the result of applying this ordering function to a simple random sample
X, X,

We introduce a specialized notation for these random variables, which we call the order
statistics. Given a finite sample X, ..., X,,, define the values X(y),..., X, to be a permu-
tation of Xy,..., X, such that X(;) < X(g) <--- < X(,,). We call X(;) the ith order statistic
of the sample.

Even though the notation X;) does not explicitly use the sample size n, the distribution of
X(;) depends essentially on n. For this reason, some textbooks use slightly more complicated
notation such as

X(l:n)a X(?;n); s aX(n;n)

for the order statistics of a sample. We choose to use the simpler notation here, though it is
important to remember that we will always understand the sample size to be n.

6.1 Extreme Order Statistics

The asymptotic distributions of order statistics at the extremes of a sample may be derived
without any specialized knowledge other than the limit formula

<1+£> — €% asn — o0 (6.1)
n
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and its generalization
a\"
(1 + b_n) — € if ¢, = cand b, — o0 (6.2)

(see Example|1.20)). Recall that by “asymptotic distribution of X(1),” we mean sequences a,,

and b,, along with a nondegenerate random variable X, such that a,(Xu) — by) 4 X This
section consists mostly of a series of illustrative examples.

Example 6.1 Suppose Xi,..., X, are independent and identically distributed uni-
form(0,1) random variables. What is the asymptotic distribution of X,)?

Since X,y <t if and only if X; <¢, X, <t, ..., and X,, <, by independence
we have
0 ift<o0
P(Xu <t)= {t” ifo<t<l1 (6.3)
1 ift>1.

From Equation 1) it is apparent that X, Rt 1, though this limit statement
does not fully reveal the asymptotic distribution of X,). We desire sequences
an, and b, such that a,(X() — b,) has a nondegenerate limiting distribution.
Evidently, we should expect b, = 1, a fact we shall rederive below.

Computing the distribution function of a, (X, — b,) directly, we find

PWOZPWMXw—WJSU}ZP{XWSfi+m}
a

n

as long as a,, > 0. Therefore, we see that

Flu) = (ﬂ + bn) for 0< — +b, < 1. (6.4)
anp Qp,

We would like this expression to tend to a limit involving only v as n — oo.

Keeping expression in mind, we take b, = 1 and a, = n so that F(u) =

(1 +wu/n)"™, which tends to e".

However, we are not quite finished, since we have not determined which values
of u make the above limit valid. Equation [6.4] required that 0 < b, + (u/a,) < 1,
which in this case becomes —1 < u/n < 0. This means u may be any negative
real number, since for any v < 0, —1 < u/n < 0 for all n > |u|. We conclude
that if the random variable U has distribution function

~ Jexp(u) ifu<O0
Fwy‘{1 if u >0,
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then n(X,—1) 4 U. Since —U is simply a standard exponential random variable,
we may also write

n(l = X)) N Exponential(1).

Example 6.2 Suppose X, Xs,... are independent and identically distributed expo-
nential random variables with mean 1. What is the asymptotic distribution of

As in Equation if u/a, + b, > 0 then

P{an(X(n) —b,) < U} =P (X(n) < aﬂ + bn) = {1 — exp (—bn — ai)} .

n

Taking b, = logn and a, = 1, the rightmost expression above simplifies to

—u\n
Ut
n
which has limit exp(—e~"). The condition u/a,, + b, > 0 becomes u + logn > 0,
which is true for all u € R as long as n > exp(—u). Therefore, we conclude that

X —logn N U, where

PU<u) & exp{—exp(—u)} for all u. (6.5)

The distribution of U in Equation is known as the extreme value distribution
or the Gumbel distribution.

In Examples[6.1and we derived the asymptotic distribution of a maximum from a simple
random sample. We did this using only the definition of convergence in distribution without
relying on any results other than expression In a similar way, we may derive the joint
asymptotic distribution of multiple order statistics, as in the following example.

Example 6.3 Range of uniform sample: Let Xq,..., X, be a simple random sample
from Uniform(0, 1). Let R, = X,y — X(1) denote the range of the sample. What
is the asymptotic distribution of R,?

To answer this question, we begin by finding the joint asymptotic distribution of
(X(n), X(1)), as follows. For sequences a,, and b, as yet unspecified, consider

P(anX(l) > ¢ and bn(l — X(n)) > y) = P(X(l) > x/an and X(n) <1- y/bn)
= P(l’/an < X(l) < < X(n) <1 —y/bn),

129



where we have assumed that a, and b,, are positive. Since the probability above
is simply the probability that the entire sample is to be found in the interval
(x/an,1 —y/b,), we conclude that as long as

x Yy
I<—<1—=x1 6.6
a, bn ) ( )
we have
y x\"
P(a,Xqy >z and b,(1 — X)) >y) = (1-— b o
n an

Expression ([6.1])) suggests that we set a,, = b, = n, resulting in

P(nXu >z and n(l — Xy) >y) = (1_g_f)n'

n n

Expression [6.6] becomes

0<£<1—g<1,
n n

which is satisfied for large enough n if and only if x and y are both positive. We
conclude that for x > 0, y > 0,

P(nXa >xand n(l — X)) >y) — e “e v,

Since this is the joint distribution of independent standard exponential random
variables, say, Y7 and Y,, we conclude that

()4
n(l = X)) Y2)
Therefore, applying the continuous function f(a,b) = a + b to both sides gives

n(1— X + X)) =n(l — R,) 5 Y] + Y3 ~ Gammal(2, 1).

Let us consider a different example in which the asymptotic joint distribution does not
involve independent random variables.

Example 6.4 As in Example[6.3] let X3,..., X, be independent and identically dis-
tributed from uniform(0,1). What is the joint asymptotic distribution of X,y
and X (n)?

Proceeding as in Example we obtain

P Kn&f—X)((z;)))) > (;)] = P (X <1- = and X, < 1 - %) . (6.7)
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We consider two separate cases: If 0 < x < y, then the right hand side of
is simply P(X(, < 1 —y/n), which converges to e™¥ as in Example . On the
other hand, if 0 < y < z, then

P(X(n_1)<1—£andX(n)<1—g> = P(X(n)<1—z>
n n n
x Y
+P(X(n_1) <1l—-— <X(n) < 1——)
n n

- )
= e *(1+x—y).

The second equality above arises because X(,_1) < a < Xy < b if and only if
exactly n—1 of the X, are less than a and exactly one is between a and b. We now
know the joint asymptotic distribution of n(1 — X(,_1)) and n(l — X,_1)); but
can we describe this joint distribution in a simple way? Suppose that Y; and Y5
are independent standard exponential variables. Consider the joint distribution
of Y7 and Y] + Y5: If 0 < x < y, then

PYi+Ys>zand Y] >y)=P(Y1 >y)=e".
On the other hand, if 0 < y < x, then
PYi+Y,>zandY; >y) = PV, >max{y,z—Yy}) = B e max{vet2)
= e YPly>z—Yy) + /Ox_yet“et dt

= e "(l+z—y).

Therefore, we conclude that
(n(l — X(n—l))) 4 (Y1 + YQ)
n(l— X)) i )

Notice that marginally, we have shown that n(1 — X)) KN Gamma(2,1).

Recall that if F'is a continuous, invertible distribution function and U is a standard uniform
random variable, then F~'(U) ~ F. The proof is immediate, since P{F~'(U) < t} =
P{U < F(t)} = F(t). We may use this fact in conjunction with the result of Example
as in the following example.

Example 6.5 Suppose Xi,..., X, areindependent standard exponential random vari-
ables. What is the joint asymptotic distribution of (X(,—1y, X(5))?
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The distribution function of a standard exponential distribution is F(t) = 1—e™,

whose inverse is F~!(u) = —log(1 — ). Therefore,
(— log(1 — U(nl)))i<X(nl)>
— log(l — U(n)) X(n) ’
where < means “has the same distribution”. Thus,
(— log [n(l — U(n_l))}> d <X(n_1) — log n)
—log [n(1 = Up)] Xy —logn )
We conclude by the result of Example [6.4] that

X(n-1) —logn d —log(Y1 + Y2)
Xy —logn —logV; ’

where Y] and Y5 are independent standard exponential variables.

Exercises for Section 6.1

Exercise 6.1 For a given n, let Xy, ..., X, be independent and identically distributed

with distribution function
3+ 03

Let X(;) denote the first order statistic from the sample of size n; that is, X(y) is
the smallest of the Xj;.

a) Prove that —X/;) is consistent for 6.
(a) (1)
(b) Prove that

n(9 -+ X(l)) i> Y,

where Y is a random variable with an exponential distribution. Find E (V') in
terms of 6.

(c) For a fixed «, define
(Sam = — (1 + —) X(l).
Find, with proof, a* such that
d

n(O—6un) S Y B,
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where Y is the same random variable as in part (b).

(d) Compare the two consistent -estimators dn-, and —X(;) empirically as
follows. For n € {10% 10%,10*}, take # = 1 and simulate 1000 samples of size
n from the distribution of X;. From these 1000 samples, estimate the bias and
mean squared error of each estimator. Which of the two appears better? Do your
empirical results agree with the theoretical results in parts (c¢) and (d)?

Exercise 6.2 Let X;, X5,... be independent uniform (0,6) random variables. Let
Xn) = max{Xy,...,X,} and consider the three estimators

2
5= Xy 6= ——X 52:( - )X(ny

n—1

(a) Prove that each estimator is consistent for 6.

(b) Perform an empirical comparison of these three estimators for n = 10%, 103, 10%.
Use # = 1 and simulate 1000 samples of size n from uniform (0,1). From these
1000 samples, estimate the bias and mean squared error of each estimator. Which
one of the three appears to be best?

(c) Find the asymptotic distribution of n(6 — ¢?) for ¢ = 0,1,2. Based on your
results, which of the three appears to be the best estimator and why? (For the
latter question, don’t attempt to make a rigorous mathematical argument; simply
give an educated guess.)

Exercise 6.3 [Find, with proof, the asymptotic distribution of X, if X;,..., X,, are
independent and identically distributed with each of the following distributions.
(That is, find ay, by, and a nondegenerate random variable X such that a,(Xq)—

b) % X))
(a) Beta(3,1) with distribution function F(x) = z* for z € (0, 1).
(b) Standard logistic with distribution function F(z) = €*/(1 + €7).

Exercise 6.4 Let Xj,..., X, be independent uniform(0, 1) random variables. Find
the joint asymptotic distribution of [nX(g), n(l—X (n,l))}.

Hint: To find a probability such as P(a < X < X@) < b), consider the
trinomial distribution with parameters [n;(a,b — a,1 — b)] and note that the
probability in question is the same as the probability that the numbers in the
first and third categories are each < 1.

Exercise 6.5 Let Xi,..., X, be a simple random sample from the distribution func-
tion F(x) =[1 — (1/x)|I{zx > 1}.
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(a) Find the joint asymptotic distribution of (X,—1)/n, X@)/n).
Hint: Proceed as in Example [6.5
(b) Find the asymptotic distribution of X,_1)/X.

Exercise 6.6 If Xi,..., X, are independent and identically distributed uniform(0, 1)
variables, prove that X(1)/X (s KN uniform(0, 1).

Exercise 6.7 Let Xi,..., X, be a simple random sample from a logistic distribution
with distribution function F(t) = €//?/(1 + €'/?) for all ¢.

(a) Find the asymptotic distribution of X,y — X¢,—1).

Hint: Use the fact that log U,) and log U,—1y both converge in probability to
Zero.

(b) Based on part (a), construct an approximate 95% confidence interval for
0. Use the fact that the .025 and .975 quantiles of the standard exponential
distribution are 0.0253 and 3.6889, respectively.

(c) Simulate 1000 samples of size n = 40 with # = 2. How many confidence
intervals contain 67

6.2 Sample Quantiles

To derive the distribution of sample quantiles, we begin by obtaining the exact distribution
of the order statistics of a random sample from a uniform distribution. To facilitate this
derivation, we begin with a quick review of changing variables. Suppose X has density fx(x)
and Y = g(X), where g : R¥ — R is differentiable and has a well-defined inverse, which we
denote by h : R¥ — R*. (In particular, we have X = h[Y].) The density for Y is

fx(y) = [Det[Vh(y)]| fx[h(y)], (6.8)

where |Det[Vh(y)]| is the absolute value of the determinant of the k& x k& matrix Vh(y).

6.2.1 Uniform Order Statistics

We now show that the order statistics of a uniform distribution may be obtained using ratios
of gamma random variables. Suppose X,..., X, 1 are independent standard exponential,
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or Gamma(1, 1), random variables. For j = 1,...,n, define

I X,
V= et (6.9)

Zz‘:l X;
We will show that the joint distribution of (Y7, ...,Y},) is the same as the joint distribution of
the order statistics (Upy, . .., Uwy) of a simple random sample from uniform(0, 1) by demon-

strating that their joint density function is the same as that of the uniform order statistics,
namely n!7{0 < uq) < ... <up) <1}

We derive the joint density of (Y1,...,Y;,) as follows. As an intermediate step, define Z; =
Y Xiforj=1,...,n+1. Then

Z; ifi=1
Xi_{Zi—Zl-l if i > 1,

which means that the gradient of the transformation from Z to X is upper triangular with
ones on the diagonal, a matrix whose determinant is one. This implies that the density for
Z is

fz(z) = exp{—2n11 } {0 < 21 < 20 <+ < zpy1}.

Next, if we define Y, ;1 = Z,, 1, then we may express Z in terms of Y as

Z{_{YnHYi ifi<n+l

Y1 ifi=n+1l (6.10)

The gradient of the transformation in Equation ((6.10f) is lower triangular, with y,.; along
the diagonal except for a 1 in the lower right corner. The determinant of this matrix is y;;, ,,
so the density of Y is

Jx(¥) = yni1 exp{—Ynr1 H{yns1 > 0JI{0 <y < -+ < yn < 1} (6.11)

Equation reveals several things: First, (Y7,...,Y,) is independent of Y,,;; and the
marginal distribution of Y1 is Gamma(n + 1,1). More important for our purposes, the
marginal joint density of (Y7,...,Y},) is proportional to I{0 < y; < --- < y, < 1}, which is
exactly what we needed to prove. We conclude that the vector Y defined in Equation
has the same distribution as the vector of order statistics of a simple random sample from
uniform(0, 1).

6.2.2 Uniform Sample Quantiles

Using the result of Section we may derive the joint asymptotic distribution of a set of
sample quantiles for a uniform simple random sample.
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Suppose we are interested in the p; and ps quantiles, where 0 < p; < py < 1. The following
argument may be generalized to obtain the joint asymptotic distribution of any finite number
of quantiles. If Uy, ..., U, are independent uniform(0, 1) random variables, then the p; and

po sample quantiles may be taken to be the a,th and b, th order statistics, respectively, where

a, & |.5+np;| and b, oo |.5+mnp2| (|.5+x] is simply = rounded to the nearest integer).

Next, let
1 an 1 bn 1 n+1
def def def
An = ﬁ E Xi, Bn = E . E Xi, and Cn = ﬁ . E Xz
i=1 i=an+1 i=bn+1

We proved in Section that (U, Uw,)) has the same distribution as

def ( A, A, + B, >

A, B = 12
B4 B C) Y (e T (6.12)

The asymptotic distribution of g(A,, B,, C,,) may be determined using the delta method if
we can determine the joint asymptotic distribution of (A,, By, Cy).

A bit of algebra reveals that

 ag nA, np1\ _ Ja, nA, an — NPy
Vil =) = | (M) o (M) g e,

a A, a

By the central limit theorem, \/a,(nA,/a, — 1) KN N(0,1) because the X; have mean 1 and
variance 1. Furthermore, a,/n — p; and the rightmost term above goes to 0, so Slutsky’s
theorem gives

Vi (An = p1) 5 N0, py).

Similar arguments apply to B, and to C,. Because A, and B,, and C,, are independent of
one another, we may stack them as in Exercise to obtain

A h J 0 P1 0 0
Vn B, | =| po—m —N;< O, O pp—p1 O
Cn 1— D2 0 0 0 1- D2

by Slutsky’s theorem. For g : R?* — R? defined in Equation (6.12), we obtain

1 b+c c
b)) — — | _
Va(a.b,¢) (a+ b+ c)? _Z _ac_ b
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Therefore,

l-p1 —p _pl)
Vo(pi,p2 —p1, 1= )] = )
[Vg(p1,p2 — p1 p2)] (1 —ps 1—py —po

so the delta method gives
()= Gy {(0) (hh mi s ) e

The method used above to derive the joint distribution (6.13)) of two sample quantiles may
be extended to any number of quantiles; doing so yields the following theorem:

Theorem 6.6 Suppose that for given constants py,...,pr with 0 <p; < --- < pp < 1,
we define sequences {a,}, ..., {ag,} such that for all 1 <i <k,

NG (“ﬂ - pz-> 0.
n
Then if Uy, ..., U, is a sample from Uniform(0,1),

Ularn) P1 0 p(l—=p1) - pi(1—pw)
Vi AR RN z z
Ularn) Dk 0 pi(l—=pr) - pe(l—pr)

Note that for ¢ < j, both the (i,7) and (j,7) entries in the covariance matrix above equal
pi(1 —p;) and p;(1 — p;) never occurs in the matrix.

6.2.3 General sample quantiles

Let F'(z) be the distribution function for a random variable X. The quantile function F'~(u)
of Definition is nondecreasing on (0, 1) and it has the property that F~(U) has the same
distribution as X for U ~ uniform(0,1). This property follows from Lemma [3.19| since

PIF~(U) <a] = PlU < F(x)] = F(x)

for all . Since F'~(u) is nondecreasing, it preserves ordering; thus, if X7, ..., X,, is a random
sample from F(z), then

d [ .
(X, X)) = [F(Uny),.... F (Uw)] -
(The symbol £ means “has the same distribution as” )
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Now, suppose that at some point £, the derivative F'({) exists and is positive. Then F'(z)
must be continuous and strictly increasing in a neighborhood of . This implies that in this

neighborhood, F(z) has a well-defined inverse, which must be differentiable at the point

P& F (€). If F~(u) denotes the inverse that exists in a neighborhood of p, then

- . (6.14)

Equation (6.14) may be derived by differentiating the equation F[F~!(p)] = p. Note also
that whenever the inverse F~!(u) exists, it must coincide with the quantile function F~(u).
Thus, the condition that F’(§) exists and is positive is a sufficient condition to imply that
F~(u) is differentiable at p. This differentiability is important: If we wish to transform the
uniform order statistics Uy,,,) of Theorem into order statistics X(,,,) using the quantile
function F'~(u), the delta method requires the differentiability of F'~(u) at each of the points

P15 Pk
The delta method, along with Equation (|6.14)), yields the following corollary of Theorem :

Theorem 6.7 Let X;,..., X, beasimple random sample from a distribution function
F(x) such that F(z) is differentiable at each of the points & < --- < & and
F'(&) > 0 for all 7. Denote F'(&;) by p;. Then under the assumptions of Theorem

6.6,

p1(1—p1) . p1(1—pg)
X(am) 51 4 0 F'(&1)2 F’(lfl)F"(%fk)
N4 I B S I I ;
0 p1(1—pk) L Pr(1=pk)
X(axn) S FIEnF (&) F(&)?

Exercises for Section 6.2

Exercise 6.8 Let X,..., X, be independent uniform(0, 20) random variables.
(a) Let M = (X()+ X(»))/2. Find the asymptotic distribution of n(M — ).

(b) Compare the asymptotic performance of the three estimators M, X, and
the sample median X,, by considering their relative efficiencies.

(c) For n € {101,1001, 10001}, generate 500 samples of size n, taking 0 = 1.
Keep track of M, X,,, and X, for each sample. Construct a 3 x 3 table in which
you report the sample variance of each estimator for each value of n. Do your
simulation results agree with your theoretical results in part (b)?
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Exercise 6.9 Let X; be Uniform(0,27) and let X5 be standard exponential, indepen-
dent of X;. Find the joint distribution of (Y7, Ys) = (v/2X3 cos X1, /2 X5 sin X).

Note: Since —log U has a standard exponential distribution if U ~ uniform(0, 1),
this problem may be used to simulate normal random variables using simulated
uniform random variables.

Exercise 6.10 Suppose Xi,...,X,, is a simple random sample from a distribution
that is symmetric about @, which is to say that P(X; < z) = F(x — 6), where
F(z) is the distribution function for a distribution that is symmetric about zero.
We wish to estimate 6 by (Q, + Q1-,)/2, where ), and ()1, are the p and 1 —p
sample quantiles, respectively. Find the smallest possible asymptotic variance for
the estimator and the p for which it is achieved for each of the following forms of

F(x):

(a) Standard Cauchy

(b) Standard normal

(c) Standard double exponential

Hint: For at least one of the three parts of this question, you will have to solve
for a minimizer numerically.

Exercise 6.11 When we use a boxplot to assess the symmetry of a distribution, one
of the main things we do is visually compare the lengths of Q3 — Q)2 and Qs — Q1
where (Q; denotes the ith sample quartile.

(a) Given a random sample of size n from N (0, 1), find the asymptotic distribu-

tion of (@3 — Q2) — (Q2 — Q1)-
(b) Repeat part (a) if the sample comes from a standard logistic distribution.

(c) Using 1000 simulations from each distribution, use graphs to assess the
accuracy of each of the asymptotic approximations above for n =5 and n = 13.
(For a sample of size 4k + 1, define @; to be the (ik + 1)th order statistic.) For
each value of n and each distribution, plot the empirical distribution function
against the theoretical limiting distribution function.

Exercise 6.12 Let Xi,..., X, be a random sample from Uniform(0,26). Find the
asymptotic distributions of the median, the midquartile range, and %Qg, where
()3 denotes the third quartile and the midquartile range is the mean of the 1st
and 3rd quartiles. Compare these three estimates of # based on their asymptotic
variances.
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Chapter 7

Maximum Likelihood Estimation

7.1 Consistency

If X is a random variable (or vector) with density or mass function fy(z) that depends on
a parameter 6, then the function fy(X) viewed as a function of € is called the likelihood
function of #. We often denote this function by L(€). Note that L(0) = fyo(X) is implicitly
a function of X, but we suppress this fact in the notation. Since repeated references to
the “density or mass function” would be awkward, we will use the term “density” to refer
to fo(x) throughout this chapter, even if the distribution function of X is not continuous.
(Allowing noncontinuous distributions to have density functions may be made technically
rigorous; however, this is a measure theoretic topic beyond the scope of this book.)

Let the set of possible values of 6 be the set 2. If L(#) has a maximizer in €2, say 0, then 0
is called a maximum likelihood estimator or MLE. Since the logarithm function is a strictly

increasing function, any maximizer of L(#) also maximizes ¢(6) L Jog L(#). It is often much
easier to maximize £(6), called the loglikelihood function, than L(0).

Example 7.1 Suppose 2 = (0,00) and X ~ binomial(n,e~?). Then

((0) = log (;) — X0+ (n— X)log(l—e™),

S0
X—-n
) =-X :
() * 1—¢f

Thus, setting ¢'(6) = 0 yields § = —log(X/n). It isn’t hard to verify that

0"(0) < 0, so that —log(X/n) is in fact a maximizer of £(6).
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As the preceding example demonstrates, it is not always the case that a MLE exists—for if
X =0or X =n, then —log(X/n) is not contained in §2. This is just one of the technical
details that we will consider. Ultimately, we will show that the maximum likelihood estimator
is, in many cases, asymptotically normal. However, this is not always the case; in fact, it is
not even necessarily true that the MLE is consistent, as shown in Problem [7.1]

We begin the discussion of the consistency of the MLE by defining the so-called Kullback-
Leibler divergence.

Definition 7.2 1If fy (z) and fp, (x) are two densities, the Kullback-Leibler divergence
from fp, to fp, equals

_ fQO(X)
K<f907f01) - E90 10g f@l(X)

If Py, (fo,(X) >0 and fp, (X) =0) > 0, then K(fp,, fp,) is defined to be oco.

The Kullback-Leibler divergence is sometimes called the Kullback-Leibler information num-
ber or the relative entropy of fp, with respect to fp,. Although it is nonnegative, and takes
the value zero if and only if fy, (x) = fy,(z) except possibly for a set of = values having mea-
sure zero, The K-L divergence is not a true distance because K(fy,, fp,) is not necessarily
the same as K (fy,, fo,)-

We may show that the Kullback-Leibler information must be nonnegative by noting that

f91 (X>
=FEgy I X)>0} <1.
90 ng(X> 0 {feo( ) }
Therefore, by Jensen’s inequality (1.37]) and the strict convexity of the function —logz,
f91 (X) f91 (X)
K =Eg, —1 > —logE > 1
(f@o’féh) o og fGO(X) = 0g I g, fGO(X) = 07 (7 )

with equality if and only if Py, {fo,(X) = fo,(X)} = 1. Inequality ([7.1]) is sometimes called
the Shannon-Kolmogorov information inequality.

In the (admittedly somewhat bizarre) case in which the parameter space {2 contains only
finitely many points, the Shannon-Kolmogorov information inequality may be used to prove
the consistency of the maximum likelihood estimator. For the proof of the following theorem,
note that if Xi,..., X, are independent and identically distributed with density fp,(x), then
the loglikelihood is £(0) = ., log fo,(z;).

Theorem 7.3 Suppose {2 contains finitely many elements and that Xi,..., X,, are
independent and identically distributed with density f,(x). Furthermore, sup-
pose that the model parameter is identifiable, which is to say that different values
of 0 lead to different distributions. Then if én denotes the maximum likelihood

. 5P
estimator, 6,, — 6.
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Proof: The Weak Law of Large Numbers (Theorem [2.19)) implies that

- Z feo P E90 lOg ff;o(i)%z)) = _K(f907 f9) (72)

for all 0 € Q2. The value of —K(fy,, fo) is strictly negative for 6 # 6, by the 1dent1ﬁab1hty of
f. Therefore, since 6 = 0, is the maximizer of the left hand side of Equation (|7

A _ 1 o fo(X;
P(Qn%eo)—P<%&%§g;10gﬁo( ) ZP( Zl feo >o)%0.

0400

This implies that 0, it fp. m

The result of Theorem may be extended in several ways; however, it is unfortunately not

true in general that a maximum likelihood estimator is consistent, as demonstrated by the
example of Problem [7.1]

If we return to the simple Example we found that the MLE was found by solving the
equation

¢(6) = 0. (7.3)

Equation is called the likelihood equation, and naturally a root of the likelihood equa-
tion is a good candidate for a maximum likelihood estimator. However, there may be no
root and there may be more than one. It turns out the probability that at least one root
exists goes to 1 as n — oo. Consider Example [7.1], in which no MLE exists whenever X = 0
or X =n. In that case, both P(X = 0) = (1 —e )" and P(X = n) = ¢ go to zero as
n — oo. In the case of multiple roots, one of these roots is typically consistent for 6y, as
stated in the following theorem.

Theorem 7.4 Suppose that Xi,..., X,, are independent and identically distributed
with density fy, () for 6y in an open interval @ C R, where the parameter is iden-
tifiable (i.e., different values of 6 € Q) give different distributions). Furthermore,
Suppose that the loglikelihood function ¢() is differentiable and that the support
{z : fo(x) > 0} does not depend on #. Then with probability approachmg 1 as

n — 0o, there exists 6,, = Hn(Xl, ..., X,,) such that E’(Qn) =0 and 6, —>00.

Stated succinctly, Theorem [7.4] says that under certain regularity conditions, there is a
consistent root of the likelihood equation. It is important to note that there is no guarantee
that this consistent root is the MLE. However, if the likelihood equation only has a single
root, we can be more precise:
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Corollary 7.5 Under the conditions of Theorem [7.4] if for every n there is a unique
root of the likelihood equation, and this root is a local maximum, then this root
is the MLE and the MLE is consistent.

Proof: The only thing that needs to be proved is the assertion that the unique root is
the MLE. Denote the unique root by 6, and suppose there is some other point 6 such that

£(0) > £(0,). Then there must be a local minimum between ¢,, and ¢, which contradicts the
assertion that 6, is the unique root of the likelihood equation. m

Exercises for Section 7.1

Exercise 7.1 In this problem, we explore an example in which the MLE is not con-
sistent. Suppose that for § € (0,1), X is a continuous random variable with

density
1—-6 [(xz—4
o) = buta) + 55h (50 ) (7.4)
where §(6) > 0 for all 0, g(z) = I[{—1 < x < 1}/2, and
h(z) = 3(1T_$2)1{—1 <z <1}

(a) What condition on §(6) ensures that {z : fy(x) > 0} does not depend on 67?

(b) With §(0) = exp{—(1 — 0)7*}, let § = .2. Take samples of sizes n €
{50, 250,500} from fy(x). In each case, graph the loglikelihood function and find
the MLE. Also, try to identify the consistent root of the likelihood equation in
each case.

Hints: To generate a sample from fy(x), note that fy(x) is a mixture density,
which means you can start by generating a standard uniform random variable.
If it’s less than 6, generate a uniform variable on (—1,1). Otherwise, generate a
variable with density 3(6% —z?) /43 on (—4,0) and then add 6. You should be able
to do this by inverting the distribution function or by using appropriately scaled
and translated beta(2,2) variables. If you use the inverse distribution function
method, verify that

4 1
H ™ (u) = 2cos {?ﬂ + gcos_l(l — 2U)} .

Be very careful when graphing the loglikelihood and finding the MLE. In partic-
ular, make sure you evaluate the loglikelihood analytically at each of the sample
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points in (0,1) and incorporate these analytical calculations into your code; if
you fail to do this, you’ll miss the point of the problem and you’ll get the MLE
incorrect. This is because the correct loglikelhood graph will have tall, extremely
narrow spikes.

Exercise 7.2 In the situation of Exercise [7.1], prove that the MLE is inconsistent.

Exercise 7.3 Suppose that Xi,..., X, are independent and identically distributed
with density fy(x), where § € (0,00). For each of the following forms of fy(x),
prove that the likelihood equation has a unique solution and that this solution
maximizes the likelihood function.

(a) Weibull: For some constant a > 0,

fo(z) = ab*2" ' exp{—(02)*}I{z > 0}

(b) Cauchy:

(c)

30%\/3

fole) = ot gy 17> 0

Exercise 7.4 Find the MLE and its asymptotic distribution given a random sample
of size n from fp(z) = (1 —0)0", x =0,1,2,...,0 € (0,1).

Hint: For the asymptotic distribution, use the central limit theorem.

7.2 Asymptotic normality of the MLE

As seen in the preceding section, the MLE is not necessarily even consistent, let alone
asymptotically normal, so the title of this section is slightly misleading—however, “Asymp-
totic normality of the consistent root of the likelihood equation” is a bit too long! It will be
necessary to review a few facts regarding Fisher information before we proceed.

Definition 7.6 Fisher information: For a density (or mass) function fp(z), the
Fisher information function is given by

16) =B, {d%logfm} . (7.5)
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If n = g(#) for some invertible and differentiable function g(-), then since

d dod 1 d
dn dn df g’(é’) db

by the chain rule, we conclude that

I(n) = : (7.6)

Loosely speaking, () is the amount of information about € contained in a single observation
from the density fy(x). However, this interpretation doesn’t always make sense—for example,
it is possible to have I() = 0 for a very informative observation. See Exercise

Although we do not dwell on this fact in this course because it has measure-theoretic un-
derpinnings, expectation may be viewed as integration (even when, say, the distribution is
discrete and the “density” is actually a mass function). Suppose that fy(z) is twice differ-
entiable with respect to 6 and that the operations of differentiation and integration may be
interchanged in the following sense:

d% /fe(x) dr = diefg@) dx (7.7)

and

(It is awkward to express the above 1deas usmg our usual E 4 operator!) Since f fo(z)dx =1,
the left-hand sides of Equations and are both zero and this fact leads to two
additional expressions for (). From Equation (7.7) follows

110) = Vara { 108 0} (7.9)
and Equation implies
d2
10) =~ o { 08 ) (7.10)

see Exercise In many cases, Equation ([7.10]) is the easiest form of the information to
work with.

Equations ([7.9) and ((7.10) make clear a helpful property of the information, namely that
for independent random variables, the information about 6 contained in the joint sample is
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simply the sum of the individual information components. In particular, if we have a simple
random sample of size n from fp(z), then the information about 6 equals nl(#).

The reason that we need the Fisher information is that we will show that under certain
assumptions (often called “regularity conditions”),

\/ﬁ(én—eo)i>N{o,Téo)}, (7.11)

where 6, is the consistent root of the likelihood equation guaranteed to exist by Theorem

4

Example 7.7 Suppose that Xi,...,X, are independent Poisson(ep) random vari-
ables. Then the likelihood equation has a unique root, namely 6, = X,,, and we

know that by the central limit theorem /n(6, — 6,) 4N (0,6p). Furthermore, the
Fisher information for a single observation in this case is

d? X 1
CEed S log fy(X)V =By = -
9{0[92 og fo )} oz = g
Thus, in this example, Equation ([7.11]) holds.

Rather than stating all of the regularity conditions necessary to prove Equation (7.11]), we
work backwards, figuring out the conditions as we go through the steps of the proof. The

~

first step is to expand ¢'(6,) in a Taylor series around 6. Let us introduce the notation ¢;(6)
to denote the contribution to the loglikelihood from the ith observation; that is, ¢;(0) =
log fo(X;). Thus, we obtain

0(8) = Z&(e).

For the Taylor expansion of #(6,,), let ¢i(6,,,0,) denote the remainder for a first-order expan-

X

sion of ;(6,,). That is, we define e;(6,,6y) so that
(i(6) = £(80) + (0 — 00)] (8o) + €:(0n, 0o).
Summing over ¢, we obtain
C(6,) = €'(0o) + (0, — 0) [("(60) + ], (7.12)

where E,, = Y7 €;(6,, 90)/(én — 6y), or, in the event 0, = 0o, £, = 0. (Remember, 0, and
E,, are random variables.)
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Rewriting Equation ((7.12) gives

Va{l(6,) = 0(00)y 410 (00) = £(0.)}

b, — 0 - .
Vi(0n = ) = () + E, —1n(0y) - LE,

(7.13)

Let’s consider the pieces of Equation ([7.13)) individually. If Equation ([7.7)) holds and I(6y) <
oo, then

%é’(%)zﬁ(l 1o fi,(X >>%N{o 1(60)}

by the central limit theorem and Equation ((7.9). If Equation ([7.8) holds, then
d2
d6?

i=1

——z"(eo) log fa,(X:) 5 1(6y)

by the weak law of large numbers and Equation - And we relied on the conditions of
Theorem [7.4] to guarantee the existence of 0,, such that ¢/ (6 ) = 0 with probability approach-
ing one and 0, — 0, (do you see where we used the latter fact?).

Finally, we need a condition that ensures that %En £0. One way this is often done is as
follows: If we assume that the third derivative ¢'(0) exists and is uniformly bounded in a
neighborhood of 6y, say by the constant K, we may write the Taylor theorem remainder
ei(én, 6p) in the form of equation to obtain

1 1 - €i<én; 00) én — 00 - i

where each 6}, is between én and #y. Therefore, since én it 0y, we know that with probability
approaching 1 as n — oo,

1
n

GOZKO =28, — 6y),

which means that %En £o.

In conclusion, if all of our assumptions hold, then the numerator of (7.13) converges in
distribution to N{0,I(6p)} by Slutsky’s theorem. Furthermore, the denominator in (|7.13))
converges to 1(6p), so a second use of Slutsky’s theorem gives the following theorem.

Theorem 7.8 Suppose that the conditions of Theorem are satisfied, and let 6,
denote a consistent root of the likelihood equation. Assume also that Equations
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(7.7) and ([7.8) hold and that 0 < I(fy) < co. Finally, assume that ¢;(#) has three
derivatives in some neighborhood of 6, and that ¢ () is uniformly bounded in
this neighborhood. Then

WMWW@iN{Qﬁ%}.

Sometimes, it is not possible to find an exact zero of ¢(d). One way to get a numerical
approximation to a zero of ¢'(#) is to use Newton’s method, in which we start at a point 6y
and then set

'(6)

=%~ Za)

(7.14)

Ordinarily, after finding 6; we would set 6, equal to #; and apply Equation ([7.14)) iteratively.

However, we may show that by using a single step of Newton’s method, starting from a /n-
consistent estimator of 6y, we may obtain an estimator with the same asymptotic distribution
as 0,. A V/n-consistent estimator is an estimator of 6y, say 0,, with the property that
V/n(0, — 0y) is bounded in probability. For the full definition of bounded in probability, refer
to Exercise , but a sufficient condition is that \/ﬁ(én — 6y) converges in distribution to
any random variable.

The proof of the following theorem is left as an exercise:

Theorem 7.9 Suppose that 6, is any /n-consistent estimator of 6;. Then under the
conditions of Theorem [7.8] if we set

£'(6n)

511 = én - ~
E//(en)

(7.15)

then

ﬁmwwwiN@q&J.

Exercises for Section 7.2
Exercise 7.5 Show how assumptions (|7.7)) and ([7.8]) establish Equations ([7.9)) and (7.10j),

respectively.

Exercise 7.6 Suppose that X is a normal random variable with mean 6 and known
variance o2. Calculate I(#), then argue that the Fisher information can be zero
in a case in which there is information about € in the observed value of X.
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Exercise 7.7 (a) Show that under the conditions of Theorem |7 . then if 6, is
consistent root of the likelihood equation, PgO(Q is a local maximum) — 1.

(b) Using the result of part (a), show that for any two sequences 01, and 6, of
consistent roots of the likelihood equation, Pg()(eln = 92n) — 1.

Exercise 7.8 Prove Theorem [7.9

Hint: Start with v/72(6, — 6p) = /n(6, — 6,,) + v/1(6,, — 6y), then expand £(6,,)
in a Taylor series about 6y and substitute the result into Equation (7.15). After
simplifying, use the result of Exercise along with arguments similar to those
leading up to Theorem [7.8]

Exercise 7.9 Suppose that the following is a random sample from a logistic density
with distribution function Fy(x) = (1+exp{f —x})~! (I'll cheat and tell you that
[ used 6 = 2.)

1.0944 6.4723 3.1180 3.8318 4.1262
1.2853 1.0439 1.7472 4.9483 1.7001
1.0422 0.1690 3.6111 0.9970 2.9438

(a) Evaluate the unique root of the likelihood equation numerically. Then, taking
the sample median as our known +/n-consistent estimator 6, of 6, evaluate the
estimator d,, in Equation (7.15)) numerically.

(b) Find the asymptotic distributions of v/n(6, — 2) and /n(d, — 2). Then,
simulate 200 samples of size n = 15 from the logistic distribution with 8 = 2.
Find the sample variances of the resulting sample medians and §,-estimators.
How well does the asymptotic theory match reality?

7.3 Asymptotic Efficiency and Superefficiency

In Theorem , we showed that a consistent root 6,, of the likelihood equation satisfies

(0 — 60) 5 N (0, %) |

In Theorem . we stated that if Qn is a y/n-consistent estimator of 6, and 4, 6’n —
0(6,)/0"(6,), then

(6, — 00) 5 N (o, ﬁ) . (7.16)
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Note the similarity in the last two asymptotic limit statements. There seems to be something
special about the limiting variance 1/1(6,), and in fact this is true.

Much like the Cramér-Rao lower bound states that (under some regularity conditions) an
unbiased estimator of 6y cannot have a variance smaller than 1/1(6), the following result is
true:

Theorem 7.10 Suppose that the conditions of theorem are satisfied and that ¢,
is an estimator satisfying
Vi(6, — 6o) % N{0,v(6p)}
for all 0y, where v(#) is continuous. Then v(0) > 1/I1(0) for all 6.

In other words, 1/1(0) is, in the sense of Theorem 7.10] the smallest possible asymptotic
variance for an estimator. For this reason, we refer to any estimator 9,, satisfying (7.16]) for
all 8, an efficient estimator.

One condition in Theorem that may be a bit puzzling is the condition that v(6) be
continuous. If this condition is dropped, then a well-known counterexample, due to Hodges,
exists:

Example 7.11 Suppose that 4, is an efficient estimator of 6y. Then if we define
5= {0 if n(0,)* < 1;

" 0, otherwise,

it is possible to show (see Exercise [7.10]) that 07 is superefficient in the sense that

JA(E = 0) 5 N (0, ﬁ)

for all 6y # 0 but /n(6 — 6y) %0 if 6y = 0. In other words, when the true value
of the parameter 6, is 0, then ¢ does much better than an efficient estimator;
yet when 6y # 0, o7 does just as well.

Just as the invariance property of maximum likelihood estimation states that the MLE of
a function of 6 equals the same function applied to the MLE of #, a function of an efficient
estimator is itself efficient:

Theorem 7.12 If 9, is efficient for 6y, and if g(f) is a differentiable and invertible
function with ¢'(6y) # 0, g(6,) is efficient for g(6y).

The proof of the above theorem follows immediately from the delta method, since the Fisher
information for g(0) is 1(0)/{¢'(6)}* by Equation (7.6). In fact, if one simply remembers
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the content of Theorem [7.12] then it is not necessary to memorize Equation (7.6)), for it is
always possible to rederive this equation quickly using the delta method!

We have already noted that (under suitable regularity conditions) if 0, is a \/n-consistent
estimator of #; and

= (0,
Op =6, — (~), (7.17)
gu(en)
then ¢, is an efficient estimator of #y. Alternatively, we may set
= 00,
or =0, + ( ~) (7.18)
nl(0,)

and 0 is also an efficient estimator of #,. Problem asked you to prove the former
fact regarding o,; the latter fact regarding 4, is proved in nearly the same way because

—i¢ (6,) 51 (6p). In Equation (7.17)), as already remarked earlier, §,, results from a sin-
gle step of Newton’s method; in Equation , 0¢ results from a similar method called
Fisher scoring. As is clear from comparing Equations and , scoring differs from
Newton’s method in that the Fisher information is used in place of the negative second
derivative of the loglikelihood function. In some examples, scoring and Newton’s method
are equivalent.

A note on terminology: The derivative of ¢(f) is sometimes called the score function.
Furthermore, nl(f) and —¢"(0) are sometimes referred to as the expected information
and the observed information, respectively.

Example 7.13 Suppose X1,..., X, are independent from a Cauchy location family
with density

1
f@(ﬂ?) - 7_‘_{1 + (27 _ 9)2}
Then
/ " 2 l‘z—e
() :;—1 +(($i_g)2,

so the likelihood equation is very difficult to solve. However, an efficient estimator
may still be created by starting with some \/n-consistent estimator 6,,, say the
sample median, and using either Equation ([7.17)) or Equation ([7.18)). In the latter

case, we obtain the simple estimator
I
o =0,+=0(0,), (7.19)
n

verification of which is the subject of Problem [7.11]
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For the remainder of this section, we turn our attention to Bayes estimators, which give
yet another source of efficient estimators. A Bayes estimator is the expected value of the
posterior distribution, which of course depends on the prior chosen. Although we do not
prove this fact here (see Ferguson §21 for details), any Bayes estimator is efficient under some
very general conditions. The conditions are essentially those of Theorem along with the
stipulation that the prior density is positive everywhere on €. (Note that if the prior density
is not positive on €, the Bayes estimator may not even be consistent. )

Example 7.14 Consider the binomial distribution with beta prior, say X ~ binomial(n, p)
and p ~ beta(a,b). Then the posterior density of p is proportional to the prod-
uct of the likelihood and the prior, which (ignoring multiplicative constants not
involving p) equals

P A —p) Tt x pN (1 —p)

Therefore, the posterior distribution of p is beta(a + X,b + n — X). The Bayes
estimator is the expectation of this distribution, which equals (a+ X)/(a+b+n).
If we let ~,, denote the Bayes estimator here, then

\/ﬁ(%—p)zx/ﬁ(§—p> +\/ﬁ<%—%)-

We may see that the rightmost term converges to zero in probability by writing

Vit (=) = o (e @0,

n at+b+n n

since a — (a + 0)X/n Ba— (a + b)p by the weak law of large numbers. In other
words, the Bayes estimator in this example has the same limiting distribution as
the MLE, X/n. It is possible to verify that the MLE is efficient in this case.

The central question when constructing a Bayes estimator is how to choose the prior distri-
bution. We consider one class of prior distributions, called Jeffreys priors. (A common
grammatical mistake is to write “Jeffrey’s priors,” but this is incorrect because they are
named for Harold Jeffreys and the letter s is not possessive. Analogously, Bayes estimators
are named for Thomas Bayes.)

For a Bayes estimator 6,, of y, we have
(b, —0) 5N (0,
n(6, — ,—— | -
’ 1(6)
Since the limiting variance of 6,, depends on I(6,), if I(6) is not a constant, then some values
of # may be estimated more precisely than others. In analogy with the idea of variance-

stabilizing transformations seen in Section [5.1.2] we might consider a reparameterization
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n = g(0) such that {¢’(0)}?/I1(0) is a constant. More precisely, if ¢'(6) = c/1(6), then
Vv {g(én) - no} 5 N(0, ).

So as not to influence the estimation of 7, we choose as the Jeffreys prior a uniform prior on
n. Therefore, the Jeffreys prior density on 6 is proportional to ¢'(f), which is proportional
to 4/I(0). Note that this may lead to an improper prior.

Example 7.15 In the case of Example [7.14] we may verify that for a Bernoulli(p)
observation,

Ip) = —E dd—;{XIogp+<1—X>1og<1—p>}

Thus, the Jeffreys prior on p in this case has a density proportional to p~*/2(1 —

p)~'/%. In other words, the prior is beta(3,1). Therefore, the Bayes estimator
corresponding to the Jeffreys prior is
_ X+
Vn = Nl

Fxercises for Section 7.3

Exercise 7.10 Verify the claim made in Example [7.11}

Exercise 7.11 If fy(x) forms a location family, so that fa(z) = f(z — ) for some
density f(z), then the Fisher information I(f) is a constant (you may assume
this fact without proof).

(a) Verify that for the Cauchy location family,

B 1
T+ (z— 02}

fo(z)

we have I(0) = 3.

(b) For 500 samples of size n = 51 from a standard Cauchy distribution, calculate
the sample median 6,, and the efficient estimator d,, of Equation (7.19). Compare
the variances of 6,, and §; with their theoretical asymptotic limits.
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Exercise 7.12 (a) Derive the Jeffreys prior on 6 for a random sample from Poisson(f).
Is this prior proper or improper?

(b) What is the Bayes estimator of € for the Jeffreys prior? Verify directly that
this estimator is efficient.

Exercise 7.13 (a) Derive the Jeffreys prior on ¢ for a random sample from N (0, o).
Is this prior proper or improper?

(b) What is the Bayes estimator of o2 for the Jeffreys prior? Verify directly that
this estimator is efficient.

7.4 The multiparameter case

Suppose now that the parameter is the vector @ = (0y,...,0;). If X ~ fg(z), then 1(0), the
information matrix, is the £ x k matrix

1(8) = E {ho(X)hy (X)},
where hg(x) = Vg[log fo(x)]. This is a rare instance in which it’s probably clearer to use
component-wise notation than vector notation:

Definition 7.16 Given a k-dimensional parameter vector # and a density function
fo(z), the Fisher information matrix 1(0) is the k x k matrix whose (i, j) element
equals

0

16) = Bo { 5008 o) 3 o o) .

as long as the above quantity is defined for all (i, 7).

Note that the one-dimensional Definition [7.6] is a special case of Definition [7.16]

Example 7.17 Let @ = (u,0?%) and suppose X ~ N(u,0?). Then

1 _ 2
log fo(z) = —5 log 0% — % — log v/ 2,

SO
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Thus, the entries in the information matrix are as follows:

ooy

— o>
ot o2

I51(0) = L12(0) = Eg <<X2;6M>3 - XQ;M) =0,

E0<1 (X — p)? (X—u)“) 1 o2 30 1

I,(0) = E9<

402 206 + 408 - 95t

4ot 206 + 408 204

As in the one-dimensional case, Definition is often not the easiest form of 1(0) to work
with. This fact is illustrated by Example [7.17] in which the calculation of the information
matrix requires the evaluation of a fourth moment as well as a lot of algebra. However, in

analogy with Equations ([7.7) and (7.8), if

02

9 fo(X) 5, fo(X) 0? fo(X) 5.05-Jo(X)
0= E =Ep———— and 0= E =E¢—F——— (7.20
o0, " f(X) 0 fe(x) 2000, ° fo(X) 77 fo(X) (720

for all i and j, then the following alternative forms of 1(@) are valid:
0 0
I;;(0) = Covg 20, log fo(X), 8_9] log fo(X) (7.21)
92

= —Eo (mbgfe()()) : (7.22)

Example 7.18 In the normal case of Example the information matrix is perhaps
a bit easier to compute using Equation ([7.22)), since we obtain

0? 1 0? T —
2 - _— _Y - _
By 08 fo() o2 Bpdo? 8 fo(x) .
and
02 1 (x — p)?
oz e folt) = 55— 5

Taking expectations gives

0= 1)

as before but without requiring any fourth moments.
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By Equation (7.21)), the Fisher information matrix is nonnegative definite, just as the Fisher
information is nonnegative in the one-parameter case. A further fact the generalizes into
the multiparameter case is the additivity of information: If X and Y are independent,
then Ix(0) + Iy(0) = Ixy)(0). Finally, suppose that n = ¢(@) is a reparameterization,
where ¢(0) is invertible and differentiable. Then if J is the Jacobian matrix of the inverse
transformation (i.e., J;; = 06;/0n;), then the information about 7 is

I(n)=J"1(0)J.

As we’ll see later, almost all of the same efficiency results that applied to the one-parameter
case apply to the multiparameter case as well. In particular, we will see that an efficient
estimator @ is one that satisfies

V(6 — 6% % N, {0,1(6°)"}.

Note that the formula for the information under a reparameterization implies that if 7} is an
efficient estimator for n° and the matrix J is invertible, then g~!(#) is an efficient estimator
for 8° = g71(n°), since

VifgT (@) — g7 (%)} 5 Nu{0, J(TTI(6°).0) 7T},
and the covariance matrix above equals I(6°)~.

As in the one-parameter case, the likelihood equation is obtained by setting the derivative of
0(0) equal to zero. In the multiparameter case, though, the gradient V/£(8) is a 1 x k vector,
so the likelihood equation becomes V/¢(6) = 0. Since there are really k univariate equations
implied by this likelihood equation, it is common to refer to the likelihood equations (plural),
which are

0
06,

In the multiparameter case, we have essentially the same theorems as in the one-parameter
case.

00)=0 fori=1,...,k.

Theorem 7.19 Suppose that X3, ..., X, are independent and identically distributed
random variables (or vectors) with density fgo(z) for 8° in an open subset 2 of R,
where distinct values of 8° yield distinct distributions for X; (i.e., the parameter
is identifiable). Furthermore, suppose that the support set {x : fg(x) > 0} does
not depend on 6. Then with probability approaching 1 as n — oo, there exists 0

such that V¢(0) = 0 and 8 5 6°.

As in the one-parameter case, we shall refer to the 0 guaranteed by Theorem as a
consistent root of the likelihood equations. Unlike Theorem [7.4] however, Corollary [7.5] does
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not generalize to the multiparameter case because it is possible that 0 is the unique solution
of the likelihood equations and a local maximum but not the MLE. The best we can say is
the following:

Corollary 7.20 Under the conditions of Theorem [7.19| if there is a unique root of
the likelihood equations, then this root is consistent for 6°.

The asymptotic normality of a consistent root of the likelihood equation holds in the multi-
parameter case just as in the single-parameter case:

Theorem 7.21 Suppose that the conditions of Theorem are satisfied and that 6
denotes a consistent root of the likelihood equations. Assume also that Equation
(7.20) is satisfied for all i and j and that I(8°) is positive definite with finite
entries. Finally, assume that 9°log fo(x)/060,00;00 exists and is bounded in a
neighborhood of 8° for all 4, j, k. Then

V(6 — 6% % N, {0,17(6°)}.

As in the one-parameter case, there is some terminology associated with the derivatives of
the loglikelihood function. The gradient vector V£(0) is called the score vector. The negative
second derivative —V?((0) is called the observed information, and n(8) is sometimes called
the expected information. And the second derivative of a real-valued function of a k-vector,
such as the loglikelihood function £(8), is called the Hessian matrix.

Newton’s method (often called the Newton-Raphson method in the multivariate case) and
scoring work just as they do in the one-parameter case. Starting from the point 8,,, one step
of Newton-Raphson gives

- N .
8, =0, {v%(en)} v((8,) (7.23)
and one step of scoring gives
5" — 0, + %Il(én)VE(én). (7.24)

Theorem 7.22 Under the assumptions of Theorem [7.21] if 8,, is a v/n-consistent esti-
mator of 8°, then the one-step Newton-Raphson estimator d,, defined in Equation

satisfies
Vi(8, —6°) 5 Ni{0,171(6°)}

and the one-step scoring estimator 8% defined in Equation ([7.24)) satisfies
V(8 — 6% % N{0,171(6%).
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As in the one-parameter case, we define an efficient estimator 6,, as one that satisfies
Vn(0, — 6°) % N {0, 17(6°)}.
This definition is justified by the fact that if d,, is any estimator satisfying

Vn(8, — 0) 5 N, {0,5(0)},

where I71(0) and ¥(0) are continuous, then 3(6) — I71(0) is nonnegative definite for all 6.
This is analagous to saying that o2(f) — I1(6) is nonnegative in the univariate case, which
is to say that I=1(0) is the smallest possible variance.

Finally, we note that Bayes estimators are efficient, just as in the one-parameter case. This
means that the same three types of estimators that are efficient in the one-parameter case—
the consistent root of the likelihood equation, the one-step scoring and Newton-Raphson
estimators, and Bayes estimators—are also efficient in the multiparameter case.

Exercises for Section 7.4

Exercise 7.14 Let X ~ multinomial(1, p), where p is a k-vector for k > 2. Let
p* = (p1,...,pr—1). Find I(p*).

Exercise 7.15 Suppose that 8 € R x R, (that is, ¢, € R and 6, € (0,00)) and

=5 (5

for some continuous, differentiable density f(x) that is symmetric about the ori-
gin. Find 1(6).

Exercise 7.16 Prove Theorem [7.21]
Hint: Use Theorem [1.40l
Exercise 7.17 Prove Theorem [7.22
Hint: Use Theorem [1.40

Exercise 7.18 The multivariate generalization of a beta distribution is a Dirichlet
distribution, which is the natural prior distribution for a multinomial likelihood.
If p is a random (k+1)-vector constrained so that p; > 0 for all i and Zfill pi=1,
then (p1, ..., px) has a Dirichlet distribution with parameters a; > 0,...,ag+; > 0
if its density is proportional to

k
pzln—l .. -pzkfl(l —pp = _pk)“k+1_ll {miinpi > 0} I {sz < 1} .
i=1
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Prove that if Gy, . . ., Gy are independent random variables with G; ~ gamma(a;, 1),
then

1
Gr+ -+ Grnt

(Gy,...,Gy)

has a Dirichlet distribution with parameters ay, ..., ag.1.

7.5 Nuisance parameters

This section is the one intrinsically multivariate section in this chapter; it does not have an
analogue in the one-parameter setting. Here we consider how efficiency of an estimator is
affected by the presence of nuisance parameters.

Suppose @ is the parameter vector but 6, is the only parameter of interest, so that 6,, ..., 0,
are nuisance parameters. We are interested in how the asymptotic precision with which we
may estimate #; is influenced by the presence of the nuisance parameters. In other words, if
0 is efficient for 0, then how does 0, as an estimator of 6, compare to an efficient estimator
of 01, say 6%, under the assumption that all of the nuisance parameters are known?

Assume [(0) is positive definite. Let o;; denote the (4, j) entry of 1(0) and let 7;; denote
the (7,7) entry of I71(@). If all of the nuisance parameters are known, then I(0;) = oy,
which means that the asymptotic variance of \/n(0* —6;) is 1/01;. On the other hand, if the
nuisance parameters are not known then the asymptotic variance of \/n(6 — 6) is 1-1(8),
which means that the marginal asymptotic variance of \/ﬁ(él — 01) is y11. Of interest here
is the comparison between v1; and 1/04;.

The following theorem may be interpreted to mean that the presence of nuisance parameters
always increases the variance of an efficient estimator.

Theorem 7.23 vy, > 1/041, with equality if and only if y30 = -+ = 73, = 0.

Proof: Partition 7(80) as follows:

o= (7 % ).

where p and X are (k — 1) x 1 and (k — 1) x (k — 1), respectively. Let 7 = o1 — p' ¥ !p.
We may verify that if 7 > 0, then

_ 1 1 —p'yt
1 — —
I (0) - - < —Z_lp E_lppTE_l + TE—I .
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This proves the result, because the positive definiteness of 1(0) implies that X! is positive
definite, which means that

1 1
1, 2 o
on—p X7p T on

Y1 = )
with equality if and only if p = 0. Thus, it remains only to show that 7 > 0. But this is
immediate from the positive definiteness of 1(8), since if we set

1
V= oY1)

The above result shows that it is important to take nuisance parameters into account in
estimation. However, it is not necessary to estimate the entire parameter vector all at once,
since (01, e ék) is efficient for @ if and only if each of the QAZ is efficient for 6; in the presence
of the other nuisance parameters (see problem [7.19).

then 7 =v'I(0)v. m

Fxercises for Section 7.5

Exercise 7.19 Letting ~;; denote the (i, j) entry of I7(0), we say that 6, is efficient
for 0; in the presence of the nuisance parameters 0y,...,0;1,0;41,...,0; if the
asymptotic variance of /n(0; — 6;) is ;.

Prove that (él, .. ,«9;) is efficient for @ if and only if for all 4, the estimator 6; is
efficient for 6; in the presence of nuisance parameters 60y, ...,0;,_1,0;11,...,0k.
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Chapter 8

Hypothesis Testing

8.1 Wald, Rao, and Likelihood Ratio Tests

Suppose we wish to test Hy : 0 = 6y against Hy : 0 # 6y. The likelihood-based results of
Chapter [7| give rise to several possible tests.

To this end, let £(0) denote the loglikelihood and 6, the consistent root of the likelihood
equation. Intuitively, the farther 6y is from 6,, the stronger the evidence against the null
hypothesis. But how far is “far enough”? Note that if 6, is close to 6, then £(6,) should

~ A~

also be close to £(6,) and ¢'(6y) should be close to ¢(6,) = 0.

~

o If we base a test upon the value of (6,, — 6y), we obtain a Wald test.

e If we base a test upon the value of £(6,) — £(6,), we obtain a likelihood ratio test.
e If we base a test upon the value of ¢'(6), we obtain a (Rao) score test.

Recall that in order to prove Theorem|[7.8] we argued that under certain regularity conditions,
the following facts are true under Hy:

i, —0y) b N(o,ﬁ); (8.1)
—=00) 4 N1 (8.2
—%E”(@O) L 16y). (8.3)
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Equation (8.2]) is proved using the central limit theorem; Equation is proved using
the weak law of large numbers; and Equation is the result of a Taylor expansion
together with Equations and . The three equations above will help us to justify
the definitions of Wald, score, and likelihood ratio tests to follow.

Equation (8.1)) suggests that if we define

W, = \/nI(6y)(6, — 6,), (8.4)

then W,,, called a Wald statistic, should converge in distribution to standard normal under
H,. Note that this fact remains true if we define

W, = Vnl(0, —06,), (8.5)
where T is consistent for y; for example, I could be I(6,).

Definition 8.1 A Wald test is any test that rejects Hy : 6 = 0y in favor of Hy : 6 # 6,
when |W,| > uq/, for W, defined as in Equation (8.4]) or Equation (8.5)). As usual,
Uq 2 denotes the 1 — & quantile of the standard normal distribution.

Equation (8.2)) suggests that if we define

1 !
R, = me (6o), (3.6)

then R,, called a Rao score statistic or simply a score statistic, converges in distribution to
standard normal under Hy. We could also replace I(y) by a consistent estimator I as in
Equation , but usually this is not done: One of the main benefits of the score statistic
is that it is not necessary to compute 6, and using (6, instead of I(6y) would defeat this
purpose.

Definition 8.2 A score test, sometimes called a Rao score test, is any test that
rejects Hy : 6 = 0 in favor of Hy : 6 # 0y when |R,| > uq/2 for R, defined as in

Equation .

The third type of test, the likelihood ratio test, requires a bit of development. It is a test
based on the statistic

A, = 0(0,) — £(8). (8.7)

If we Taylor expand ¢’ (én) = 0 around the point 6y, we obtain
/ N 1" én B 90 11
(0) = = (0 — 0o) § £(00) + —5—L7(07) o - (8.8)
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We now use a second Taylor expansion, this time of £(6,,), to obtain

An:@n—%ww@+%@n—%flww@+@§;@wwW4. (8.9)

If we now substitute Equation (8.8)) into Equation , we obtain
N 1 1 ~
An = n(@n — 90)2 {—56//<00) + %6"(90) + (Hn — 90)0]3(1)} s (810)

where the Op(1) term consists of the sum of —¢”(6*)/(2n) and ¢"(6**)/(6n), which is
bounded in probability under the third-derivative assumption of Theorem [7.§

By Equations 1} and 1} and Slutsky’s theorem, this implies that 2A,, N X2 under the
null hypothesis. Noting that the 1 — a quantile of a x7 distribution is u? /25 We make the
following definition.

Definition 8.3 A likelihood ratio test is any test that rejects Hy : 0 = 0, in favor
of Hy : 0 # 0y when 2A,, > ui/Q or, equivalently, when /2A,, > uq/s.

Since it may be shown that /2A,, — |W,,| £ 0and W, — R, i 0, the three tests defined above
— Wald tests, score tests, and likelihood ratio tests — are asymptotically equivalent in the
sense that under Hy, they reach the same decision with probability approaching 1 as n — oo.
However, they may be quite different for a fixed sample size n, and furthermore they have
some relative advantages and disadvantages with respect to one another. For example,

e It is straightforward to create one-sided Wald and score tests (i.e., tests of Hy : 6 = 6
against Hy : @ > 0y or Hy : 0 < ), but this is more difficult with a likelihood ratio
test.

e The score test does not require 6, whereas the other two tests do.
e The Wald test is most easily interpretable and yields immediate confidence intervals.

e The score test and likelihood ratio test are invariant under reparameterization, whereas
the Wald test is not.

Example 8.4 Suppose that X, ..., X, are independent with density fo(x) = Oe=01{x >
0}. Then ¢(0) = n(log — 6X,,), which yields

1 n

N@:n(g—ya and ((0) = 7.
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From the form of £”(f), we see that I(0) = 672, and setting £'(f) = 0 yields
0, = 1/X,. From these facts, we obtain as the Wald, score, and likelihood ratio

statistics
5 (o)
Wn — —_— = — 9 5
90 Xn ’
W,

1 _
R, = Opyn|—-X,] = ——, and
0\/_ (00 > QOXn
A, = n {7n90 —-1- log(&oyn)} .
Thus, we reject Hy : 0 = 6y in favor of Hy : 6 # 6y whenever |W,| > uq/o,
|Rn| > waj2, or /22, > g2, depending on which test we're using.

Generalizing the three tests to the multiparameter setting is straightforward. Suppose we
wish to test Hy : @ = 0° against H; : @ # 0°, where 8 € RF. Then

W, < n@-6°T1(6°(6-6 % 2 (8.11)
Ry % Lyue0)TI 00 vee®) b 2, and (8.12)
n
e A 1
A, €0 - 6% & S\ (8.13)

Therefore, if c& denotes the 1 — « quantile of the x7 distribution, then the multivariate Wald
test, score test, and likelihood ratio test reject Hy when W,, > c& R, > & and 24, > &,
respectively. As in the one-parameter case, the Wald test may also be defined with 7(6°)
replaced by a consistent estimator I.

Exercises for Section 8.1

Exercise 8.1 Let Xi,..., X, be a simple random sample from a Pareto distribution
with density

f(z) =02~V {z > ¢}

for a known constant ¢ > 0 and parameter 6 > 0. Derive the Wald, Rao, and
likelihood ratio tests of 8 = 6y against a two-sided alternative.

Exercise 8.2 Suppose that X is multinomial(n, p), where p € R*. In order to satisfy
the regularity condition that the parameter space be an open set, define @ =
(p1,...,Pr_1). Suppose that we wish to test Hy : @ = 6° against H; : 6 # 6°.

(a) Prove that the Wald and score tests are the same as the usual Pearson chi-
square test.

(b) Derive the likelihood ratio statistic 2A,,.
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8.2 Contiguity and Local Alternatives

Suppose that we wish to test the hypotheses
HO 10 = ‘90 and H1 10 > 90. (814)

The test is to be based on a statistic 7,,, where as always n denotes the sample size, and we
shall decide to

reject Hy in (8.14) if T), > C, (8.15)

for some constant C,,. The test in question may be one of the three types of tests introduced
in Section 8.1} or it may be an entirely different test. We may define some basic asymptotic
concepts regarding tests of this type.

Definition 8.5 If P (T, > C,) — a for test (8.15)), then test (8.15)) is said to have

asymptotic level a.

Definition 8.6 If two different tests of the same hypotheses reach the same conclusion
with probability approaching 1 under the null hypothesis as n — oo, the tests
are said to be asymptotically equivalent.

The power of test (8.15)) under the alternative 6 is defined to be

We expect that the power should approach 1.

Definition 8.7 A test (or, more precisely, a sequence of tests) is said to be consistent
against the alternative 6 if 3,(0) — 1.

Note that in some contexts, [ is used to denote the type II error probability, which is
actually one minus the power. We admit that the inconsistent usage of f in the literature is
confusing, but we hope that bringing attention to this inconsistency will help to allay much
of this confusion. Here, 8 will always refer to power.

Unfortunately, the concepts we have defined so far are of limited usefulness. If we wish to
compare two different tests of the same hypotheses, then if the tests are both sensible they
should be asymptotically equivalent and consistent. Thus, consistency is nice but it doesn’t
tell us much; asymptotic equivalence is nice but it doesn’t allow us to compare tests.

We make things more interesting by considering, instead of a fixed alternative 6, a sequence
of alternatives 61, 0,,.... Let us make some assumptions about the asymptotic distribution
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of the test statistic 7}, in (8.15]). First, define 1(6) and 72(6)/n to be the mean and variance,
respectively, of T;, when 6 is the true value of the parameter. In other words, let

w(0) = Eo(T,) and 72(0) = n Var o(T},).
We assume that if the null hypothesis is true, which means 0 is fixed and equal to 0y, then

72(90)

(8.16)

as n — oo. Furthermore, we assume that if the alternatives are true, which means that the
distribution of 7T;, is determined by 6 = 6,, for each n, then

Vi{T, — p(0n)}

=y N(0,1) (8.17)

as n — o0o. The limit in (8.17)) is trickier than the one in (8.16)) because it assumes that the
underlying parameter is changing along with n. Consider Example

Example 8.8 Suppose we have a sequence of independently and identically distributed
random variables X, Xy, ... with common distribution Fy. In a one-sample t-
test, the test statistic 7}, may be taken to be the sample mean X,. In this case,
the limit in follows immediately from the central limit theorem. Yet to
verify , it is necessary to consider a triangular array of random variables:

Xll ~ F01
X217 X22 ~ FHQ
X317X32a X33 ~ F93

We may often check that the Lyapunov or Lindeberg condition is satisfied, then
use the results of Section to establish . In fact, the existence of, say,
a finite third absolute central moment, v(6) = E4|X; — E X;|?, is generally
sufficient because

; 3 V(Qn)
(v/n72(0,))3 ;ELXM E Xoul” = \/_73( )

and the Lyapunov condition holds as long as «(6,)/73(6,) tends to some finite

limit. We generally assume that 6,, — 6, so as long as v(6) and 7(6) are contin-
uous, Y(6,,)/73(0,) tends to y(6y)/73(6y).
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If and are true, we may calculate the power of the test against the sequence
of alternatives 61, 0s, ... in a straightforward way using normal distribution calculations. As
mentioned in Example [8.8 we typically assume that this sequence converges to 6y. Such
a sequence is often referred to as a contiguous sequence of alternatives, since “contiguous”
means “next to”; the idea of contiguity is that we choose not a single alternative hypothesis
but a sequence of alternatives next to the null hypothesis.

First, we should determine a value for C, so that test (8.15)) has asymptotic level . Define
Uq to be the 1 — « quantile of the standard normal distribution. By limit (8.16]),

Fo {Tn — (o) = %} -

therefore, we define a new test, namely

T(0p) e
vn

and conclude that test (8.18]) has asymptotic level « as desired.

reject Ho in (8.14) if T,, > u(6y) + (8.18)

We now calculate the power of test (8.18]) against the alternative 6,:

Bulb) = P, {THZM(GOHT(%Q}

VT, p(60) 7(6:) | VB —0) pB) ~ ()
Fo, { 0, @) 760 0. — 6o

> ua} (8.19)

Thus, £,(0,) tends to an interesting limit (i.e., a limit between « and 1) if 7(6,,) — 7(6p);
Vn(6, — 6y) tends to a nonzero, finite limit; and u(6) is differentiable at 6. This fact is
summarized in the following theorem:

Theorem 8.9 Let 6,, > 6, for all n. Suppose that limits (8.17)) and (8.16)) hold, 7(#)
is continuous at 6y, u(6) is differentiable at 6y, and /n(6, — 6y) — A for some
finite A > 0. If 1/ (6y) or 7(6y) depends on n, then suppose that u'(6y)/7(6p)
tends to a nonzero, finite limit. Then if §,(6,) denotes the power of test
against the alternative 6,,,

Ba(0) = lim @ (M _ ua) |

n—o0 T(HO)

The proof of Theorem merely uses Equation (8.19) and Slutsky’s theorem, since the
hypotheses of the theorem imply that 7(6,,)/7(6p) — 1 and {u(6,,)—u(60)}/(0,—60) — 1/ (6p).
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Example 8.10 Let X ~ Binomial(n, p,), where p, = po + A/y/n and T,, = X/n. To
test Hy : p = po against Hy : p > pg, note that

\/H(TTL - pO) i} N(O, 1)
po(1 — po)

under Hy. Thus, test 1) says to reject Hy whenever T, > po+ua+/po(1 — po)/n.

This test has asymptotic level a. Since 7(p) = +/p(1 —p) is continuous and
p(p) = p is differentiable, Theorem applies in this case as long as we can

verify the limit (8.17)).

Let X1, .., Xn, be independent Bernoulli(p,,) random variables. Then if X,,; —
DPny - -y Xnn — Pn can be shown to satisfy the Lyapunov condition, we have

\/E(Tn —Dn) d
—T<pn) — N(0,1)

and so Theorem applies. The Lyapunov condition follows since | X,; —p,| < 1
implies

b
{Var (nT},)}?

L n
E | X —pol* < — 0.
; {npn(l _pn)}2

Thus, we conclude by Theorem [8.9] that

A
Polpn) = @ (ﬁ - ) '

To apply this result, suppose that we wish to test whether a coin is fair by flipping
it 100 times. We reject Hy : p = 1/2 in favor of Hy : p > 1/2 if the number of
successes divided by 100 is at least as large as 1/2+ u 5/20, or 0.582. The power
of this test against the alternative p = 0.6 is approximately

o v/100(0.6 — 0.5)
0.52

- 1.645) — (2 — 1.645) = 0.639.

Compare this asymptotic approximation with the exact power: The probability
of at least 59 successes out of 100 for a binomial(100,0.6) random variable is
0.623.

Starting from Equation (8.19)) and using the fact that

Vi{T, — pu(6n)} ) 7(0n)
7(6n) 7(6o)
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is approximately distributed as standard normal, we may obtain the following approximation
to the power for a fixed sample size n and a fixed alternative @ as follows:

vniu®) —plo)y
) < =N a) . (8.20)

Note that in the case of Example the approximation of Equation (8.20)) is the same as
the approximation obtained from Theorem by setting A = /n(p — po).

Pn(0) =

There is an alternative formulation that yields a slightly different approximation. Starting
from

o (VAT @) | rlO) ) — (60}
i) =1 (S >, T - ST,

we obtain

Bn(g) ~ P (\/ﬁ{ﬂ(i)(g—) M(GO)} o ua%) ) (821)

Applying approximation (8.21)) to the binomial case of Example[8.10] we obtain 0.641 instead
of 0.639 for the approximate power.

We may invert approximations (8.20)) and (8.21)) to obtain approximate sample sizes required
to achieve desired power [ against alternative 6. From (8.20)) we obtain

(50— u)r(60)
VIS ) = (0 (522

and from (8.21)) we obtain

uaT(6) — um’(@)'

Vs =) — )

(8.23)

We may compare tests by considering the relative sample sizes necessary to achieve the same
power at the same level against the same alternative.

Definition 8.11 Given tests 1 and 2 of the same hypotheses with asymptotic level «
and a sequence of alternatives {6}, suppose that

BY(0r) — B and B (0;) — B
as k — oo for some sequences {my} and {n;} of sample sizes. Then the asymp-
totic relative efficiency (ARE) of test 1 with respect to test 2 is
N

€12 = lim —_—,
k—o0 mk

assuming this limit exists.
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In Examples and we consider two different tests for the same hypotheses. Then,
in Example [8.15] we compute their asymptotic relative efficiency.

Example 8.12 Suppose we have paired data (X1,Y1),...,(Xp, Yy). Let Z; =Y, — X
for all . Assume that the Z; are independent and identically distributed with
distribution function P(Z; < z) = F(z— @) for some 0, where f(z) = F'(z) exists
and is symmetric about 0. Let Wy, ..., W, be a permutation of Z;,..., 7, such

that [Wy] < |[Wa| < -+ < W,

We wish to test Hy : § = 0 against H; : 6§ > 0. First, consider the Wilcoxon
signed rank test. Define

R, =) il{W;>0}.
=1

Then under Hy, the I{W; > 0} variables are independent Bernoulli(1/2) random
variables. Thus,

i n(n+1) "2 nn+1)2n+1)
ERn:Z§:Tand Vaar:ZZ: o .
=1 =1

Furthermore, one may prove that

R,—ER, 4
———— — N(0,1
v/ Var R, (0.1)

under Hy by verifying, say, the Lindeberg condition. Thus, a test with asymptotic
level a rejects Hy when

nn+1)  wus7(0)
R, > 5
- VR vn

where 7(0) = ny/(n + 1)(2n + 1)/24. Furthermore, it is possible to prove that

\/H[Rn — 1(0,)] i N(
T2<9n)

0,1),

where p(6,) and 7%(6,) are the mean and n times the variance of R,, under the
alternatives 0, = A/y/n, though we will not prove this fact here (it is not as
simple as checking a Lindeberg condition because under 6,, > 0, the I{W; > 0}
variables are not quite independent). This means that it is possible to apply
Theorem [8.9
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Now we must find E R, under the alternative 6,, = A/y/n. First, we note that
since |W;| < |Wj| for i < j, W; + W; > 0 if and only if W; > 0. Therefore,
L H{W +W; > 0} = jI{W; > 0} and so we may rewrite R, in the form

n J n J
R, = Y > KW, +W; >0} = > Y I{Z+Z;>0}.
7j=1 =1 7=1 =1

Therefore, we obtain

n 7 n
pOn) = > D P (Zi+Z;>0) = nby(Z >0)+ (2>Pgn(zl + Zy > 0).

j=1 i=1
Since Py, (Z7 > 0) = Py, (Z1 — 0, > —0,) =1 — F(—0,,) and

Pgn<Zl + ZQ > 0) = Pgn {(Zl — 911) -+ (ZQ — Qn) > _20n}
= Epgn{Z1—9n>—29n—(Z2—(9n) ‘ ZQ}

_ /2{1 (=20, — )} f(2) dz,
we conclude that
) =ng(0)+ () [2rt-20- 215
Thus, because f(—z) = f(z) by assumption,
W) = nf(O) a0 - 1) [P
Letting
K= [ P,

we obtain

) L VRS0 + (- DK}
B BT ey Y

Therefore, Theorem [8.9] shows that

Bu(0n) — ®(AKVI2 — uy,). (8.24)
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Example 8.13 Asin Example suppose we have paired data (X1,Y7),..., (X, Yy,)
and Z; = Y; — X, for all .. The Z; are independent and identically distributed
with distribution function P(Z; < z) = F(z — 0) for some 0, where f(z) = F'(z)
exists and is symmetric about 0. Suppose that the variance of Z; is o2.

Since the t-test (unknown variance) and z-test (known variance) have the same
asymptotic properties, let’s consider the z-test for simplicity. Then 7(0) = o for
all #. The relevant statistic is merely Z,,, and the central limit theorem implies
nZ,|o AN (0,1) under the null hypothesis. Therefore, the z-test in this case
rejects Hy : @ = 0 in favor of H; : § > 0 whenever Z,, > u,0//n. A check of the
Lindeberg condition on the triangular array given by Z; under 6;; Z;, Z5 under
Oo; Z1, Zy, Z3 under #3; and so on shows that

VilZn = 6n) 4 N(0,1)

o
under the alternatives 6,, = A/y/n. Therefore, by Theorem , we obtain

Bn(0n) = ®(A/o — u,) (8.25)
since p/(0) = 1 for all 6.

Before finding the asymptotic relative efficiency (ARE) of the Wilcoxon signed rank test and
the t-test, we prove a lemma that enables this calculation.

Suppose that for two tests, called test 1 and test 2, we use sample sizes m and n, respectively.
We want m and n to tend to infinity together, an idea we make explicit by setting m = my,
and n =ny for K =1,2,.... Suppose that we wish to apply both tests to the same sequence
of alternative hypotheses 61,05, .... As usual, we make the assumption that (6 — y) times
the square root of the sample size tends to a finite, nonzero limit as k — oco. Thus, we
assume

\/mk(ﬁk — 00) — Al and \/n_k.(Hk — 00) — AQ.

Then if Theorem may be applied to both tests, define ¢; = lim ) (6y)/71(6p) and ¢y =
lim 45(609)/72(6p). The theorem says that

By, (0r) = ®{A1c1 —uo} and B, (0r) = ©{Agco —uy}- (8.26)

To find the ARE, then, Definition specifies that we assume that the two limits in (8.26))
are the same, which implies Ajc; = Asco, or

n,

Thus, the ARE of test 1 with respect to test 2 equals (c;/cz)?. This result is summed up in

the following lemma, which defines a new term, efficacy.
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Lemma 8.14 For a test to which Theorem applies, define the efficacy of the test
to be

¢= lim 1£'(60)/7(6o).- (8.27)

Suppose that Theorem applies to each of two tests, called test 1 and test 2.
Then the ARE of test 1 with respect to test 2 equals (c¢1/cq)?.

Example 8.15 Using the results of Examples [8.12] and [8.13], we conclude that the
efficacies of the Wilcoxon signed rank test and the t-test are

\/E/oon(z)dz and %,

respectively. Thus, Lemma [8.14] implies that the ARE of the signed rank test to

the t-test equals
oo 2
1202 (/ (2 dz) :

In the case of normally distributed data, we may verify without too much difficulty
that the integral above equals (20/7)~!, so the ARE is 3/7 &~ 0.9549. Notice how
close this is to one, suggesting that for normal data, we lose very little efficiency
by using a signed rank test instead of a t-test. In fact, it may be shown that this
asymptotic relative efficiency has a lower bound of 0.864. However, there is no
upper bound on the ARE in this case, which means that examples exist for which
the t-test is arbitrarily inefficient compared to the signed rank test.

Exercises for Section 8.2

Exercise 8.3 For the hypotheses considered in Examples and [8.13] the sign test
is based on the statistic Ny = #{i : Z; > 0}. Since 2y/n(N;/n — 3) iN(O, 1)
under the null hypothesis, the sign test (with continuity correction) rejects Hy
when

ua\/ﬁ+n

N _
* 2 2

>

N | —

(a) Find the efficacy of the sign test. Make sure to indicate how you go about
verifying Equation (8.17)).

(b) Find the ARE of the sign test with respect to the signed rank test and the
t-test. Evaluate each of these for the case of normal data.
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Exercise 8.4 Suppose X3,..., X, are a simple random sample from a uniform (0, 26)
distribution. We wish to test Hy : 0 = 0y against Hy : 6 > 6y at a = .05.

Define )1 and Q)3 to be the first and third quartiles of the sample. Consider test
A, which rejects when

Qs—CQ1—00 > Ay,

and test B, which rejects when
X -6, > B,.

Based on the asymptotic distribution of X and the joint asymptotic distribution
of (Q1,Q3), find the values of A,, and B, that correspond with the test in (8.18]).
Then find the asymptotic relative efficiency of test A relative to test B.

Exercise 8.5 Let Py be a family of probability distributions indexed by a real param-
eter 0. If X ~ Py, define p(f) = E(X) and 02(f) = Var (X). Now let 0;,6s, ...
be a sequence of parameter values such that 6, — 6y as n — oo. Suppose that
By, | X|**% < M for all n for some positive § and M. Also suppose that for each n,
X1, - -+, Xon are independent with distribution Py, and define X,, = Y7 | X,,;/n.
Prove that if 02(6y) < oo and ¢2(6) is continuous at the point 6, then

Va[X, = u(0,)] % N(0,0%(0))

as n — oQ.
Hint:
la + b|2+6 < 92Hd (|a|2+5 + |b|2+6) .
Exercise 8.6 Suppose X1, X, ... are independent exponential random variables with

mean . Consider the test of Hy: 0 =1 vs Hy : 6 > 1 in which we reject Hy when

X, > 14 Lo

= %7
where o = .05.

(a) Derive an asymptotic approximation to the power of the test for a fixed
sample size n and alternative 6. Tell where you use the result of Problem [8.5]

(b) Because the sum of independent exponential random variables is a gamma
random variable, it is possible to compute the power exactly in this case. Create
a table in which you compare the exact power of the test against the alternative
0 = 1.2 to the asymptotic approximation in part (a) for n € {5,10,15,20}.
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Exercise 8.7 Let Xi,..., X, be independent from Poisson (\). Create a table in
which you list the exact power along with approximations (8.20) and ({8.21)) for
the test that rejects Hy : A =1 in favor of H; : A > 1 when

\/E(Xn - /\0> > u
\/A_O - Q)

where n = 20 and a = .05, against each of the alternatives 1.1, 1.5, and 2.

Exercise 8.8 Let Xi,..., X,, be an independent sample from an exponential distribu-
tion with mean A, and Y7, ..., Y, be an independent sample from an exponential
distribution with mean u. Assume that X; and Y; are independent. We are in-
terested in testing the hypothesis Hy : A = p versus H; : A > pu. Consider the
statistic

T, = Qi(li —1/2)/V/n,

where I; is the indicator variable I; = I(X; > Y}).
(a) Derive the asymptotic distribution of 7, under the null hypothesis.

(b) Use the Lindeberg Theorem to show that, under the local alternative hy-
pothesis (A, ftn) = (A + 1726, \), where § > 0,

w5 —py An A+ n7128
2izalli = pn) £, N(0,1), where p, = _ At s
npn(l — pp) A+ fn 2\ + 07120

(c) Using the conclusion of part (b), derive the asymptotic distribution of T,
under the local alternative specified in (b).

Exercise 8.9 Suppose Xi,...,X,, is a simple random sample and Yi,... Y, is an-
other simple random sample independent of the X;, with P(X; < t) = ¢? for
t€[0,1] and P(Y; <t) = (t —0)* for t € [0,0 + 1]. Assume m/(m +n) — p as
m,n — oo and 0 < 6 < 1.

Find the asymptotic distribution of v/m + n[g(Y — X) — g(6)].

8.3 The Wilcoxon Rank-Sum Test

Suppose that X4,...,X,, and Y7,...,Y, are two independent simple random samples, with

P(X;<t)= P(Y; <t+6) = F(t) (8.28)
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for some continuous distribution function F(t) with f(¢) = F'(t). Thus, the distribution of
the Y; is shifted by ¢ from the distribution of the X;. We wish to test Hj : § = 0 against
H; g > 0.

To do the asymptotics here, we will assume that n and m are actually both elements of
separate sequences of sample sizes, indexed by a third variable, say k. Thus, m = m; and
n = ng both go to co as k — 00, and we suppress the subscript £ on m and n for convenience
of notation. Suppose that we combine the X; and Y; into a single sample of size m + n.
Define the Wilcoxon rank-sum statistic to be

Sk = Z Rank of Y; among combined sample.

=1

Letting Y(1), ..., Y{,) denote the order statistics for the sample of Y; as usual, we may rewrite
Sk in the following way:

Sk = Z Rank of Y{;) among combined sample
j=1

= D (+#{i: X <Yy}

j=1
n m

= D S S i <)

j=1 i=1
n m

- w +3 Y H{x <Y} (8.29)

=1 i=1

Let N = m + n, and suppose that m/N — p as k — oo for some constant p € (0,1). First,
we will establish the asymptotic behavior of Sy under the null hypothesis. Define

u(@) =EySy and 7(0) = /N Var Sj.

To evaluate ji(6h) and 7(6), where 0y = 0, let Z; = >°7 | I{X; < Yj}. Then the Z; are
identically distributed but not independent, and we have E 4, Z; = n/2 and

Varg, Z; = % Fn(n—1) Cove, (11X, < ViV, I{X; < Vo))
-1 -1
_n n(n—1) n(n—1)
4 3 4
n(n 4+ 2)
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Furthermore,

n n _ 1
B, ZiZj =YY Po(Xi<Y,and X; <Y,) = % +nPy(X; <Yy and X; < V7),
r=1 s=1
which implies
nin—1) n n* n
Zozy="Zdnom_n
Cove,(Zi, Z) 1 371D
Therefore,
nn+1) mn n(N+1)
)= —~— ‘72 4+ - @ 7
and

7%(0p) = NmVar Z; + Nm(m — 1) Cov (Zy, Zs)
[Nmn(n +2) + Nm(m — 1)n] /12
= [Nmn(N +1)]/12.

Let 61,0, ... be a sequence of alternatives such that VN (0, — 6y) — A for a positive, finite
constant A. It is possible to show that

\/N{Sk - M(eo)}

(00) 5 N(0,1) (8.30)

under Hy (see Exercise [8.10) and

VN{S), — u(0x)}
7(0k)

under the alternatives {f;}. As in the case of the signed-rank test of the previous section, we
will not prove the asymptotic normality under the sequence of alternatives here because it
is not a direct consequence of any of the results we have seen thus far. Yet it may be proven
using the Hoeffding projection idea described in Chapter [10] by which Sy, may be expressed
as a sum of independent random variables plus an asymptotically negligible term.

2 N(0,1) (8.31)

By expression (8.30]), the test based on Sj with asymptotic level « rejects Hy : @ = 0 in favor
of H, : 0 > 0 whenever Sy, > 1u(6g) + ua7(60)/v'N, or

n(N +1) N mn(N + 1)

S, > .
FE T Y 12
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The Wilcoxon rank-sum test is sometimes referred to as the Mann-Whitney test. This
alternative name helps to distinguish this test from the similarly named Wilcoxon signed
rank test.

To find the limiting power of the rank-sum test, we may use Theorem to conclude that

Bi(6) — lim @ (AMQO) — ua) . (8.32)

k—o0 7'(90)

According to expression (8.32)), we must evaluate 1/(6p). To this end, note that

PQ(X1<Y1) = EO{PG(X1<K|Y1)}
= EyF()

-/ TFW) iy - 0)dy

[e.e]

-/ TF(y 4 0)1(y) dy.

[e.e]

Therefore,

d
@P9X1<Y1 / fy—l—&

This gives

—mn [ Zﬂ(y) dy

Thus, the efficacy of the Wilcoxon rank-sum test is

AN o mn\/_f ocf2 2
O T 0) o W S vi=s /f

The asymptotic power of the test follows immediately from (8.32)).

Fxercises for Section 8.3

Exercise 8.10 Prove expression (8 under the null hypothesis Hy : 8 = 0.

Hint: Verify either the Lindeberg condition or the Lyapunov condition.
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Exercise 8.11 Suppose Var X; = Var Y; = 02 < oo and we wish to test the hypothe-
ses Hy : 0 =0 vs. Hy: 60 > 0 using the two-sample Z-statistic

>

Y —

o

+
S |-

3=

Note that this Z-statistic is s/o times the usual T-statistic, where s is the pooled
sample standard deviation, so the asymptotic properties of the T-statistic are the
same as those of the Z-statistic.

(a) Find the efficacy of the Z test. Justify your use of Theorem 8.9

(b) Find the ARE of the Z test with respect to the rank-sum test for normally
distributed data.

(c) Find the ARE of the Z test with respect to the rank-sum test if the data
come from a double exponential distribution with f(¢) = 5ye~ "/,

(d) Prove by example that the ARE of the Z-test with respect to the rank-sum
test can be arbitrarily close to zero.

179



Chapter 9

Pearson’s chi-square test

9.1 Null hypothesis asymptotics

Let Xy, Xy, - - be independent from a multinomial(1, p) distribution, where p is a k-vector
with nonnegative entries that sum to one. That is,

and each X; consists of exactly £—1 zeros and a single one, where the one is in the component
of the “success” category at trial i. Note that the multinomial distribution is a generalization
of the binomial distribution to the case in which there are k categories of outcome instead
of only 2.

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square
statistic

Z — ;) 9.2)

J=1

where n; is the random variable nyj, the number of successes in the jth category for trials
1,...,n. In a real application, the true value of p is not known, but instead we assume
that p = p® for some null value p°. We will show that x? converges in distribution to the
chi-square distribution on k — 1 degrees of freedom, which yields to the familiar chi-square
test of goodness of fit for a multinomial distribution.

Equation (9.1)) implies that Var X;; = p;(1 — p;). Furthermore, Cov (X;;, Xi) = E X;; X0 —
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pjpe = —p;pe for j # L. Therefore, the random vector X; has covariance matrix

pi(l—=p1)  —pip2 0 Pk
T 9.3)
—D1Pk —popr o+ pe(l—pk)
Since E X; = p, the central limit theorem implies
Vi (X, —p) 5 N,(0,%). (9.4)

Note that the sum of the jth column of ¥ is p; — p;(p1 + - - - + px) = 0, which is to say that
the sum of the rows of X is the zero vector, so ¥ is not invertible.

We now present two distinct derivations of this asymptotic distribution of the x? statistic
in equation (9.2)), because each derivation is instructive. One derivation avoids dealing with
the singular matrix >, whereas the other does not.

In the first approach, define for each i Y; = (X;1,..., X;x—1). That is, let Y, be the k£ — 1-
vector consisting of the first £ — 1 components of X;. Then the covariance matrix of Y; is
the upper-left (k — 1) x (k — 1) submatrix of 3, which we denote by ¥*. Similarly, let p*
denote the vector (pi,...,pr_1)-

One may verify that ¥* is invertible and that

1 1 1 1
p1 Pk 1 Pk 1 Plk
— Pk p2 Pk Pk
()t = ! _ ! . (9.5)
1 1 1 1
Pk Pk Prk—1 - Pk

Furthermore, the y? statistic of equation by be rewritten as
X =n(Y -p) () (Y - p"). (9.6)
The facts in Equations and are checked in Problem . If we now define
Z, = V() VA(Y - p),

then the central limit theorem implies Z,, a4 Ni_1(0,1). By definition, the xi_, distribution
is the distribution of the sum of the squares of kK — 1 independent standard normal random
variables. Therefore,

d
X = (Zn) " Zn = Xi1, (9.7)
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which is the result that leads to the familiar chi-square test.

In a second approach to deriving the limiting distribution (9.7), we use some properties of
projection matrices.

Definition 9.1 A symmetric matrix P is called a projection matrix if it is idempotent;
that is, if P? = P.

The following lemmas, to be proven in Problem give some basic facts about projection
matrices.

Lemma 9.2 Suppose P is a projection matrix. Then every eigenvalue of P equals 0
or 1. Suppose that r denotes the number of eigenvalues of P equal to 1. Then if
Z ~ N,(0,P), Z'Z ~ 2.

Lemma 9.3 The trace of a square matrix M, Tr (M), is equal to the sum of its
diagonal entries. For matrices A and B whose sizes allow them to be multiplied
in either order, Tr (AB) = Tr (BA).

Recall (Lemma that if a square matrix M is symmetric, then there exists an orthogonal
matrix @) such that QM Q" is a diagonal matrix whose entries consist of the eigenvalues of
M. By Lemma , Tr (QMQ") =Tr (Q"QM) = Tr (M), which proves yet another lemma:

Lemma 9.4 If M is symmetric, then Tr (M) equals the sum of the eigenvalues of M.
Define I = diag (p), and let ¥ be defined as in Equation . Equation (9.4) implies
Yl V2(X = p) % Ny (0,07 12501/2),

Since ¥ may be written in the form I' — pp ',

P28 Y2 = 11 Y2pp' 1Y% = T — /PP (9.8)
has trace k — 1; furthermore,

(= VBB~ VBVB') = T 2/BVB +VBVB VBVB' = I~ VBB
because @T\/ﬁ = 1, so the covariance matrix 1@' is a projection matrix.
Define A,, = /nI'"/2(X — p). Then we may check (in problem that
2= (A,)TA,. (9.9)

Therefore, since the covariance matrix is a projection with trace k — 1, Lemma and
Lemma [9.2] prove that x> x2_, as desired.
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Fxercises for Section 9.1

Exercise 9.1 Hotelling’s T?. Suppose XV, X® . are independent and identically
distributed from some k-dimensional distribution with mean g and finite nonsin-
gular covariance matrix X. Let S,, denote the sample covariance matrix

1 <« A L
S, = X0 X)) (XW —X)T.
3 X0 - X) (X0 - X

Jj=1

To test Hy : p = p® against H, : u # u, define the statistic
" = (V)5 H(VW),
where V(" = /(X — u®). This is called Hotelling’s 72 statistic.

[Notes: This is a generalization of the square of a unidimensional ¢-statistic. If the
sample is multivariate normal, then [(n — k)/(nk — k)]T? is distributed as Fj,, .
A Pearson chi square statistic may be shown to be a special case of Hotelling’s
T2 |

(a) You may assume that 51 5 $=1 which follows from the Weak Law of Large
Numbers since P(S,, is nonsingular) — 1. Prove that under the null hypothesis,

T2£>Xg.

(b) An approximate 1 — « confidence set for g based on the result in part (a)
may be formed by plotting the elliptical set

{p:n(X—p)' S M (X —p) = ca},

where ¢, is defined by the equation tP(x? > ¢,) = a. For a random sample of
size 100 from N,(0, X)), where

E_(3}5 3{5)’

produce a scatterplot of the sample and plot 90% and 99% confidence sets on this
scatterplot.

Hints: In part (b), to produce a random vector with the Ny(0,X) distribution,
take a Ny(0,I) random vector and left-multiply by a matrix A such that AAT =
Y. It is not hard to find such an A (it may be taken to be lower triangular). One
way to graph the ellipse is to find a matrix B such that B"S; !B = I. Then note
that

{b:nX=p)' S (X—p)=c} = {X—=Brv:v'v=cyn},
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so it remains only to find points v, closely spaced, such that v'v equals a con-
stant. To find a matrix B such as the one specified, note that the matrix of
eigenvectors of .S, properly normalized, gives an orthogonal matrix that diago-
nalizes.

Exercise 9.2 Verify Equations (9.5) and (9.6).
Exercise 9.3 Prove Lemma and Lemma , then verify Equation .

Exercise 9.4 Pearson’s chi-square for a 2-way table: Product multinomial model.
If A and B are categorical variables with 2 and k levels, respectively, and we
collect random samples of size m and n from levels 1 and 2 of A, then classify
each individual according to its level of the variable B, the results of this study
may be summarized in a 2 x k table. The standard test of the independence of
variables A and B is the Pearson chi-square test, which may be written as

3 (O — Ej)Q,
all cells in table Ej
where Oj; is the observed count in cell j and E; is the estimate of the expected
count under the null hypothesis. Equivalently, we may set up the problem as
follows: If X and Y are independent Multinomial(m, p) and Multinomial (n, p)
random vectors, respectively, then the Pearson chi-square statistic is

, [ (X;—mZy/N)? (Y, —nZ;/N)?
W= Z{ mZ;/N nZ;/N }’

J=1

where Z = X +Y and N = n +m. (Note: T used W? to denote the chi-square
statistic to avoid using yet another variable that looks like an X.)

Prove that if N — oo in such a way that n/N — « € (0, 1), then

w2 4 o,
Exercise 9.5 Pearson’s chi-square for a 2-way table: Multinomial model. Now con-
sider the case in which (X,Y) is a single multinomial (N, q) random 2k-vector.
X; will still denote the (1,7) entry in a 2 x k table, and Y; will still denote the
(2,7) entry.

(a) In this case, q is a 2k-vector. Let o = ¢1/(q1 + qr+1) and define p to be the
k-vector such that (qi,...,qx) = ap. Prove that under the usual null hypothesis
that variable A is independent of variable B (i.e., the row variable and the column
variable are independent), q = (ap, (1 — a)p) and p; + -+ pp = 1.
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(b) Asin Problem[0.4] let Z = X +Y. Assume the null hypothesis is true and
suppose that for some reason « is known. The Pearson chi-square statistic may
be written as

) (X —aZ)? (Y- (1—a)Z))?
w2 = Z{< o7, Ly (1(_05)21 >}. (9.10)

j=1

Find the joint asymptotic distribution of

X1 Yl Xk Yk
Na(l — = —
a(l —a) <Na N(1—-a)" ' Na n(l—a))

and use this result to prove that W2 -5 y2.

Exercise 9.6 In Problem[0.5(b), it was assumed that v was known. However, in most
problems this assumption is unrealistic. Therefore, we replace all occurrences of
a in Equation by & = Zle X;/N. This results in a different asymptotic
distribution for the W? statistic. Suppose we are given the following multinomial
probabilities for a 2 x 2 table with independent row and column variables:

PX;=1)=1|PX,=1)=.15] 25
PY,=1)=3| PYo=1)= 45 | .75
4 6 1

Note that a = .25 in the above table. Let N = 50 and simulate 1000 multinomial
random vectors with the above probabilities. For each, calculate the value of
W? using both the known value o = .25 and the value & estimated from the
data. Plot the empirical distribution function of each of these two sets of 1000
values. Compare with the theoretical distribution functions for the x3 and x3
distributions.

Hint: To generate a multinomial random variable with expectation vector
matching the table above, because of the independence inherent in the table you
can generate two independent Bernoulli random variables with respective success
probabilities equal to the margins: That is, let P(A =2)=1—-—P(A=1) = .6
and P(B =2) =1— P(B = 1) = .75, then classify the multinomial observation
into the correct cell based on the random values of A and B.

Exercise 9.7 The following example comes from genetics. There is a particular char-
acteristic of human blood (the so-called MN blood group) that has three types:
M, MN, and N. Under idealized circumstances known as Hardy-Weinberg equi-
librium, these three types occur in the population with probabilities p; = 73,
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p2 = 2my7N, and py = T4, respectively, where 7y, is the frequency of the M
allele in the population and 7y = 1 — m, is the frequency of the N allele.

We observe data X, ..., X, where X; has one of three possible values: (1,0, 0)7,
(0,1,0)T, or (0,0,1)T, depending on whether the ith individual has the M, MN,
or N blood type. Denote the total number of individuals of each of the three
types by ni, ng, and ng; in other words, n; = nyj for each j.

If the value of m); were known, then the results of this section would show that
the Pearson y? statistic converges in distribution to a chi-square distribution on
2 degrees of freedom. However, of course we usually don’t know m,;. Instead,
we estimate it using the maximum likelihood estimator 7y, = (2n + n2)/2n.
By the invariance principle of maximum likelihood estimation, this gives p =
(72, 277N, 7a) T as the maximum likelihood estimator of p.

(a) Define B,, = v/n(X — p). Use the delta method to derive the asymptotic
distribution of I'"*/2B,,, where I' = diag(p1, p2, p3).

(b) Define [ to be the diagonal matrix with entries p1, p2, p3 along its diagonal.
Derive the asymptotic distribution of I'"'/?B,,.

(c) Derive the asymptotic distribution of the Pearson chi-square statistic

Z "pj (9.11)

J=1

Exercise 9.8 Take my; = .75 and n = 100 in the situation described in Problem [9.7]
Simulate 500 realizations of the data.

(a) Compute

Jj=1

for each of your 500 datasets. Compare the empirical distribution function of
these statistics with both the x? and x3 distribution functions. Comment on
what you observe.

(b) Compute the x? statistic of Equation (9.11]) for each of your 500 datasets.
Compare the empirical distribution function of these statistics with both the y?
and 2 distribution functions. Comment on what you observe.
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9.2 Power of Pearson’s chi-square test

Suppose the k-vector X is distributed as multinomial (n,p), and we wish to test the null
hypothesis Hy : p = p° against the alternative H; : p # p° using the Pearson chi-square
test. We are given a sequence of specific alternatives p™ satisfying /n(p™ — p) — 8 for
some constant matrix . Note that this means Zle 0; = 0, a fact that will be used later.
Our task is to derive the limit of the power of the sequence of tests under the sequence of
alternatives p™.

The notion of a noncentral chi-square distribution will be important in this development, so
we first give a definition.

Definition 9.5 If A;,..., A, are independent random variables with A; ~ N (p;, 1),
then the distribution of A2+ A2+ ---+ A2 is noncentral chi-square with n degrees
of freedom and noncentrality parameter ¢ = p? + -+ + p2. (In particular, the
distribution depends on the p; only through ¢.) We denote this distribution
x2(¢). Equivalently, we can say that if A ~ N, (u, ), then AT A ~ x2(¢) where

o=p'p.

In some references, the noncentrality parameter is defined to be equal to p" /2. The form
of the actual parameter is not important, though it is of course necessary to know in a
particular context which parameterization is used.

Actually, Definition ((9.5)) is not a valid definition unless we may prove that the distribution
of ATA depends on p only through ¢ = p' . We prove this as follows. First, note that
if = 0 then there is nothing to prove. Otherwise, define u* = p/y/¢. Next, find an
orthogonal matrix Q whose first row is (u*) . (It is always possible to do this, though we do
not explain the details here. One method is the process of Gram-Schmidt orthogonalization).
Then QA ~ Np(Qu, I). Since Qu is a vector with first element /¢ and remaining elements
0, QA has a distribution that depends on g only through ¢. But ATA = (QA)T(QA),
proving that the distribution of AT A depends on the y; only through ¢.

We will derive the power of the chi-square test by adapting the projection matrix technique
of Section 0.1 First, we prove a lemma that generalizes Lemma [9.2]

Lemma 9.6 Suppose Z ~ Ni(u, P), where P is a projection matrix of rank r < k
and Pp = . Then Z'Z ~ *(u"p).

Proof: Since P is a covariance matrix, it is symmetric, which means that there exists an
orthogonal matrix Q with QPQ~! = diag (A), where X is the vector of eigenvalues of P.
Since P is a projection matrix, all of its eigenvalues are 0 or 1. Since P has rank r, exactly
r of the eigenvalues are 1. Without loss of generality, assume that the first r entries of A are
1 and the last k£ — r are 0. The random vector QZ is N,(Qu,diag (X)), which implies that
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Z'Z = (QZ)" (QZ) is by definition distributed as x2(¢) + ¢, where

r k
¢ = > (Qu)] and ¢ = > (Qu).
=1 i=r+1
Note, however, that
Qu = QPp = QPQ'Qu = diag(A\)Qpu. (9.12)

Since entries r + 1 through k of A are zero, the corresponding entries of Qu must be zero
because of Equation ((9.12)). This implies two things: First, ¢ = 0; and second,

r k

¢ =D (Quw; = > (Qu); = Qu)'(Qu) = p'p.

i=1 i=1
Thus, Z'Z ~ x*(pu" ), which proves the result. =

Define I' = diag (p°). Let ¥ = I' — p°(p®)" be the usual multinomial covariance matrix

under the null hypothesis; i.e., v2(X™ /n — p®) < N4(0,%) if X™ ~ multinomial(n, p°).
Consider X™ to have instead a multinomial (n, p™) distribution. Under the assumption
made earlier that v/n(p™ — p°) — §, it may be shown that

Va(X® /n—p™) % NL(0,%). (9.13)

We claim that the limit (9.13) implies that the chi square statistic n(X™ /n—p®) TT—1(X™ /n—
p’) converges in distribution to x2_,(6'T"1§), a fact that we now prove.

First, recall that we have already shown that I'"'/2XT'~/2 is a projection matrix of rank
k — 1. Define V" = \/n(X™ /n — p°). Then

v = /(X /0 —p™) + Vn(p™ - p°).

The first term on the right hand side converges in distribution to N (0,X) and the second
term converges to 8. Therefore, Slutsky’s theorem implies that V() 4 Ni(9,%), which gives

r-12ye 4 N (r-i2g Do 212,

Thus, if we can show that (I~'/2XT~1/2)(I'"1/2§) = (I'"'/2§), then the result we wish to
prove follows from Lemma But

P—I/QEF—I(S — F—I/Q[F_pO(p0>T]F—16 — P—I/Q[(s_p()(l)—r(s] — 1‘\—1/26

since 176 = Zle 0; = 0. Thus, we conclude that the chi-square statistic converges in
distribution to x2_,(6 I'"*§) under the sequence of alternatives pt), p®, .. ..
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Example 9.7 For a particular trinomial experiment with n = 200, suppose the null
hypothesis is Hy : p = p° = (ivév};)‘ (This hypothesis might arise in the
context of a genetics experiment.) We may calculate the approximate power of

the Pearson chi-square test at level o = 0.01 against the alternative p = (%, %, %)

First, set d = /n(p — p°) = v 200(1—12, —%, 1—12) Under the alternative p, the chi
square statistic is approximately noncentral x3 with noncentrality parameter

200

4 2 4
0" diag (p®)~'é = 200 <——|———|— —) = 5

144 36 144
Since the test rejects Hy whenever the statistic is larger than the .99 quantile of

X2, namely 9.210, the power is approximated by P{)é(%) > 9.210} = 0.965.
These values were found using R as follows:

> gchisq(.99,2)

[1] 9.21034

> 1-pchisq(.Last.value, 2, ncp=200/9)
[1] 0.965006

Exercises for Section 9.2

Exercise 9.9 Suppose we have a tetranomial experiment and wish to test the hypoth-
esis Hy : p = (1/4,1/4,1/4,1/4) against the alternative Hy : p # (1/4,1/4,1/4,1/4)
at the .05 level.

(a) Approximate the power of the test against the specific alternative (1/10,2/10,3/10,4/10)
for a sample of size n = 200.

(b) Give the approximate sample size necessary to give power of 80% against
the alternative in part (a).

Exercise 9.10 In Exercise[0.1] let {u(™} be alternatives such that v/n(p™ — pu) —
§. You may assume that under {p(™},

VX = p™) L Ny (0,%).

Find (with proof) the limit of the power against the alternatives {u(™} of the
test that rejects Hy : = p® when T? > ¢,, where P(x% > ¢,) = .
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Chapter 10

U-statistics

When one is willing to assume the existence of a simple random sample X;,...,X,, U-
statistics generalize common notions of unbiased estimation such as the sample mean and
the unbiased sample variance (in fact, the “U” in “U-statistics” stands for “unbiased”). Even
though U-statistics may be considered a bit of a special topic, their study in a large-sample
theory course has side benefits that make them valuable pedagogically. The theory of U-
statistics nicely demonstrates the application of some of the large-sample topics presented
thus far. Furthermore, the study of U-statistics enables a theoretical discussion of statistical
functionals, which gives insight into the common modern practice of bootstrapping.

10.1 Statistical Functionals and V-Statistics

Let S be a set of cumulative distribution functions and let 7" denote a mapping from S into
the real numbers R. Then T is called a statistical functional. If, say, we are given a simple
random sample from a distribution with unknown distribution function F', we may want
to learn the value of § = T'(F') for a (known) functional 7. In this way, we may think of
the value of a statistical functional as a parameter we wish to estimate. Some particular
instances of statistical functionals are as follows:

o If T(F) = F(c) for some constant ¢, then T is a statistical functional mapping each F’
to PF(Y < C).

o If T(F) = F~!(p) for some constant p, where F'~!(p) is defined in Equation (3.18)),
then T" maps F' to its pth quantile.

o IfT(F)=Er(Y)or T(F)= Var z(Y), then T maps F to its mean p or its variance o2,
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respectively.

Suppose X, ..., X, is an independent and identically distributed sequence — in other words,
a simple random sample — with distribution function F'(x). We define the empirical dis-

tribution function Fn to be the distribution function for a discrete uniform distribution on
{X1,...,X,}. In other words,

F,(z) = %#{i:Xigx} = %ZI{XZ-S:B}.
=1

Since F,(z) is a legitimate distribution function, a reasonable estimator of T'(F') is the so-
called plug-in estimator T'(F,,). For example, if T(F') = E p(Y'), then the plug-in estimator

given a simple random sample X, X5, ... from F is
. 1 — _
T(F) = Eg(Y) = — ZlX = X, (10.1)

In Equation (10.1), Y is a random variable whose distribution is the same as the empirical
distribution of the data, which means that the true population mean of Y equals the sample

mean of Xi,...,X,. This equation illustrates how we distinguish between the notational
use of X and Y in this chapter: We use X and X; whenever we must refer specifically to
the data Xy,...,X,; but we use Y and Y; whenever we refer generally to a functional and

no specific reference to the data is made.

As we will see later, a plug-in estimator, such as X,, above, is also known as a V-statistic or a
V-estimator when the functional T'(F') is of a particular type called an expectation functional.

Suppose that for some real-valued function ¢(y), we define T(F) = E p ¢(Y). In this case,
we find

T{aFi+(1-a)Fy} = aER oY)+ (1 —a)Ep oY) = oT(F1)+ (1 — a)T(F).
For this reason, such a functional is sometimes called a linear functional; see Definition [10.1]

To generalize this idea, we consider a real-valued function taking more than one real argu-

ment, say ¢(yi, ..., Yq) for some a > 1, and define
T<F):EF¢(Y177Y;1)7 (102)
which we take to mean the expectation of ¢(Y3,...,Y,) where Yi,...,Y, is a simple ran-

dom sample from the distribution function F. Letting m denote some permutation map-
ping {1,...,a} onto itself, the fact that the Y; are independent and identically distributed
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means that the joint distribution of (Y;,...,Y,) is the same as the joint distribution of
(Yw(l), ce ,Yﬂ(a)). Therefore,

Ero(Y1,....Ys) =Ero(Yra), -, Ya()-

Since there are a! such permutations, consider the function

. def 1
gb(yla"wya) = ang(yﬂ(l)v"'ayﬂ'(a))'

all

Since Er ¢(Y1,...,Y,) = Ep¢*(Y1,...,Y,) and ¢* is symmetric in its arguments, we see
that in Equation ((10.2)) we may assume without loss of generality that ¢ is symmetric in
its arguments. In other words, ¢(y1,...,%a) = @(Yx(1)s - - - YUn(a)) for any permutation m of
the integers 1 through a. A function defined as in Equation is called an expectation
functional, as summarized in the following definition:

Definition 10.1 For some integer a > 1, let ¢:R* — R be a function symmet-
ric in its a arguments. The expectation of ¢(Y,...,Y,) under the assumption
that Y7,...,Y, are independent and identically distributed from some distri-
bution F' will be denoted by E p¢(Yi,...,Y,). Then the functional T'(F) =
Ero(Yy,...,Y,) is called an expectation functional. If a = 1, then T is also
called a linear functional.

Expectation functionals are important in this chapter because they are precisely the func-
tionals that give rise to V-statistics and U-statistics. The function ¢(y, ..., y,) in Definition
10.1] is used so frequently that we give it a special name:

Definition 10.2 Let T(F) = Ep¢(Y1,...,Y,) be an expectation functional, where
¢:R* — R is a function that is symmetric in its arguments. Then ¢ is called the
kernel function associated with T'(F).

Suppose T'(F) is an expectation functional defined according to Equation . If we have
a simple random sample of size n from F', then as noted earlier, a natural way to estimate
T(F) is by the use of the plug-in estimator T'(F},). This estimator is called a V-estimator or a
V-statistic. It is possible to write down a V-statistic explicitly: Since E, assigns probability

% to each X;, we have

. 1 n n
Vi, = T(F,) = Ep ¢(V1,...,Y,) = s 1-.-2¢(Xi1,...,xia). (10.3)
1= la=
In the case a = 1, Equation ((10.3)) becomes
1 n
Vo=—D o(X)). (10.4)
=1
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It is clear in Equation (10.4) that E V,, = T'(F'), which we denote by 6. Furthermore, if
02 = Var p ¢(Y') < oo, then the central limit theorem implies that

ViV, — 6) 5 N(0,0?).

For a > 1, however, the sum in Equation contains some terms in which 7,..., 1,4
are not all distinct. The expectation of such terms is not necessarily equal to 0 = T'(F)
because in Definition [10.1] # requires a independent random variables from F'. Thus, V,, is
not necessarily unbiased for a > 1.

Example 10.3 Let a =2 and ¢(y1,y2) = |y1 — y2|. It may be shown (Problem
that the functional T'(F') = E ¢ |Y; — Y| is not linear in F. Furthermore, since
Y, — Y,,| is identically zero whenever i; = iy, it may also be shown that the
V-estimator of T'(F') is biased:

1 n—1
EV, = EZ#ZEFDQ—YH =—T(F)
1#£]

because there are exactly n(n — 1) pairs (¢, 5) for which i # j.

Since the bias in V,, is due to the duplication among the subscripts 1, ...,%,, one way to
correct this bias is to restrict the summation in Equation to sets of subscripts iy, ..., i,
that contain no duplication. For example, we might sum instead over all possible subscripts
satisfying ¢; < --- < i,. The result is the U-statistic, which is the topic of Section [10.2]

Exercises for Section 10.1

Exercise 10.1 Let Xj,..., X, be a simple random sample from F'. For a fixed ¢ for
which 0 < F(t) < 1, find the asymptotic distribution of F,, ().

Exercise 10.2 Let T(F) = Ep|Y; — Y3|. Show that T'(F') is not a linear functional
by exhibiting distributions F; and F, and a constant « € (0,1) such that

T{aF; + (1 —a)Fy} # oT(F1) + (1 — a)T(Fy).

Exercise 10.3 Let X;,..., X, be a random sample from a distribution F' with finite
third absolute moment.

(a) For a =2, find ¢(y1,y2) such that E p (Y71, Ys) = Var p Y. Your ¢ function

should be symmetric in its arguments.

Hint: The fact that § = E Y? — E Y}V, leads immediately to a non-symmetric
¢ function. Symmetrize it.
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(b) For a = 37 find ¢(y1;3/2;y3) such that EF¢(Y17}/27}/3) = EF<Y - EFY)3
As in part (a), ¢ should be symmetric in its arguments.

10.2 Asymptotic Normality

Recall that Xi,..., X, are independent and identically distributed random variables. Be-
cause the V-statistic

Vn = %qub(th’Xia)
11=1 iq=1

is in general a biased estimator of the expectation functional T'(F) = E p ¢(Y7,...,Y,) due
to the presence of summands in which there are duplicated indices on the X;,, one way to

produce an unbiased estimator is to sum only over those (iy,...,4,) in which no duplicates
occur. Because ¢ is assumed to be symmetric in its arguments, we may without loss of
generality restrict attention to the cases in which 1 < 14; < --- < i, < n. Doing this, we

obtain the U-statistic U,,:

Definition 10.4 Let a be a positive integer and let ¢(y1, . . ., y,) be the kernel function
associated with an expectation functional T'(F') (see Definitions and [10.2)).
Then the U-statistic corresponding to this functional equals

1
U, = @] SN e(X, LX), (10.5)

a) 1<ip<-<ig<n
where X1, ..., X, is a simple random sample of size n > a.

The “U” in “U-statistic” stands for unbiased (the “V” in “V-statistic” stands for von Mises,
who was one of the originators of this theory in the late 1940’s). The unbiasedness of U,
follows since it is the average of (Z) terms, each with expectation T(F) = Ero(Y1,...,Y,).

Example 10.5 Consider a random sample X1, ..., X, from F, and let
j=1

be the Wilcoxon signed rank statistic, where Wy, ..., W, are simply Xi,..., X,
reordered in increasing absolute value. We showed in Example that

i=1 j=1
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Letting ¢(a,b) = I[{a+ b > 0}, we see that ¢ is symmetric in its arguments and
thus it is a legitimate kernel function for an expectation functional. We find that

%Rn = Ut S X > 0} = U+ 0p (1),
2 =1

() =

where U, is the U-statistic corresponding to the expectation functional T'(F') =
Pr(Y; + Y5 > 0). Therefore, some asymptotic properties of the signed rank test
that we have already derived elsewhere can also be obtained using the theory of
U-statistics.

In the special case a = 1, the V-statistic and the U-statistic coincide. In this case, we have
already seen that both U, and V,, are asymptotically normal by the central limit theorem.
However, for a > 1, the two statistics do not coincide in general. Furthermore, we may no
longer use the central limit theorem to obtain asymptotic normality because the summands
are not independent (each X; appears in more than one summand).

To prove the asymptotic normality of U-statistics, we shall use a method sometimes known as
the H-projection method after its inventor, Wassily Hoeffding. If ¢(yy,...,y,) is the kernel
function of an expectation functional T(F) = Ep¢(Ys,...,Ys), suppose Xq,..., X, is a
simple random sample from the distribution F. Let § = T'(F') and let U,, be the U-statistic
defined in Equation ([10.5). For 1 < k < a, suppose that the values of Yi,..., Y} are held

constant, say, Y1 = y1,...,Yr = yr. This may be viewed as projecting the random vector
(Y1,...,Y,) onto the (a — k)-dimensional subspace in R* given by {(y1, ..., Uk, Ckt1,---,Ca) :
(Ckats-- -, Ca) € RFLIf we take the conditional expectation, the result will be a function
of y1,..., Yk, which we will denote by ¢,. To summarize, for k = 1,...,a we shall define
(,bk(yl? s 7yk) = Ep ¢(y17 <o Yk Yk+1> s 7Ya)' (106>

Equivalently, we may use conditional expectation notation to write
oY1, ... Y.) =Epr{o(MV1,...,Ys) | Y1,..., Y3}, (10.7)

From Equation ((10.7)), we see that E p ¢ (Y1,...,Ys) = Ero(Y1,...,Y,) =0 for all k.

The variances of the ¢, functions will be useful in what follows. Therefore, we introduce
new notation, letting

0',% :Varp¢k(Y1,...,Yk). (108)

The importance of the of values, particularly 0%, is seen in the following theorem, which
gives a closed-form expression for the variance of a U-statistic:
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Theorem 10.6 The variance of a U-statistic is
1 «— (a n—a
V U, = — 2
=y 30 () (34t

If 02,...,02 are all finite, then

2 2 1
Vaern:aal—i—O(—).
n

n2

Theoremis proved in Exercise m This theorem shows that the variance of /nU,, tends
to a®0?, and indeed we may well wonder whether it is true that /n(U,, —6) is asymptotically
normal with this limiting variance. It is the goal of Hoeffding’s H-projection method to prove
exactly that fact.

We shall derive the asymptotic normality of U, in a sequence of steps. The basic idea will
be to show that U,, — 6 has the same limiting distribution as the sum

U, —ZE . —0] X)) (10.9)
of projections. The asymptotic distribution of U, follows from the central limit theorem

because U, is the sum of independent and identically distributed random variables.

Lemma 10.7 For all 1 < j <n,

Br(Un =01 X)) =~ {61(X;) ~ 0}

Proof: Expanding U, using the definition ((10.5)) gives
EF< H‘X Z ZEF{¢ 117"'7Xia)_9|Xj}7
tl 1<i1 < <ig<n

where from equation ((10.7) we see that

Ep{6(Xi,. .. Xia)—9|Xj}:{851(Xj)—9 if j e {i,... i}

otherwise.
The number of ways to choose {ij,...,%,} so that j is among them is (Zj), so we obtain

Er(U,-0]X;) = ((Ei)l) {61(X;) — 0} = %{%(Xj) —0}.
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Lemma 10.8 If 07 < 0o and U, is defined as in Equation 1} then

VU, % N(0,a*o}).

Proof: Lemma follows immediately from Lemma [10.7 and the central limit theorem
since ag;(X;) has mean af and variance a?o7.

Now that we know the asymptotic distribution of U,, it remains to show that U, — 6 and
U, have the same asymptotic behavior.

Lemma 10.9
Ep {Un(Un - 9)} —EpU2

Proof: By Equation (10.9) and Lemma[10.7, E » U2 = 202 /n. Furthermore,

Er{0nU, =0} = 23 Er{(é(X,) = 0)(U, ~0)}
= S ERER{(6:(X) (U~ ) | X;)

2 n
= S Er{ai(X;) -6}’
j=1

2 2
a“oy

)

n

where the third equality above follows from Lemma [10.7}

Lemma 10.10 If 0 < oo for k=1,...,a, then
Vi (Un =0 0,) 5o,

Proof: Since convergence in quadratic mean implies convergence in probability (Theorem
2.17)), it suffices to show that

EF{\/ﬁ(Un . Un)}2 )

- N2 -
By Lemma [10.9, nE (Un — 0 — Un> =n (VarF U,—Er Uz) But nVar p U, = a’0? +
O(1/n) by Theorem [10.6, and nE » U2 = a®c?, proving the result.

Finally, since \/n(U, — ) = \/nU, + /n(U, — 6 — U,), Lemmas [10.8 and [10.10| along with
Slutsky’s theorem result in the theorem we originally set out to prove:
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Theorem 10.11 If 67 < oo for k= 1,...,a, then
ViU, — )% N(0, a%0?). (10.10)
Example 10.12 Consider the expectation functional defined by the kernel function
(;5(y1, y2> = (3/1 — y2)2/2 We obtain

T(F)=Erpé(V1,Y2) =Ep(Y' + Yy = 2V1Y2)/2 = EpY? — (EpY)* = Varp Y.

Given a simple random sample X7, ..., X, from F'| let us derive the asymptotic
distribution of the associated U-statistic. First, we obtain

U, = %ZZM&,X]‘) = ﬁ D> (X, X)),

1<i<j<n i=1 j=1

where we have used the fact that ¢(X;, X;) = 0 in this example whenever i = j
in order to allow both ¢ and j to range from 1 to n. Continuing, we obtain

1 n n
- X2 4+ X2 - 2X;X.)?/2
Un n(n—l)zz( i T4 iX5)°/

i=1 j=1
n n n n

1 9 1 2 1
e TR e D St e D) DA

i=1 j=1 i=1 j=1

By observing that Yi =i >, XiX;/n?, we may now conclude that

n

1 - —9 1 _
U, = X2 - nX.| = X — X,)?
SRR EPL S 2

=1

which is the usual unbiased sample variance.

We have already derived the asymptotic distribution of the sample variance —
twice! — in Examples and [5.9] though we used a biased version of the sample
variance in each of those examples. Now, we may obtain the same result a third
time using the theory of U-statistics we just developed. Since a = 2 here, we
know that

VU, — %) 5 N (0, 402).

It remains to find o?. To this end, we must define ¢;(y). Letting p = EpY and
0? = Var p Y, we obtain

o1(y) =Ero(y,Ys) = Ep(y® — 2y + Y5) /2 = (v* — 2uy + o + %) /2.
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Therefore (since adding the constant o2 does not change the variance),
o} =Varp ¢ (Y) = i\/ar (Y2 —2uY + p?) = iVarF(Y — ).
We conclude that
Vvn(U, — o) A N[0, Var p(Y — p)?].
This confirms the results obtained in Examples [4.11] and [5.9]

Exercises for Section 10.2

Exercise 10.4 Prove Theorem [10.6] as follows:
(a) Prove that for 1 <k < a,
Ero(Yi,....Y)o(Y1, ., Ve, Yait, -+, Yar(ar)) = 0p + 6
and thus Cov p{o(Y1,...,Ya),06(Y1, ..., Ye, Yai1, ..., Yar(a—i) } = 0%

Hint: Use conditioning! In this case, it makes sense to condition on Y7,... Y}
because conditional on those random variables, the expression above is the prod-
uct of independent realizations of ¢y.

(b) Show that

Var p <n>U —
( ) ( )( )COVF{cb(Xl,...,Xa)aﬁb(Xl,...,Xk,Xa+1,...,Xa+(a_k))}
(a)

and then use part ) to prove the first equation of theorem m

(c) Verify the second equation of theorem [10.6]

Exercise 10.5 Suppose a kernel function ¢(yi, ..., y,) satifies E g |¢p(Y;,, ..., Y, )| <
oo for any (not necessarily distinct) 4y, ...,4,. Prove that if U, and V,, are the
corresponding U- and V-statistics for a simple random sample X1, ..., X, then

ViV, = Uy) 50 so that V,, has the same asymptotic distribution as U,,.
Hint: Verify and use the equation

V,—U, = Vn—%Z---ZqS(Xil,...,Xia)

all 4; distinct

]Z D 6(Xiy, LX)

all 4; distinct
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Exercise 10.6 For the kernel function of Example [10.3] ¢(a,b) = |a — b|, the corre-
sponding U-statistic is called Gini’s mean difference and it is denoted G,,. For a
random sample from uniform(0, 7), find the asymptotic distribution of G,,.

Exercise 10.7 Let ¢(y1,y2,y3) have the property

¢(a+byr,a+bys,a+bys) = d(y1,y2 ys)sgn(b) for all a,b. (10.11)

Let 6 = E ¢(Y7,Y5,Y3). The function sgn(b) is defined as the sign of b, which
may be expressed as I{b > 0} — I{b < 0}.

(a) We define the distribution F' to be symmetric if for Y ~ F, there exists some
i (the center of symmetry) such that Y —p and g—Y have the same distribution.
Prove that if F' is symmetric then 6§ = 0.

(b) Let ¥ and § denote the mean and median of y;,ys2,ys. Let ¢(y1,y2,y3) =
sgn(y — g). Show that this function satisfies criterion (10.11)), then find the
asymptotic distribution for the corresponding U-statistic if F' is the standard
uniform distribution.

Exercise 10.8 If the arguments of the kernel function ¢(yy,...,y,) of a U-statistic
are vectors instead of scalars, note that Theorem [10.11] still applies with no
modification. With this in mind, consider for y,z € R? the kernel ¢(y,z) =

I{(y1 — z1)(y2 — 22) > 0}

(a) Given a simple random sample Xy,..., X, if U, denotes the U-statistic
corresponding to the kernel above, the statistic 2U,, — 1 is called Kendall’s tau
statistic. Suppose the marginal distributions of X;; and X5 are both continuous,
with X;; and X5 independent. Find the asymptotic distribution of /n(U, — 6)
for an appropriate value of 6.

(b) To test the null hypothesis that a sample Wiy, ..., W, is independent and
identically distributed against the alternative hypothesis that the W; are stochas-
tically increasing in 7, suppose we reject the null hypothesis if the number of pairs
(Wi, W;) with W; < W; and ¢ < j is greater than ¢,. This test is called Mann’s
test against trend. Based on your answer to part (a), find ¢, so that the test has
asymptotic level .05.

(c) Estimate the true level of the test in part (b) for a simple random sample
of size n from a standard normal distribution for each n € {5,15,75}. Use 5000
samples in each case.

Exercise 10.9 Suppose that X7, ..., X,, is asimple random sample from a uniform(0, «)
distribution. For some fixed a, let U,, be the U-statistic associated with the kernel
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function

¢(y1> <o 7ya) = maX{yh e 7ya}'
Find the asymptotic distribution of U,,.

10.3 Multivariate and multi-sample U-statistics

In this section, we generalize the idea of U-statistics in two different directions. First, we
consider single U-statistics for situations in which there is more than one sample. Next, we
consider the joint asymptotic distribution of two (single-sample) U-statistics.

We begin by generalizing the idea of U-statistics to the case in which we have more than
one random sample. Suppose that X;i,..., X;,, is a simple random sample from F; for all
1 < i < s. In other words, we have s random samples, each potentially from a different
distribution, and n; is the size of the ith sample. We may define a statistical functional

GIE¢<}q17"'71/10,1;}/217"'7§6a2;“';}/;17"'7}/;a5)- (1012>

Notice that the kernel ¢ in Equation has a; + ag + - - - + a, arguments; furthermore,
we assume that the first a; of them may be permuted without changing the value of ¢, the
next as of them may be permuted without changing the value of ¢, etc. In other words, there
are s distinct blocks of arguments of ¢, and ¢ is symmetric in its arguments within each
of these blocks. Finally, notice that in Equation , we have dropped the subscripted
F' on the expectation operator used in the previous section, when we wrote E p — this is
because there are now s different distributions, Fj through Fj, and writing E g, r, would
make a bad notational situation even worse!

Letting N = ny + - - - + n, denote the total sample size, the U-statistic corresponding to the
expectation functional (10.12) is

1 1

Uv="v e D> 6 (X X5 Xy Xy, ) - (10.13)
(a1> (as) 1<y <<y <
1§7‘1<~~:%7’a5§n3

As we did in the case of single-sample U-statistics, define for 0 < k; < a;,...,0 < ks < a4

Gyt Y1, oo Yy 1Y, Yar,) =
E{qb(}/lla"‘7}/1(11;"';}/:917"'7}/:9@5) }/117"'7}/1]617""Y:917"'7Y9k;5} (1014)

and

0%k, = Var Gy, (Vi Vi 5 Yarooo . Yar). (10.15)
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By an argument similar to the one used in the proof of Theorem [10.6, but much more tedious
notationally, we can show that

U’%l"'ks — COV {gb()/lla'"7)/10,1;”.;}/:?17"‘7}2(13)7
¢(Y'117"'7}/1]9153/1,0,1+17"';"';}/:917'"7Xsk57}/:9,a5+17-")}- (1016)

Notice that some of the k; may equal 0. This was not true in the single-sample case, since
¢o would have merely been the constant 6, so o2 would have been 0.

In the special case when s = 2, Equations (10.14]), (10.15)) and ((10.16)) become
¢jk(}/17---7}/]';217"'azk) = E {¢(}/17"'7Ya1;217"'aza2) | }/:b“'?}/;?Zl?"‘?Zk}?
o = Var ¢u(Y1,....Y; 210 Zy),

and

O'?-k = Cov {o(Y1,....Ye;Z1,..., Zy,),
¢<}/17"'7Y37§/¢11+17"'JYa1+(a1—j);Z17"‘7ZkJZa2+17"'7Za2+(a2—k))}7

respectively, for 0 < j <a; and 0 < k < as.

Although we will not derive it here as we did for the single-sample case, there is an analagous
asymptotic normality result for multisample U-statistics, as follows.

Theorem 10.13 Suppose that for ¢« = 1,...,s, X;1,...,X;,, is a random sample
from the distribution F; and that these s samples are independent of each other.
Suppose further that there exist constants py, ..., ps in the interval (0,1) such
that n;/N — p; for all 7 and that o2 < 00. Then

a1---Gg

VN Uy — )% N(0,02),

where
2 _ CL_% 2 4+t a_z 2
0 = —0710..00 000.--01"
P1 Ps

Although the notation required for the multisample U-statistic theory is nightmarish, life
becomes considerably simpler in the case s = 2 and a; = ay = 1, in which case we obtain

niy n2

Un = n11n2 ZZ¢(X1i§X2j)-

i=1 j=1
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Equivalently, we may assume that X;,...,X,, are a simple random sample from F' and

Yy, ..., Y, are a simple random sample from G, which gives
:_ZZ¢ 5 Y;) (10.17)
=1 j=1

In the case of the U-statistic of Equation (10.17)), Theorem [10.13| states that
2 2
VNUy — ) %5 N (0,@+ i) ,
p l—p
where p = limm/N, oy = Cov {$(X1; Y1), p(X1:Y2)}, and 05; = Cov {¢(X1; Y1), ¢(Xo; Y1)}

Example 10.14 For independent random samples X, ... X,, from F and Y;,...,Y,
from G, consider the Wilcoxon rank-sum statistic W, defined to be the sum of
the ranks of the Y; among the combined sample. We may show that

Wz%n(n—l—l)—l—ii[{)(i <Y},

i=1 j=1

Therefore, if we let ¢(a;b) = I{a < b}, then the corresponding two-sample U-
statistic Uy is related to W by W = %n(n + 1) + mnUy. Therefore, we may use
Theorem to obtain the asymptotic normality of Uy, and therefore of W.
However, we make no assumption here that F' and G are merely shifted versions
of one another. Thus, we may now obtain in principle the asymptotic distribution
of the rank-sum statistic for any two distributions F' and G that we wish, so long
as they have finite second moments.

The other direction in which we will generalize the development of U-statistics is consid-
eration of the joint distribution of two single-sample U-statistics. Suppose that there are
two kernel functions, ¢(yi,...,vy.) and ¢(yi,...,y), and we define the two corresponding

U-statistics
7 Y G )

a 1<i1 < <ig<n
and

Z Z ]17"'7 jb)

1<]1< <jp<n

for a single random sample Xi,...,X,, from F. Define §; = E U,gl) and 6, = E U,(Lz)
Furthermore, define -,;, to be the covariance between ¢;(Y1,...,Y;) and i (Y3, ..., Ys), where
¢; and ¢y, are defined as in Equation (10.7). Letting ¢ = min{j, k}, it may be proved that

rY]k: — COV {(;5(}/17 cee 7Ya)7S0(Y17 v 7)/57Ya+17 v 7Ya+(b—€))} . (10]‘8)
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Note in particular that 7;; depends only on the value of min{j, k}.

The fo(ll)owing theorem, stated without proof, gives the joint asymptotic distribution of UtV
and US?.

Theorem 10.15 Suppose Xq,..., X, is a random sample from F' and that ¢ : R* —
R and ¢ : R” — R are two kernel functions satisfying Var ¢(Y1,...,Y,) < oo and
Var (Y1, ...,Y;) < co. Define 77 = Var ¢;(Y;) and 75 = Var (Y1), and let vy,
be defined as in Equation ((10.18)). Then

UM 0.\ | 4 0 a’r2  abyn
Al () - (] {0)- (a7 )}

Fxercises for Section 10.3

Exercise 10.10 Suppose X1,...,X,, and Y1,...,Y,, are independent random samples
from distributions Unif(0,#) and Unif(u, u + ), respectively. Assume m/N — p
asm,n —ooand 0 < pu < 6.

(a) Find the asymptotic distribution of the U-statistic of Equation ((10.17]), where
o(z;y) = I{x < y}. In so doing, find a function g(x) such that E(Uy) = g(p).

(b) Find the asymptotic distribution of g(Y — X).

(c) Find the range of values of y for which the Wilcoxon estimate of g(u) is
asymptotically more efficient than g(Y — X). (The asymptotic relative efficiency
in this case is the ratio of asymptotic variances.)

Exercise 10.11 Solve each part of Problem but this time under the assump-
tions that the independent random samples Xi,...,X,, and Yi,... Y, satisfy
PX; <t)=P(Y,—0<t)=t*fort € [0,1] and 0 < § < 1. As in Problem
[10.10} assume m/N — p € (0,1).

Exercise 10.12 Suppose Xi,...,X,, and Yi,...,Y,, are independent random samples
from distributions N(0,1) and N(u, 1), respectively. Assume m/(m +n) — 1/2
as m,n — oo. Let Uy be the U-statistic of Equation (10.17)), where ¢(z;y) =
I{z < y}. Suppose that 0(u) and o2(u) are such that

VN[Ux — 8(1)] % N[0,0(1)]-

Calculate 0(u) and o?(u) for p € {.2,.5,1,1.5,2}.
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Hint: This problem requires a bit of numerical integration. There are a couple
of ways you might do this. A symbolic mathematics program like Mathematica
or Maple will do it. There is a function called integrate in R and Splus and
one called quad in MATLAB for integrating a function. If you cannot get any of
these to work for you, let me know.

Exercise 10.13 Suppose X1, X, ... are independent and identically distributed with
finite variance. Define

n—14%
=1

and let G, be Gini’s mean difference, the U-statistic defined in Problem [10.6]
Note that S? is also a U-statistic, corresponding to the kernel function ¢(xq, z9) =

(.Tl — $2>2/2.

(a) If X; are distributed as Unif(0, ), give the joint asymptotic distribution of
G, and S, by first finding the joint asymptotic distribution of the U-statistics
G, and S?. Note that the covariance matrix need not be positive definite; in this
problem, the covariance matrix is singular.

(b) The singular asymptotic covariance matrix in this problem implies that as
n — oo, the joint distribution of GG,, and .S,, becomes concentrated on a line. Does
this appear to be the case? For 1000 samples of size n from Uniform(0, 1), plot
scatterplots of G,, against S,,. Take n € {5,25,100}.

10.4 Introduction to the Bootstrap

This section does not use very much large-sample theory aside from the weak law of large
numbers, and it is not directly related to the study of U-statistics. However, we include
it here because of its natural relationship with the concepts of statistical functionals and
plug-in estimators seen in Section [10.1] and also because it is an increasingly popular and
often misunderstood method in statistical estimation.

Consider a statistical functional T},(F") that depends on n. For instance, T,,(F') may be some
property, such as bias or variance, of an estimator 6,, of § = (F) based on a random sample
of size n from some distribution F.

As an example, let §(F) = F~' (1) be the median of F. Take 0,, to be the mth order statistic
from a random sample of size n = 2m — 1 from F.

Consider the bias TP (F) = E 6, — 0(F) and the variance TV (F) = E ;62 — (E 1 0,)2.
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Theoretical properties of T2 and T)V are very difficult to obtain. Even asymptotics aren’t

very helpful, since /n(6, — 0) £>N{O, 1/(4f%(0))} tells us only that the bias goes to zero
and the limiting variance may be very hard to estimate because it involves the unknown
quantity f(6), which is hard to estimate.

Consider the plug-in estimators T2(F},) and TV (E,). (Recall that F, denotes the empirical
distribution function, which puts a mass of % on each of the n sample points.) In our median
example,

TE(E,) = Eg 0,0,

and

T/ (F) = Ef(0;)° — (B, 6,)%,

n

where é; is the sample median from a random sample X7, ..., X* from E,.

To see how difficult it is to calculate T2(F,) and TV (F,), consider the simplest nontrivial
case, n = 3: Conditional on the order statistics (X(1y, X(2), X(3)), there are 27 equally likely
possibilities for the value of (X7, X5, XJ), the sample of size 3 from Fn, namely

(Xay, Xy, X)), (X, Xay, X2)), - -5 (X(3), X3y, X(3))-

Of these 27 possibilities, exactly 1 + 6 = 7 have the value X(;) occurring 2 or 3 times.
Therefore, we obtain

A 7 A 13 A 7
Pl =Xn) = —,PO = X)) =— d PO =X(3) = —.
(0h = Xw) = 57, PO, = X)) = 5, and P(6, = Xz)) =
This implies that
N% 1 N 1
Ep,0n = 52(TX0) +13X() +7X() and E £ (0:)7 = 2—7(7)((21) +13X%) + TX(y).
Therefore, since én = X(2), we obtain
. 1
TP (F) = 5= (TX ) = 14X() + TX ()
and
. 14
T (Fn) = =55 (10X0) + 13X%) +10X0) — 13X X(o) = 13X(9) X(5) — TX (1) X3))-

To obtain the sampling distribution of these estimators, of course, we would have to consider
the joint distribution of (Xq), X(2), X(3)). Naturally, the calculations become even more
difficult as n increases.
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Alternatively, we could use resampling in order to approximate T2(F,) and TV (F},). This is
the bootstrapping idea, and it works like this: For some large number B, simulate B random
samples from F},, namely

X5, ..., XT

1n»

* *
X5, - Xpns

and approximate a quantity like E 5 é;; by the sample mean
1B
52O
i=1

where éz*,n is the sample median of the ith bootstrap sample X7,..., X/ . Notice that the
weak law of large numbers asserts that

B
*P
E:’m_> an‘

To recap, then, we wish to estimate some parameter T, (F") for an unknown distribution F’
based on a random sample from F. We estimate T},(F) by T, (F},), but it is not easy to
evaluate Tn(ﬁ’n) SO we approximate Tn(ﬁn) by resampling B times from F, and obtain a
bootstrap estimator 7% ,,. Thus, there are two relevant issues:

1. How good is the approximation of T, (F,) by T}, ? (Note that T, (F,) is NOT an
unknown parameter; it is “known” but hard to evaluate.)
2. How precise is the estimation of T,,(F) by T,,(F},)?
Question 1 is usually addressed using an asymptotic argument using the weak law or the

central limit theorem and letting B — oo. For example, if we have an expectation functional
T.(F)=Egrh(Xy,...,X,), then

as B — oo.

Question 2, on the other hand, is often tricky; asymptotic results involve letting n — co and
are handled case-by-case. We will not discuss these asymptotics here. On a related note,
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however, there is an argument in Lehmann’s book (on pages 432-433) about why a plug-in
estimator may be better than an asymptotic estimator. That is, if it is possible to show
T,.(F) — T as n — oo, then as an estimator of T,,(F'), T,,(F,) may be preferable to T.

We conclude this section by considering the so-called parametric bootstrap. If we assume that
the unknown distribution function F' comes from a family of distribution functions indexed

by a parameter p, then T}, (F) is really T, (F},). Then, instead of the plug-in estimator T,(F,,),
we might consider the estimator T,,(F};), where /i is an estimator of p.

Everything proceeds as in the nonparametric version of bootstrapping. Since it may not be
easy to evaulate T,,(F}) explicitly, we first find £ and then take B random samples of size
n, Xi,..., Xy, through X%,,..., X5, from Fj,. These samples are used to approximate
To(Fp).

Example 10.16 Suppose Xi, ..., X, is a random sample from Poisson(u). Take i =
X. Suppose T,,(F,) = Var F, & In this case, we happen to know that T,,(F),) =
p/n, but let’s ignore this knowledge and apply a parametric bootstrap. For some
large B, say 500, generate B samples from Poisson(/i) and use the sample variance
of i* as an approximation to T,(F}). In R, with ¢ =1 and n = 20 we obtain

X <- rpois(20,1) # Generate the sample from F

muhat <- mean(x)

muhat

[1] 0.85

muhatstar <- rep(0,500) # Allocate the vector for muhatstar
for(i in 1:500) muhatstar[i] <- mean(rpois(20,muhat))

var (muhatstar)

[1] 0.04139177

Note that the estimate 0.041 is close to the known true value 0.05. This example
is simplistic because we already know that T, (F') = u/n, which makes /i/n a more
natural estimator. However, it is not always so simple to obtain a closed-form
expression for T,,(F).

Incidentally, we could also use a nonparametric bootstrap approach in this exam-
ple:

for (i in 1:500) muhatstar2[i] <- mean(sample(x,replace=T))
var (muhatstar2)
[1] 0.0418454

Of course, 0.042 is an approximation to 7, n(ﬁ’n) rather than 7),(F};). Furthermore,
we can obtain a result arbitrarily close to T,,(F},) by increasing the value of B:
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muhatstar2_rep(0,100000)

for (i in 1:100000) muhatstar2[i] <- mean(sample(x,replace=T))
var (muhatstar?2)

[1] 0.04136046

In fact, it is in principle possible to obtain an approximate variance for our
estimates of T, (F,,) and T,,(F}), and, using the central limit theorem, construct
approximate confidence intervals for these quantities. This would allow us to

specify the quantities to any desired level of accuracy.

Exercises for Section 10.4

Exercise 10.14 (a) Devise a nonparametric bootstrap scheme for setting confidence

intervals for [ in the linear regression model Y; = a 4+ fz; + ¢;. There is more
than one possible answer.

(b) Using B = 1000, implement your scheme on the following dataset to obtain a
95% confidence interval. Compare your answer with the standard 95% confidence
interval.

Y |21 16 20 34 33 43 47
x [ 460 498 512 559 614 675 719

(In the dataset, Y is the number of manatee deaths due to collisions with power-
boats in Florida and x is the number of powerboat registrations in thousands for
even years from 1978-1990.)

Exercise 10.15 Consider the following dataset that lists the latitude and mean Au-

gust temperature in degrees Fahrenheit for 7 US cities. The residuals are listed
for use in part (b).

City ‘ Latitude Temperature ‘ Residual
Miami 26 83 -5.696
Phoenix 33 92 10.116
Memphis 35 81 1.062

Baltimore 39 76 -0.046
Pittsburgh 40 71 -4.073
Boston 42 72 -1.127
Portland, OR 46 69 -0.235

Minitab gives the following output for a simple linear regression:

209



Predictor Coef SE Coef T P

Constant 113.99 13.01 8.76  0.000
latitude -0.9730 0.3443 -2.83  0.037
S = 5.546 R-Sq = 61.5Y% R-Sq(adj) = 53.8%

Note that this gives an asymptotic estimate of the variance of the slope parameter
as .3443% = .1185.

In (a) through (c) below, use the described method to simulate B = 500 boot-
strap samples (23, Yz), - - - (247, y57) for 1 < b < B. For each b, refit the model
to obtain ff{f . Report the sample variance of Bf . Bg and compare with the
asymptotic estimate of .1185.

(a) Parametric bootstrap. Take z};, = x; for all b and i. Let y; = fo+12i+€;,
where ¢; ~ N(0,62%). Obtain 3y, 81, and 62 from the above output.

(b) Nonparametric bootstrap I. Take zj;, = x; for all b and i. Let y;;, =
Bo + Bz + Ty, Where r,, ..., ;- is an iid sample from the empirical distribution
of the residuals from the original model (you may want to refit the original model
to find these residuals).

(c) Nonparametric bootstrap II. Let (2}, v;),- -, (2}, y;;) be an iid sample
from the empirical distribution of (x1,31),..., (7, y7).

Note: In R or Splus, you can obtain the slope coefficient of the linear regression
of the vector y on the vector x using 1m(y~x) $coef [2].

Exercise 10.16 The same resampling idea that is exploited in the bootstrap can be
used to approximate the value of difficult integrals by a technique sometimes
called Monte Carlo integration. Suppose we wish to compute

1
0 = 2/ e cos® () da.
0

(a) Use numerical integration (e.g., the integrate function in R and Splus) to
verify that 6 = 1.070516.

(b) Define g(t) = 2e™ cos®(t). Let Uy,...,U, be an iid uniform(0,1) sample.
Let

. 1 <&
O == 9(Us).
=1

Prove that él £o.
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(c) Define h(t) = 2 — 2t. Prove that if we take V; = 1 — /U, for each i, then V;
is a random variable with density h(t). Prove that with

1 g(V)
= 2wy

AP
we have 0y — 6.

(d) For n = 1000, simulate 0, and 0. Give estimates of the variance for each
estimator by reporting 62 /n for each, where 62 is the sample variance of the g(U;)
or the g(V;)/h(V;) as the case may be.

(e) Plot, on the same set of axes, g(t), h(t), and the standard uniform density
for t € [0,1]. From this plot, explain why the variance of f, is smaller than the
variance of 6. [Incidentally, the technique of drawing random variables from a
density h whose shape is close to the function g of interest is a variance-reduction

technique known as importance sampling.|

Note: This was sort of a silly example, since numerical methods yield an ex-
act value for . However, with certain high-dimensional integrals, the “curse of
dimensionality” makes exact numerical methods extremely time-consuming com-
putationally; thus, Monte Carlo integration does have a practical use in such
cases.
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