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Abstract. A family of sets is said to be symmetric if its automorphism group is

transitive, and 3-wise intersecting if any three sets in the family have nonempty

intersection. Frankl conjectured in 1981 that if A is a symmetric 3-wise intersecting

family of subsets of {1, 2, . . . , n}, then |A| = o(2n). Here, we give a short proof of

Frankl’s conjecture using a sharp threshold result of Friedgut and Kalai.

1. Introduction

A family of sets is said to be intersecting if any two sets in the family have nonempty

intersection. One of the best-known theorems in extremal combinatorics is the Erdős–

Ko–Rado (EKR) theorem [5], which bounds the size of an intersecting family of sets of

a fixed size.

Theorem 1.1. Let k, n ∈ N with k < n/2. If A is an intersecting family of k-element

subsets of {1, 2, . . . , n}, then |A| ≤
(
n−1
k−1

)
, with equality holding if and only if A consists

of all the k-sets that contain some fixed element i ∈ {1, 2, . . . , n}

Over the last fifty years, many results have been obtained which bound the sizes of

families of sets, under various intersection requirements on the sets in the family. Such

results are often called EKR-type results; we refer the reader to the surveys [4, 8] for

more background and history on EKR-type results.

Often in EKR-type results, the extremal families are highly asymmetric; this is

the case in the Erdős–Ko–Rado theorem itself, and in the Ahlswede–Khachatrian

theorem [1], for example. It is therefore natural to ask what happens to the maximum

possible size of an intersecting family when one imposes a ‘symmetry’ requirement on

the family.

To make the idea of a ‘symmetric’ family precise, we need a few definitions. For

a positive integer n ∈ N, we denote the set {1, 2, . . . , n} by [n]. We write Sn for the

symmetric group on [n] and Pn for the power-set of [n]. For a permutation σ ∈ Sn

and a set x ⊂ [n], we write σ(x) for the image of x under σ, and if A ⊂ Pn, we write
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σ(A) = {σ(x) : x ∈ A}. We define the automorphism group of a family A ⊂ Pn by

Aut(A) = {σ ∈ Sn : σ(A) = A}.

We say that A ⊂ Pn is symmetric if Aut(A) is a transitive subgroup of Sn, i.e., if for

all i, j ∈ [n], there exists a permutation σ ∈ Aut(A) such that σ(i) = j.

For an integer r ≥ 2, a family of sets A is said to be r-wise intersecting if any

r of the sets in A have nonempty intersection, i.e., if x1 ∩ x2 ∩ · · · ∩ xr ≠ ∅ for all

x1, x2, . . . , xr ∈ A. Clearly, an r-wise intersecting family is also t-wise intersecting

for all 2 ≤ t ≤ r. Since an r-wise intersecting family A ⊂ Pn is also intersecting, it

cannot contain both a set and its complement, so we clearly have |A| ≤ 2n−1. This

is best-possible, since the family A = {x ⊂ [n] : 1 ∈ x} is r-wise intersecting for any

r ≥ 2. However, this family is very far from being symmetric. It is therefore natural

to ask, for each r ≥ 2, how large a symmetric r-wise intersecting family of subsets of

[n] can be. When r = 2 and n is odd, the family {x ⊂ [n] : |x| > n/2} is a symmetric

intersecting family of (the maximum possible) size 2n−1. However, an old conjecture

of Frankl [6] asserts that symmetric r-wise intersecting families must be much smaller

when r ≥ 3. More precisely, Frankl conjectured that if A ⊂ Pn is a symmetric 3-wise

intersecting family, then |A| = o(2n). Our purpose in this paper is to give a short proof

of Frankl’s conjecture; in fact, we prove the following.

Theorem 1.2. There exists a universal constant c > 0 such that the following holds

for all n ∈ N. If A ⊂ Pn is a symmetric 3-wise intersecting family, then |A| ≤ 2n/nc.

Our proof relies on certain properties of the p-biased measure on Pn as well as a

result of Friedgut and Kalai [7] on the thresholds of symmetric increasing families. We

describe these tools and then give the proof of Theorem 1.2 in Section 2.

An obvious example of a symmetric r-wise intersecting subfamily of Pn is the family

{x ⊂ [n] : |x| > (r − 1)n/r}, the size of which is an exponentially small fraction of 2n

for any r ≥ 3. However, for each r ≥ 3, it is possible to construct much larger examples.

We give such a construction, and state some open problems, in Section 3.

2. Proof of the main result

Before proving Theorem 1.2, we briefly describe the notions and tools we will need

for the proof.

For 0 ≤ p ≤ 1, we write µp for the p-biased measure on Pn, defined by

µp({x}) = p|x|(1− p)n−|x|

for all x ⊂ [n]. Note that µ1/2 is just the uniform measure, since µ1/2(A) = |A|/2n for

any A ⊂ Pn.
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We say that two families A,B ⊂ Pn are cross-intersecting if x ∩ y ̸= ∅ for all x ∈ A
and y ∈ B. We need the following generalisation of the simple fact that an intersecting

subfamily of Pn contains at most 2n−1 sets.

Lemma 2.1. If A,B ⊂ Pn are cross-intersecting families, then

µp(A) + µ1−p(B) ≤ 1

for any 0 ≤ p ≤ 1.

Proof. Since A and B are cross-intersecting, it is clear that A ⊂ Pn \ B̃, where B̃ =

{[n] \ x : x ∈ B}. Therefore,

µp(A) ≤ µp(Pn \ B̃) = 1− µp(B̃) = 1− µ1−p(B). □

For a family A ⊂ Pn, we write I(A) = {x∩y : x, y ∈ A} for the family of all possible

intersections of pairs of sets from A. We require the following easy lemma that relates

the (1/4)-biased measure of I(A) to the (1/2)-biased measure of A.

Lemma 2.2. For any A ⊂ Pn, if µ1/2(A) ≥ δ, then µ1/4(I(A)) ≥ δ2.

Proof. Let F be the map from Pn × Pn to Pn defined by F (x, y) = x ∩ y. For

j ∈ {0, 1, . . . , n}, write [n](j) for the family of all j-element subsets of the set [n] and

note that a fixed set z ∈ [n](j) is the image under F of exactly 3n−j ordered pairs

(x, y) ∈ Pn × Pn. Consequently, writing Nj = |F (A×A) ∩ [n](j)|, we have

n∑
j=0

3n−jNj ≥ |A|2 ≥ δ222n.

It follows that

µ1/4(I(A)) = µ1/4(F (A×A)) =
n∑

j=0

(
1

4

)j(
3

4

)n−j

Nj

= 2−2n

n∑
j=0

3n−jNj ≥ δ2. □

We say that a family A ⊂ Pn is increasing if it is closed under taking supersets,

i.e., if x ∈ A and x ⊂ y, then y ∈ A. It is easy to see that if A ⊂ Pn is increasing,

then µp(A) is a monotone non-decreasing function of p. Our main tool is the following

well-known ‘sharp threshold’ result of Friedgut and Kalai from [7], proved using Russo’s

Lemma [9] and the so-called ‘BKKKL’ theorem of Bourgain, Kahn, Kalai, Katznelson

and Linial [2] on the influences of Boolean functions on product spaces.
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Theorem 2.3. There exists a universal constant c0 > 0 such that the following holds

for all n ∈ N. Let 0 < p, ε < 1 and let A ⊂ Pn be a symmetric increasing family. If

µp(A) > ε, then µq(A) > 1− ε, where

q = min

{
1, p+ c0

(
log(1/2ε)

log n

)}
. □

We are now ready to prove our result.

Proof of Theorem 1.2. Let A ⊂ Pn be a symmetric 3-wise intersecting family. Observe

that the family {y : x ⊂ y for some x ∈ A} is also symmetric and 3-wise intersecting.

Therefore, by adding sets to A if necessary, we may assume that A is increasing.

Let µ1/2(A) = δ and note that δ ≤ 1/2 since A is intersecting. We may also assume

that δ > 0 since the result is trivial if A is empty.

Since µ1/2(A) = δ > δ2, we may apply Theorem 2.3 with p = 1/2 and ε = δ2 to

conclude that µq(A) > 1− δ2, where

q = min

{
1,

1

2
+ c0

(
log(1/2δ2)

log n

)}
.

By Lemma 2.2, we also have µ1/4(I(A)) ≥ δ2. Since A is 3-wise intersecting, it follows

that A and I(A) are cross-intersecting. Hence, by Lemma 2.1, we have µ3/4(A) ≤ 1−δ2.

Now, as µq(A) > 1 − δ2 and µ3/4(A) ≤ 1 − δ2, it follows from the fact that A is

increasing that q > 3/4. Consequently, we have

c0

(
log(1/2δ2)

log n

)
>

1

4
.

It is now easy to check that δ < n−1/(8c0), proving the theorem. □

3. Conclusion

We suspect that Theorem 1.2 is far from best-possible. Cameron, Frankl and

Kantor [3] showed that a symmetric 4-wise intersecting subfamily of Pn has size at most

2n exp(−Cn1/3), where C = (log 2/2)1/3. We believe a similar result should also hold

for symmetric 3-wise intersecting families and conjecture the following strengthening of

Theorem 1.2.

Conjecture 3.1. If A ⊂ Pn is a symmetric 3-wise intersecting family, then

log2 |A| ≤ n− cnδ,

where c, δ > 0 are universal constants.

This would be best-possible up to the values of c and δ, as evidenced by the following

construction communicated to us by Oliver Riordan. Let k be an odd integer and let
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n = k2, partition [n] into k ‘blocks’ B1, B2, . . . , Bk each of size k, and take A ⊂ Pn to

be the family of all those subsets of [n] that contain more than half the elements in

each block and all the elements in some block; in other words,

A = {x ⊂ [n] : (∀ i ∈ [k] : |x ∩Bi| > k/2) ∧ (∃ j ∈ [k] : Bj ⊂ x)}.

It is easy to see that A is symmetric and 3-wise intersecting, and that

log2 |A| = n− 2n1/2 + o
(
n1/2

)
.

It is straightforward to generalise the construction described above to show that, for

any r ≥ 3, there exists a symmetric r-wise intersecting family A ⊂ Pn with

log2 |A| = n− (r − 1)n(r−2)/(r−1) + o
(
n(r−1)/r

)
,

for infinitely many n ∈ N. Let n = kr−1 for some odd integer k. We start by considering

a k-ary tree T of depth r−1, so that T has ki nodes at level i for each i ∈ {0, 1, . . . , r−1}
and (kr − 1)/(k − 1) nodes in total; a node at level r − 1 is called a leaf, and the set of

leaves of T is denoted by L(T ). Now, identify the ground-set [n] with the set of leaves

L(T ) and take A to be the family of sets x ⊂ L(T ) such that

(1) x contains more than half the leaf-children of each node at level r − 2, and

(2) for each l ∈ {0, 1, 2, . . . , r− 3} and for each node v at level l, there exists a child

w of v such that x contains all the leaf-descendants of w.

It is easy to see that log2 |A| = n − (r − 1)n(r−2)/(r−1) + o(n(r−1)/r), and that A is

symmetric and r-wise intersecting.

Let us also mention an elegant projective-geometric construction related to us by

Sean Eberhard (that produces slightly smaller families). Let q be a prime power, and

let Pr(Fq) denote the r-dimensional projective space over the field Fq. Now, take A to

be the family of all subsets of Pr(Fq) that contain an (r − 1)-dimensional projective

subspace. Clearly, A is symmetric and r-wise intersecting. The number of (r − 1)-

dimensional projective subspaces of Pr(Fq) is (q
r+1− 1)/(q− 1), and each such subspace

has cardinality (qr − 1)/(q − 1). Hence, writing n = |Pr(Fq)| = (qr+1 − 1)/(q − 1), we

have

2n−(qr−1)/(q−1) ≤ |A| ≤
(
qr+1 − 1

q − 1

)
2n−(qr−1)/(q−1),

so log2 |A| = n− n(r−1)/r + o(n(r−1)/r).

Finally, it would be very interesting to determine more precisely, for each r ≥ 3, the

asymptotic behaviour of the function

fr(n) = max{|A| : A ⊂ Pn such that A is symmetric and r-wise intersecting}.
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