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Abstract. Our first main result is the following basic fact about simplicial complexes:

for each k ∈ N, there exists an exponent λk ≥ k−2k2

such that for any k-complex

S, every k-complex on n ≥ n0(S) vertices with at least nk+1−λk facets contains a

homeomorphic copy of S. The existence of these exponents was suggested by Linial

in 2006 but was previously known only in dimensions one and two, both by highly

dimension-specific arguments: the existence of λ1 is a result of Mader from 1967, and

the existence of λ2 was established by Keevash–Long–Narayanan–Scott in 2020. We

deduce this geometric theorem from a purely combinatorial result about trace-bounded

hypergraphs, where an r-partite r-graph H with partition classes V1, V2, . . . , Vr is said

to be d-trace-bounded if for each 2 ≤ i ≤ r, all the vertices of Vi have degree at most

d in the trace of H on V1 ∪ V2 ∪ · · · ∪ Vi. Our second main result is the following fact

about degenerate trace-bounded hypergraphs: for all r ≥ 2 and d ∈ N, there exists

an exponent αr,d ≥ (5rd)1−r such that for any d-trace-bounded r-partite r-graph H,

every r-graph on n ≥ n0(H) vertices with at least nr−αr,d edges contains a copy of H.

This strengthens a theorem of Conlon–Fox–Sudakov from 2009 who showed that a

similar result holds for r-partite r-graphs H satisfying the stronger hypothesis that

the vertex-degrees in all but one of its partition classes are bounded (in H, as opposed

to in its traces).

1. Introduction

This paper aims to answer the following basic geometric question about k-dimensional

simplicial complexes (or k-complexes for short) that arises in the ‘high-dimensional

combinatorics’ programme of Linial [14, 15].

Problem 1.1. Given a k-complex S, how many facets can a k-complex on n vertices

have if it contains no homeomorphic copy of S?

For a k-complex S, let λ(S) be the supremum over all λ for which the maximum

number of facets in a k-complex on n vertices with no homeomorphic copy of S is

O(nk+1−λ). It is essentially folklore — see [9] for a discussion — that λ(S) > 0 for every

k-complex S. A much more intriguing possibility, namely that for every k-complex
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S, λ(S) is bounded below uniformly by some universal exponent λk > 0 that depends

only on the dimension k, was suggested by Linial [12, 13] (explicitly for dimension two

and implicitly for higher dimensions); our first main result establishes this in every

dimension.

Theorem 1.2. For all k ∈ N, there is a λk ≥ k−2k2 such that for any k-complex S, every

k-complex on n ≥ n0(S) vertices with at least nk+1−λk facets contains a homeomorphic

copy of S.

The existence of such universal exponents λk as in Theorem 1.2 was previously known

only for k = 1 and k = 2; that the optimal value of λ1 is 1 is a classical result of

Mader [16], and that λ2 ≥ 1/5 was shown recently by Keevash, Scott and the first and

second authors [9]. The conjecturally optimal value of λ2 is 1/2, and establishing this

remains open, though a beautiful recent result of Kupavskii, Polyanskii, Tomon, and

Zakharov [11] establishes that λ(S) = 1/2 whenever S is the triangulation of any closed

orientable two-dimensional surface, generalising a classical result of Brown, Erdős and

Sós [2] establishing this fact for the two-sphere.

It is worth mentioning that all of [16, 2, 9, 11] proceed via arguments that are highly

specific to dimensions one and two. Indeed, the main novelty in the proof of Theorem 1.2

is our ability to simultaneously handle all dimensions; this generality comes at a cost,

however, since the resulting bounds in low dimensions are not very competitive with

those in the aforementioned results.

We shall deduce Theorem 1.2 from a purely combinatorial result, of some independent

interest, about the Turán numbers of a large class of r-uniform hypergraphs (or r-graphs,

for short). For an r-partite r-graph H, let α(H) be the supremum over all α for which

the maximum number of edges in an r-graph on n vertices with no copy of H is O(nr−α).

A well-known result of Erdős [5] says that α(H) > 0 for every r-partite r-graph H;

this value α(H) is called the Turán exponent of H, and the determination of these

exponents is the central problem — see [7, 8] — of degenerate Turán theory.

To state our second result, we need a definition. We say that an r-partite r-graph

H with partition classes V1, V2, . . . , Vr is d-trace-bounded if for each 2 ≤ i ≤ r, all the

vertices of Vi have degree at most d in the trace of H on V1 ∪ V2 ∪ · · · ∪ Vi. Our second

main result establishes the existence of universal lower bounds on the Turán exponents

of degenerate trace-bounded hypergraphs.

Theorem 1.3. For all r ≥ 2 and d ∈ N, there is an αr,d ≥ (5rd)1−r such that for any

d-trace-bounded r-partite r-graph H , every r-graph on n ≥ n0(H) vertices with at least

nr−αr,d edges contains a copy of H .

Theorem 1.3 generalises a result of Conlon, Fox and Sudakov [3] which asserts, for

all r ≥ 2 and d ∈ N, the existence of exponents α′
r,d > 0 (of order roughly (rd)1−r as
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well) with the following property: for any r-partite r-graph H with partition classes

V1, V2, . . . , Vr in which the degrees of the vertices in each of V2, V3, . . . , Vr are at most

d in H, we have α(H) ≥ α′
r,d. It is easy to see that any r-partite r-graph H to which

the aforementioned result applies is d-trace-bounded as well, so Theorem 1.3 clearly

implies this result. Of course, Theorem 1.3 is genuinely stronger than the result in [3]

since not every trace-bounded r-partite r-graph has bounded vertex-degrees in all but

one of its partition classes, and indeed, the full strength of Theorem 1.3 will be crucial

in proving Theorem 1.2.

Two more remarks about Theorem 1.3 are in order. First, the fact that the optimal

value of α2,d is 1/d (as opposed to the 1/(10d) promised by Theorem 1.3) is a result

of Alon, Krivelevich and Sudakov [1] which may also be read out of earlier work of

Füredi [6]. Second, it is known that, in a sense, something like the trace-boundedness

hypothesis in Theorem 1.3 is necessary if one expects to control the Turán exponent in

terms of vertex-degrees; indeed, from [10], we know that for every ε > 0, there exists a

3-partite 3-graph H with all the vertex-degrees in one of its partition classes being 1

for which α(H) ≤ ε.

Let us summarise the discussion above by specialising to 3-graphs. For a 3-partite

3-graph H with partition classes V1, V2 and V3, we have the following conclusions about

its Turán exponent α(H), listed below in order of decreasing strength of the hypotheses

on H.

(1) If the degrees of the vertices in both V3 and V2 are bounded above by d in H,

then [3] shows that α(H) ≥ 1/(15d)2.

(2) If the degrees of the vertices in V3 are bounded above by d in H, and the degrees

of the vertices in V2 are bounded above by d in the trace of H on V1 ∪ V2, then

Theorem 1.3 says that α(H) ≥ 1/(15d)2.

(3) If all we know is that the degrees of the vertices in V3 are bounded above by d

in H, then [10] shows that α(H) need not be bounded below uniformly in terms

of d, even when d = 1.

This paper is organised as follows. We begin by establishing some notation and

making precise some of the undefined terminology appearing in the introduction in

Section 2. The deduction of Theorem 1.2 from Theorem 1.3 is given in Section 3, and

the proof of Theorem 1.3 follows in Section 4. We conclude with a discussion of some

open problems in Section 5.

2. Preliminaries

We shall only consider homogeneous k-complexes, namely k-complexes all of whose

facets are k-dimensional. Consequently, we may specify a k-complex S over a vertex

set V by listing the family F of its k-dimensional facets, each of which is a subset of
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V of cardinality k + 1 (though S is, strictly speaking, the family of all subsets of its

facets). We say that a k-complex T contains a homeomorph (or a homeomorphic copy)

of a k-complex S if there is a subcomplex of T that is homeomorphic to S. An r-graph

G on a vertex set V is a family E of r-element subsets of V called the edges of G. A

k-complex S may hence be identified with a (k + 1)-graph G by viewing the facets of

S as the edges of G, and vice versa. When we specify a k-complex by its set of facets

alone, or an r-graph by its edge set alone, the vertex set of the k-complex or the r-graph

in question is taken to be the span of the facets or the edges respectively.

Since most of the work here will be in proving Theorem 1.3, let us set out some

more notation for working with an r-graph G. We write v(G) and e(G) for the

number of vertices and edges of G respectively. The link L(v,G) of a vertex v ∈ V (G)

in G is the (r − 1)-graph whose edges are those sets S for which {v} ∪ S is an

edge of G, and the degree d(v,G) of v is the number of edges of G containing v, or

equivalently d(v,G) = e(L(v,G)). For an (r − 1)-graph J with V (J) ⊂ V (G), its

common neighbourhood Γ(J,G) in G is the set of vertices v ∈ V (G) for which {v} ∪ S

is an edge of G for each edge S ∈ E(J). Finally, for a subset U ⊂ V (G) of the vertex

set of G, the trace Tr(G,U) of G on U is the family {S ∩ U : S ∈ E(G)}.
An r-graph G is r-partite if its vertex set admits a partition V (G) = V1∪V2∪ · · ·∪Vr

such that every edge of G contains exactly one vertex each from each of these r

partition classes. When G is an r-partite r-graph with partition classes V1, V2, . . . , Vr,

we abbreviate Tr(G, V1 ∪ V2 ∪ · · · ∪ Vi) by Tri(G), noting that Tri(G) is an i-graph for

each 1 ≤ i ≤ r. Finally, we say that an r-partite r-graph G with partition classes

V1, V2, . . . , Vr is d-trace-bounded if for each 2 ≤ i ≤ r, we have d(v,Tri(G)) ≤ d for each

v ∈ Vi.

It will be convenient for us to work with a large r-partite subgraph of a given r-graph;

the following fact facilitates this, and follows from an easy averaging argument.

Proposition 2.1. Any r-graph on rn vertices with m edges contains an r-partite

subgraph with partition classes each of size n and at least (r!/rr)m edges. □

3. Homeomorphs

Our proof of Theorem 1.2 relies on the following construction. Given a k-complex

S, the canonical subdivision of S is a k-complex S̃ homeomorphic to S constructed as

follows. The vertex set of S̃ is given by

V (S̃) = V (S) ∪ {vT : T ⊂ V (S), |T | ≥ 2, and T is contained in some facet of S};

in other words, we start with V (S) and for each 2 ≤ t ≤ k + 1, we introduce a new

vertex vT for each t-set T contained in some facet of S. The facets F (S̃) of S̃ are then

obtained by subdividing each facet of S into (k + 1)! facets as follows: for each facet
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Figure 1. The construction of S̃ for a 2-complex S.

S ∈ F (S) of S, consider the (k + 1)! possible chains

{v} ⊊ T2 ⊊ T3 ⊊ · · · ⊊ Tk ⊊ S

with v a vertex of S, and include {v, vT2 , vT3 , . . . , vTk
, vS} in F (S̃). It is not hard to see

that S̃ is homeomorphic to S, as illustrated in Figure 1.

Proof of Theorem 1.2. We shall prove the result with λk = αk+1,(k+1)!, where αk+1,(k+1)!

is as promised by Theorem 1.3. We note that this establishes the bound

λk ≥ (5(k + 1)(k + 1)!)−k ≥ k−2k2

for k ≥ 3; that λk ≥ k−2k2 for all k ∈ N follows from the facts, respectively from [16]

and [9], that λ1 ≥ 1 and λ2 ≥ 1/5.

Given a k-complex S, we first construct its canonical subdivision S̃ as described above.

When this k-complex S̃ is viewed as a (k + 1)-graph, it is clear that it is (k + 1)-partite

with partition classes V1, V2, . . . , Vk+1, where V1 = V (S) and for 2 ≤ t ≤ k + 1, Vt

consists of those new vertices vT introduced in S̃ for each t-set T contained in some

facet of S. Furthermore, S̃ is ((k + 1)!)-trace-bounded; indeed, it is easy to see, for each

2 ≤ t ≤ k + 1, that for every v ∈ Vt, we have d(v,Trt(S̃)) = t! ≤ (k + 1)!.

It follows from Theorem 1.3 that provided n ≥ n0(S) is large enough, any k-complex on

n vertices with nk+1−λk facets contains S̃ as a subcomplex, and therefore, a homeomorph

of S. □

4. Trace-bounded hypergraphs

We start with a lemma that says that if an r-partite r-graph has many edges and a

small number of (small) subgraphs that are ‘marked’ as being bad, then we may pass

to an (r − 1)-partite (r − 1)-graph in one of its traces that has similar properties. To

state this key lemma, we need a little set up, to which we now turn.

For each r, d ∈ N, let H(r, d) denote the (finite) family of all nonempty r-partite

r-graphs with at most d edges, taken up to isomorphism; recall our convention that the
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vertex set of an r-graph specified by its edge set alone is the span of its edges, whence

r ≤ v(J) ≤ rd for each J ∈ H(r, d).

Suppose that r ≥ 2, and let G be an r-partite r-graph with partition classes

X1, X2, . . . , Xr each of size n. Suppose that for each J ∈ H(r, d), a subset B(J,G) of

the copies of J in G have been marked (as being bad). We say that an (r − 1)-graph

L ⊂ Trr−1(G) with at most d edges is β-bad with respect to G if

B1 either |Γ(L,G)| ≤ n1−β, or

B2 if there exists some J ∈ H(r, d) such that the number of marked copies of J in

G containing L is at least

n−2β
(
n1−β

)v(J)−v(L)−1|Γ(L,G)|.

The following lemma will be the workhorse that drives the proof of our main result.

Lemma 4.1. For a fixed r ≥ 2, d ∈ N, and ε, δ > 0, the following holds for all suffi-

ciently large n ∈ N. Let G be an r-partite r-graph with partition classes X1, X2, . . . , Xr

each of size n and e(G) ≥ 2rnr−ε in which, for each J ∈ H(r, d), there is a set B(J,G)

of at most nv(J)−δ marked copies of J in G. Then, for β = δ/(rd + 1), there is an

(r− 1)-partite (r− 1)-graph G′ ⊂ Trr−1(G) with partition classes X1, X2, . . . , Xr−1 such

that

(1) e(G′) ≥ 2r−1nr−1−ε, and

(2) for each L ∈ H(r − 1, d), the set B(L,G′) of copies of L in G′ that are β-bad

with respect to G satisfies

|B(L,G′)| ≤ nv(L)−β+2ε.

Proof. Choose a vertex x ∈ Xr uniformly at random and let G′ = L(x,G) ⊂ Trr−1(G)

be the link of x in G. It is clear that

E[e(G′)] = e(G)/n ≥ 2rnr−1−ε. (1)

For each L ∈ H(r− 1, d), let P (L) be the set of copies L′ of L in G′ with |Γ(L′, G)| ≤
n1−β. Next, for L ∈ H(r − 1, d) and J ∈ H(r, d), we say that a copy J ′ of J in G

extends a copy L′ of L in Trr−1(G) if Trr−1(J
′) = L′. Let Q(L, J) be the set of copies

L′ of L in G′ which extend to at least

n−2β
(
n1−β

)v(J)−v(L)−1|Γ(L′, G)|

marked copies of J belonging to B(J,G). With these definitions in place, we then have

B(L,G′) = P (L) ∪

 ⋃
J∈H(r,d)

Q(L, J)


for each L ∈ H(r − 1, d); indeed, the first term above accounts for B1 and the second

for B2.
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First, we note that

E[|P (L)|] ≤ nv(L)−β, (2)

since each copy L′ of L in Trr−1(G) with |Γ(L′, G)| ≤ n1−β survives in G′ with probability

at most n−β, and the number of copies of L in Trr−1(G) is trivially at most nv(L).

Next, since |B(J,G)| ≤ nv(J)−δ for each J ∈ H(r, d), we have∑
L′∈Q(L,J)

n−2β
(
n1−β

)v(J)−v(L)−1|Γ(L′, G)| ≤ |B(J,G)| ≤ nv(J)−δ,

and by rearranging this, we get∑
L′∈Q(L,J)

|Γ(L′, G)|
n

≤ n2β
(
nβ−1

)v(J)−v(L)−1
nv(J)−1−δ

= nv(L)−δ+β(1+v(J)−v(L)) ≤ nv(L)−δ+βrd,

where the last inequality uses the trivial facts that v(J) ≤ rd and v(L) ≥ 1. It follows

that

E[|Q(L, J)|] ≤ nv(L)−δ+βrd (3)

for each L ∈ H(r − 1, d) and J ∈ H(r, d).

Putting the estimates (2) and (3) together, we get

E[|B(L,G′)|] ≤ nv(L)−β + |H(r, d)|nv(L)−δ+βrd = C1n
v(L)−β, (4)

where C1 = (1+ |H(r, d)|), the last equality following from the fact that β = δ/(rd+1).

To finish, we set C2 = |H(r − 1, d)|, and combine (1) and (4) to get

E

 e(G′)

2r−1nr−1−ε
− 1− 1

C2

∑
L∈H(r−1,d)

|B(L,G′)|
C1nv(L)−β

 ≥ 0;

consequently, there is at least one vertex in Xr whose link G′ has the following properties:

(1) e(G′) ≥ 2r−1nr−1−ε, and

(2) for every L ∈ H(r − 1, d), we have

|B(L,G′)| ≤ C1C2n
v(L)−βe(G′)

2r−1nr−1−ε
≤ 21−rC1C2n

v(L)−β+ε ≤ nv(L)−β+2ε;

here, we use the facts that e(G′) ≤ nr−1, that ε > 0, and that n is sufficiently

large.

Such an (r − 1)-graph G′ has all the properties we require, proving the lemma. □

With Lemma 4.1 in hand, we are now ready to prove our second main result.
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Proof of Theorem 1.3. Let H be a d-trace-bounded r-partite r-graph with partition

classes Y1, Y2, . . . , Yr. For convenience, we prove that any large r-graph with sufficiently

many edges on a vertex set whose cardinality is divisible by r must contain a copy of H;

of course, this divisibility assumption makes no material difference beyond allowing us

to drop floor and ceiling signs. We shall prove the result with the precise value of

αr,d =
1

10d

(
1

rd+ 1

)r−2

,

noting that αr,d ≥ (5rd)1−r for all r ≥ 2 and d ≥ 1.

Given an r-graph on rn vertices with at least (rn)r−αr,d edges, then provided n

is sufficiently large, we may, by Proposition 2.1, pass to an r-partite subgraph with

partition classes X1, X2, . . . , Xr each of size n containing 2rnr−ε edges, for some

0 < ε ≤ 1

9d

(
1

rd+ 1

)r−2

;

we shall only work with this r-partite r-graph, which we call G, in what follows. Our

goal now is to show that we are guaranteed to find a copy of H in G provided n ≥ n0(H)

is sufficiently large.

Our proof proceeds in two stages. In the first stage, we shall inductively construct

a sequence of i-partite i-graphs Gi ⊂ Tri(G) with partition classes X1, X2, . . . , Xi for

r−1 ≥ i ≥ 1, with Gi being constructed by feeding Gi+1 into Lemma 4.1. To accomplish

this iterative construction, we need to find a suitable Gr−1 from which to start, which

we do as follows.

Claim 4.2. There is an (r − 1)-partite (r − 1)-graph Gr−1 ⊂ Trr−1(G) with partition

classes X1, X2, . . . , Xr−1 such that

(1) e(Gr−1) ≥ 2r−1nr−1−ε, and

(2) for each J ∈ H(r − 1, d), the set B(J,Gr−1) of copies of J in Gr−1 that are

contained in the link of fewer than v(H) different vertices of Xr in G satisfies

|B(J,Gr−1)| ≤ nv(J)−1/2.

Proof. The proof mirrors that of Lemma 4.1, but involves less work since we are aiming

to accomplish less. Indeed, choose a vertex x ∈ Xr uniformly at random and let

G′ = L(x,G) ⊂ Trr−1(G) be the link of x in G. As before, we clearly have

E[e(G′)] = e(G)/n = 2rnr−1−ε. (5)

For each J ∈ H(r− 1, d), the probability that a copy of J in Trr−1(G) contained in the

link of fewer than v(H) different vertices of Xr survives in G′ is at most v(H)/n, so it

follows that B(J,G′) satisfies

E[|B(J,G′)|] ≤ v(H)nv(J)−1. (6)
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Setting C = |H(r − 1, d)|v(H) and putting (5) and (6) together, we get

E

 e(G′)

2r−1nr−1−ε
− 1− 1

C

∑
J∈H(r−1,d)

|B(J,G′)|
nv(J)−1

 ≥ 0.

Consequently, there is at least one vertex in Xr whose link G′ has the following

properties:

(1) e(G′) ≥ 2r−1nr−1−ε, and

(2) for every J ∈ H(r − 1, d), we have

|B(J,G′)| ≤ Cnv(J)−1e(G′)

2r−1nr−1−ε
≤ 21−rCnv(J)−1+ε ≤ nv(J)−1/2;

here, we use the facts that e(G′) ≤ nr−1, that ε < 1/2, and that n is sufficiently

large.

The claim follows by taking Gr−1 to be a link G′ with the above properties. □

Let Gr−1 be the (r − 1)-graph promised by Claim 4.2 and set δr−1 = 1/2. We know

that

(1) e(Gr−1) ≥ 2r−1nr−1−ε, and

(2) for each J ∈ H(r − 1, d), the set B(J,Gr−1) of copies of J in Gr−1 contained in

fewer than v(H) distinct links in G satisfies |B(J,Gr−1)| ≤ nv(J)−δr−1 .

For r − 2 ≥ i ≥ 1, having constructed Gi+1 with

(1) e(Gi+1) ≥ 2i+1ni+1−ε along with,

(2) for each J ∈ H(i+ 1, d), a set B(J,Gi+1) of at most nv(J)−δi+1 bad copies of J

in Gi+1,

we apply Lemma 4.1 to Gi+1 to construct Gi such that

(1) e(Gi) ≥ 2ini−ε, and

(2) for each J ∈ H(i, d), the set B(J,Gi) of copies of J in Gi that are βi-bad with

respect to Gi+1 satisfies

|B(J,Gi)| ≤ nv(J)−δi ,

where βi = δi+1/((i+ 1)d+ 1) and δi = βi − 2ε.

Since δr−1 = 1/2 and δi = δi+1/((i+ 1)d+ 1) − 2ε ≥ δi+1/(rd+ 1) − 2ε for each

r − 2 ≥ i ≥ 1, we get that

δ1 ≥
1

2

(
1

rd+ 1

)r−2

− 2ε

(
1− (1/(rd+ 1))r−2

1− 1/(rd+ 1)

)
≥ 1

2

(
1

rd+ 1

)r−2

− 3ε > dε,

where the last inequality above uses the fact that ε ≤ (1/9d)(1/(rd + 1))r−2. Conse-

quently, we have
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(1) 1/2 = δr−1 ≥ δr−2 ≥ · · · ≥ δ1 > dε, and

(2) 1/2 ≥ βr−2 ≥ βr−3 ≥ · · · ≥ β1 > 0.

We are now ready for the second stage of the proof where we embed H into G.

First, we may assume that H has no isolated vertices, i.e., any vertices y for which

d(y,H) = 0; indeed, if H has isolated vertices, we may embed the rest of H into G

first, and then embed the isolated vertices into G arbitrarily provided n is sufficiently

large. By assuming H has no isolated vertices, we have Trr(H) = H and furthermore,

the link of any vertex in Trj(H) is nonempty for each 2 ≤ j ≤ r.

For 1 ≤ j ≤ r − 1, we shall sequentially construct injective maps ϕj : Yj → Xj in

such a way that

(1) each induced map Φj : Y1 ∪ Y2 ∪ · · · ∪ Yj → X1 ∪X2 ∪ · · · ∪Xj is an embedding

of Trj(H) into Gj, and

(2) for each nonempty subgraph J of Trj(H) with at most d edges, no copy of J in

the image of Φj is in B(J,Gj).

Observe that G1 is a 1-graph on X1, which is just a subset of X1, so v(G1) = e(G1),

and we have

m = v(G1) = e(G1) ≥ 2n1−ε.

We construct ϕ1 : Y1 → X1 in such a way that for every J ∈ H(1, d), no copy of J in

ϕ1(Tr1(H)) is in B(J,G1), i.e., is β1-bad with respect to G2. By construction, we have

|B(J,G1)| ≤ nv(J)−δ1 for each J ∈ H(1, d). Note that H(1, d) consists of d elements,

namely one set of cardinality t for each 1 ≤ t ≤ d, and also note that the number of

β1-bad t-sets in G1 is o(mt) for each 1 ≤ t ≤ d since δ1/t ≥ δ1/d > ε. It follows that

the number of problematic d-sets in G1, namely those containing a β1-bad t-set for

some 1 ≤ t ≤ d, is o(md), so we may choose a subset of X1 of size |Y1| which does not

contain any such problematic d-set provided n is sufficiently large, as can be seen, for

example, by applying a bound of de Caen [4] to the d-graph of all problematic d-sets.

In other words, we can choose a subset S of X1 of size |Y1| in such a way that for each

J ∈ H(1, d), no copy of J in B(J,G1) is contained in S; we take ϕ1 to be any injective

map from Y1 to S.

For 2 ≤ j ≤ r − 2, suppose that we have constructed injective maps ϕ1, ϕ2, . . . , ϕj−1

as above. We now extend Φj−1 to Φj by defining a suitable map ϕj : Yj → Xj randomly

as follows.

Since H is d-trace-bounded, each vertex y ∈ Yj has degree at most d in Trj(H).

Given a vertex y ∈ Yj, let L(y) = L(y,Trj(H)) be the link of y in Trj(H), so that

L(y) is a nonempty subgraph of Trj−1(H) with at most d edges. Inductively, we know

that Φj−1(L(y)) is a subgraph of Gj−1. We choose ϕj(y) uniformly at random from the

common neighbourhood Γ(Φj−1(L(y)), Gj) ⊂ Xj. By choosing, for each y ∈ Yj, the

image ϕj(y) of y from the set Γ(Φj−1(L(y)), Gj), we have ensured that the induced map
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Φj is a homomorphism from Trj(H) into Gj. We claim that with positive probability,

both of the following events hold:

E1 the induced map Φj is injective, i.e., is an embedding of Trj(H) into Gj, and

E2 for each nonempty subgraph J of Trj(H) with at most d edges, no copy of J in

the image of Φj is in B(J,Gj).

To deal with E1, note that for any vertex y ∈ Yj , the (j−1)-graph L(y) = L(y,Trj(H))

is nonempty and has at most d edges, and inductively, its image Φj−1(L(y)) is not in

B(L(y), Gj−1), namely the set of copies of L(y) in Gj−1 that are βj−1-bad with respect

to Gj, so it follows that

|Γ(L(y), Gj)| ≥ n1−βj−1 . (7)

Since βj−1 ≤ 1/2, the probability that ϕj , and therefore Φj , fails to be injective is easily

seen to be o(1), whence we certainly have P(E1) > 1/2 provided n is sufficiently large.

To address E2, we argue as follows. Let J be a nonempty subgraph of Trj(H) with at

most d edges, and let L = Trj−1(J). The probability of the event that Φj(J) ∈ B(J,Gj)

may be bounded above as follows. By the bound in (7), the number of choices for ϕj on

V (J) \ V (L) is at least (n1−βj−1)v(J)−v(L). On the other hand, since L is nonempty with

at most d edges, we know inductively that Φj−1(L) /∈ B(L,Gj−1). Therefore, Φj−1(L)

is not βj−1-bad with respect to Gj, from which it follows that Φj−1(L) is contained in

at most

n−2βj−1
(
n1−βj−1

)v(J)−v(L)−1|Γ(Φj−1(L), Gj)|

copies of J in Gj that belong to B(J,Gj). Hence, the probability of Φj(J) ∈ B(J,Gj)

is at most

n−2βj−1
(
n1−βj−1

)v(J)−v(L)−1|Γ(Φj−1(L), Gj)|
(n1−βj−1)

v(J)−v(L)
≤ n1−2βj−1

n1−βj−1
= n−βj−1 = o(1),

where we use the facts that |Γ(Φj−1(L), Gj)| ≤ n and that βj−1 > 0. Summing this

estimate over the O(1) choices of nonempty subgraphs J of Trj(H) with e(J) ≤ d shows

that P(E2) > 1/2 provided n is sufficiently large as well, which together with the fact

that P(E1) > 1/2 establishes the existence of an appropriate ϕj.

Now, we finish by extending Φr−1 to an embedding Φr : Y1 ∪ Y2 ∪ . . . Yr → X1 ∪
X2 ∪ . . . Xr of H into G by defining a final injective map ϕr : Yr → Xr. Recall

that for each J ∈ Trr−1(H), the set B(J,Gr−1) consists of those copies J ′ of J in

Gr−1 for which the number of vertices x ∈ Xr whose link L(x,G) contains J ′ as

a subgraph is at most v(H). We may now define ϕr by greedily picking, for each

y ∈ Yr, a distinct vertex ϕr(y) ∈ Γ(Φr−1(L(y,H)), G) ⊂ Xr; this is always possible

since Φr−1(L(y,H)) /∈ B(L(y,H), Gr−1). It follows that Φr(H) is a copy of H in G,

completing the proof. □
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5. Conclusion

A number of open problems remain, and we conclude by highlighting those that we

think are particularly deserving of attention.

With regard to homeomorphs, the outstanding problem is to determine the optimal

values of the exponents λk in Theorem 1.2 for each k ≥ 2. As mentioned earlier, even the

optimal value of λ2 is not known, though there are good reasons to expect it to be 1/2.

In higher dimensions, we are only able to speculate: could it be that for each k ≥ 2, the

optimal value of λk is precisely λ(Sk), where Sk is (any triangulation of) the k-sphere?

This is indeed the underlying mechanism behind the prediction of the value of 1/2 in

dimension two, but we do not know, nor do we have a guess for, the value of λ(Sk) for

any k ≥ 3; for example, a combination of a random construction and a generalisation

of the argument of the Brown, Erdős and Sós [2] shows that 1/4 ≤ λ(S3) ≤ 1/3, but

we have no reason to think either bound reflects the truth.

With regard to trace-bounded hypergraphs, the main problem again is to determine

the optimal values of the exponents αr,d in Theorem 1.3 for each r ≥ 3 and d ∈ N.
As remarked upon earlier, we know that the optimal value of α2,d is 1/d, but even

formulating a natural guess for the optimal value of αr,d when r ≥ 3, let alone proving

it, would be of some interest.
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