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Abstract. We prove a topological extension of Dirac’s theorem suggested by Gowers

in 2005: for any connected, closed surface S, we show that any two-dimensional

simplicial complex on n vertices in which each pair of vertices belongs to at least

n/3 + o(n) facets contains a homeomorph of S spanning all the vertices. This result

is asymptotically sharp, and implies in particular that any 3-uniform hypergraph

on n vertices with minimum codegree exceeding n/3 + o(n) contains a spanning

triangulation of the sphere.

1. Introduction

In this paper, we extend the classical graph-theoretic result of Dirac [4] on spanning

cycles to the setting of simplicial 2-complexes, or equivalently, the setting of 3-uniform

hypergraphs (or 3-graphs for short). Dirac’s theorem determines the best-possible mini-

mum degree condition which guarantees that an n-vertex graph contains a Hamiltonian

cycle, i.e., a cycle spanning the entire vertex set of the graph. A natural generalisation

is to treat a ‘spanning cycle in a 3-graph’ as a triangulation of the 2-sphere spanning the

vertex set, and here we determine asymptotically the best-possible minimum codegree

condition which guarantees the existence of such an object in an n-vertex 3-graph.

Dirac’s theorem is of central importance in graph theory, and a number of different

extensions to 3-graphs have previously been shown; see [15] for a broad overview. All

these results — see [1, 10, 22, 23], for example — treat a ‘spanning cycle in a 3-graph’

as a rigid pattern of interlocking edges with respect to some cyclic ordering of the

underlying vertex set, an inherently one-dimensional notion. Here, we shall take a

topological point of view, and consider a two-dimensional extension to 3-graphs.

To motivate our point of view, already implicit in the work of Brown, Erdős and

Sós [2], we start by observing that a Hamiltonian cycle in a graph G is a set of edges of

G such that the simplicial complex induced by these edges is homeomorphic to S1, the

one-dimensional sphere, where, additionally, the 0-skeleton of this complex is the entire

vertex set of G. By analogy, we define a copy of the sphere in a 3-graph H to be a set

of edges of H such that the simplicial complex induced by these edges is homeomorphic
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to S2, the two-dimensional sphere, and we say that a copy of the sphere in a 3-graph H
is spanning or Hamiltonian if the 0-skeleton of the associated simplicial complex is the

entire vertex set of H. The following natural question, in the spirit of Dirac’s theorem,

was raised by Gowers [7].

Problem 1.1. What degree conditions guarantee the existence of a spanning copy of

the sphere in a 3-graph?

Equivalently, Problem 1.1 asks for degree conditions that guarantee the existence of a

homeomorphic copy of S2 containing all the vertices in a simplicial 2-complex. We will,

however, adhere to the language of hypergraphs in what follows, as this is the language

in which most related results have been formulated.

With regards to the origins of Problem 1.1, the question would appear to have first

been raised by Gowers at a seminar given by Kühn [13] on one of the more traditional

notions of a ‘cycle in a 3-graph’ mentioned earlier. However, being a rather natural

question, it has also been asked independently by other people subsequently (Conlon [3],

for example), so it would perhaps be fair to say that the problem should more or less

be considered folklore at this juncture. While our discussions with experts in the area

suggest that Problem 1.1 has attracted a reasonable amount of attention, with the

exception of an unpublished partial result of Conlon, Ellis and Keevash [3], almost

nothing seems to be known about it.

Before we turn to answering the above question, let us place the problem in a more

general context. While the circle S1 is, up to homeomorphism, the unique connected,

closed 1-manifold, this is no longer the case in two dimensions. Hence, one can ask

a more general question by replacing the sphere with an arbitrary connected, closed

2-manifold (or surface for short). The following more general question fits into the

‘higher-dimensional combinatorics’ programme of Linial [18, 17, 19], and was also

suggested by Gowers [8].

Problem 1.2. Given a surface S, what degree conditions guarantee the existence of a

spanning copy of S in a 3-graph?

Of course, by the classification theorem (see [24, 26], for example), every surface

is homeomorphic to either the sphere S2, a connected sum of finitely many tori, or

a connected sum of finitely many real projective planes. Also, to be clear, a copy of

a surface S in a 3-graph H is, as before, a set of edges of H such that the simplicial

complex induced by these edges is homeomorphic to S, and we say that a copy of S in

a 3-graph H is spanning if the 0-skeleton of the associated simplicial complex is the

entire vertex set of H.

Finally, instead of asking for a spanning copy of a specific surface, one might settle for

a spanning copy of any surface whatsoever. In other words, we could ask the following

weaker question.
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Figure 1. An extremal construction.

Problem 1.3. What degree conditions guarantee the existence of a spanning copy of

some surface in a 3-graph?

In this paper, we shall prove a result that gives an asymptotically sharp solution to

Problems 1.1, 1.2 and 1.3. Recall that the codegree of a pair of vertices in a 3-graph H
is the number of edges of H containing the vertex pair. Writing δ2(H) for the minimum

codegree of a 3-graph H, our main result says the following.

Theorem 1.4. For every surface S and every µ > 0, the following holds for all

sufficiently large n ∈ N: any 3-graph H on n vertices with δ2(H) ≥ n/3 + µn contains

a spanning copy of S. Moreover, for each n ∈ N, there exists a 3-graph H on n vertices

with δ2(H) = ⌊n/3⌋ − 1 such that there are at most 2⌈n/3⌉ vertices in the 0-skeleton of

a copy of any surface in H.

The second half of Theorem 1.4 follows from the simple construction shown in

Figure 1. It will be helpful to have some notation to discuss this construction: we

define a relation on the edge set of a 3-graph H by saying that that two edges of H
touch if they intersect in two vertices, and we call an equivalence class of edges in the

transitive closure of this relation a tight component of H. Observe that the set of edges

constituting a copy of a surface in a 3-graph H must belong to a single tight component

of H since all the surfaces under consideration are without boundary. Now, given n ∈ N,
let X, Y and Z be three disjoint sets of vertices, with sizes as equal as possible, such

that |X|+ |Y |+ |Z| = n and consider, as in Figure 1, the 3-graph H on the vertex set

X ∪ Y ∪ Z whose edge set consists of all triples either intersecting X in two vertices

and Y in one, intersecting Y in two vertices and Z in one, or intersecting Z in two

vertices and X in one. It is easy to see that δ2(H) = ⌊n/3⌋ − 1. Furthermore, it is clear

that the edge set of H consists of three tight components, with each tight component

spanning two of the three vertex classes X, Y and Z. Thus, there are at most 2⌈n/3⌉
vertices in the 0-skeleton of a copy of any surface in H.

It is left then to prove the first half of Theorem 1.4. One main obstacle to doing this,

in constrast to Dirac’s theorem, is that, potentially, many of the edges inherently cannot

contribute to a spanning copy of any surface. The construction above shows that for

each n ∈ N, there exists a 3-graph H with δ2(H) = ⌊n/3⌋ − 1 which does not contain
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a spanning tight component. As we shall see (in Proposition 3.1), a 3-graph H on n

vertices whose minimum codegree exceeds n/3 contains a spanning tight component.

However, it may additionally have another non-spanning tight component whose edges

are of no use whatsoever when trying to build a spanning copy of any surface. This

already presents a challenge, but the situation is in fact more intricate: indeed, as we

shall see (in Conjecture 5.3 and the discussion preceding it), even assuming that H has

a unique spanning tight component does not make the problem at hand significantly

easier.

It is perhaps worth mentioning that the construction depicted in Figure 1 is not

uniquely extremal, and indeed, there exist other non-isomorphic families of constructions

that demonstrate that Theorem 1.4 is tight. Given a surface S with Euler characteristic

χ ∈ Z, and any sufficiently large natural number n ∈ N, we construct a 3-graph on

n vertices with no spanning copy of S as follows. Let X and Y be two disjoint sets

of vertices, with |X|+ |Y | = n and |X| the least integer exceeding (2n− 2χ)/3, and

let H be the 3-graph on X ∪ Y whose edge set consists of all triples meeting X in an

odd number of vertices. It is clear that δ2(H) = |Y | − 1 = ⌈(n + 2χ)/3⌉ − 2, and it

is easily verified that this construction is not isomorphic to the one discussed earlier.

Now, suppose for a contradiction that there is a spanning copy of S in H. This copy of

S cannot contain any triple contained entirely in X since these edges all lie in a single

tight component that spans X but not Y . Next, view each edge of H in this copy of S

as a facet of a triangulation of S and count, for each facet, the number of vertices of X

on its boundary. Each facet contains exactly one vertex in X, so this quantity is equal

to the number of facets, which by Euler’s formula, is 2n− 2χ. On the other hand, each

vertex in X is on the boundary of at least three facets since S has no boundary, so this

quantity is at least 3|X|. We conclude that 2n− 2χ ≥ 3|X|, which is a contradiction.

A few comments about results in the vicinity of Theorem 1.4 are also in order. Ques-

tions in the spirit of Problem 1.1 have previously been asked for graphs: Kühn, Osthus

and Taraz [16] proved a Dirac-type theorem for finding spanning planar triangulations

in graphs; applying Theorem 1.4 to the 3-graph of all the triangles in a graph recovers

their result (a sharper version of which is however obtained in [14]). In the probabilistic

setting, it is natural to ask when a spanning copy of the sphere is likely to appear in the

binomial random 3-graph: Luria and Tessler [20] recently established a sharp threshold

result for this problem. Finally, it has also been brought to our attention that Conlon,

Ellis and Keevash [3] earlier proved (in unpublished work, as previously mentioned) a

weaker statement in the direction of Theorem 1.4, showing that any 3-graph H on n

vertices with δ2(H) ≥ 2n/3 + o(n) contains a spanning copy of the sphere.

This paper is organised as follows. We establish some notation and collect together

the various results required for the proof of our main result in Section 2. We give a

short sketch of the proof of Theorem 1.4 highlighting the main obstacles and how we
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circumvent them in Section 3; the proof proper follows in Section 4. Finally, we conclude

by discussing some open problems and directions for further research in Section 5.

2. Preliminaries

For n ∈ N, let [n] = {1, 2, . . . , n}. For a set X and r ∈ N, we write X(r) for the

family of r-element subsets of X. In this language, an r-graph G is a pair (V,E) of

finite sets with E ⊂ V (r). Here, we shall only be concerned with 2-graphs and 3-graphs;

as usual, we refer to 2-graphs as graphs.

Let G = (V,E) be a graph. For a vertex x ∈ V (G), its neighbourhood NG(x) is the

set of vertices adjacent to x, and its degree dG(x) is the size of NG(x). The minimum

degree δ(G) of G is

δ(G) = min{dG(x) : x ∈ V (G)}.
For any two sets of vertices X, Y ⊂ V (G), we write EG(X, Y ) for the set of edges with

one endpoint in X and one endpoint in Y .

Next, let H = (V,E) be a 3-graph. For a pair of distinct vertices x, y ∈ V (H),

we define their neighbourhood NH(x, y) to be the set of vertices z ∈ V (H) such that

xyz ∈ E(H), and we define the codegree dH(x, y) of x and y to be size of NH(x, y). The

minimum codegree δ2(H) of H is

δ2(H) = min{dH(x, y) : x, y ∈ V (H) and x ̸= y}.

For any vertex v ∈ V (H), we define the link graph LH(v) of v to be the graph on

V (H) \ {v} where two vertices x and y are joined with an edge if v ∈ NH(x, y). Finally,

as mentioned earlier, we define a relation on the edge set of a 3-graph H by saying that

that two edges of H touch if they intersect in two vertices, and we call an equivalence

class of edges in the transitive closure of this relation a tight component of H.

We will use the following classical result of Erdős [5] generalising an old result of

Kövari, Sós and Turán [12]. Recall that an r-graph G is degenerate if there exists a

colouring of V (G) with r colours such that each edge of G meets each of the r colour

classes.

Theorem 2.1. For each degenerate r-graph G, there exists c > 0 such that every r-graph

H on n vertices with |E(H)| ≥ nr−c contains a copy of G as a subgraph. □

In our proofs, we shall require the conclusion of Theorem 2.1 for some specific

degenerate graphs and 3-graphs that we now define. For k ∈ N, we denote a cycle of

length k by Ck; recall that if k is even, then the k-cycle Ck is degenerate. Next, we

define two degenerate 3-graphs as in Figure 2, namely a 3-graph T9 on the vertex set [9]

and a 3-graph P12 on the vertex set [12]. It is clear that the simplicial complex induced

by T9 is homeomorphic to the two-dimensional torus. It may also be verified that the

simplicial complex induced by P12 is homeomorphic to the real projective plane; indeed,
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Figure 2. The edge sets of T9 and P12 consist of all the triangles in the

respective figures.

it is not hard to see that P12 is obtained from a simple modification of the standard

6-point triangulation of the real projective plane.

We will also use Szemerédi’s regularity lemma [25]; to state the lemma, we need

some more notation. Given a graph G, and two disjoint nonempty sets of vertices

X, Y ⊂ V (G), we define the density of the pair (X, Y ) by

dG(X, Y ) =
|EG(X, Y )|
|X||Y |

,

and additionally, for ε > 0, we say that the pair (X, Y ) is ε-regular if we have

|dG(A,B)− dG(X, Y )| ≤ ε for all A ⊂ X and B ⊂ Y with |A| ≥ ε|X| and |B| ≥ ε|B|.
We say that a partition V0 ∪ V1 ∪ · · · ∪ Vk of the vertex set of a graph G is an ε-regular

partition if

(1) |V0| ≤ ε|V (G)|,
(2) |V1| = |V2| = · · · = |Vk|, and
(3) all but at most εk2 pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

In this language, the regularity lemma may be phrased as follows.

Theorem 2.2. For every ε > 0 and each t ∈ N, there exists an integer T such that

every graph G on at least T vertices admits an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vk of

its vertex set with t ≤ k ≤ T . □

It will also be convenient to have a few consequences of the regularity lemma. The

following proposition follows from the fact that the degrees of vertices in regular pairs

are typically well-behaved.
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Proposition 2.3. For every α > 0, there exists β > 0 such that the following holds

for all n ∈ N. In each bipartite graph G between vertex classes X and Y with αn ≤
|X|, |Y | ≤ n and |E(G)| ≥ αn2, there exists a subset U ⊂ X with |U | ≥ βn such that for

each x ∈ U , there exists a subset Ux ⊂ U of size at least 3|U |/4 with |NG(x)∩NG(y)| ≥
βn for each y ∈ Ux. □

We shall additionally use the following proposition establishing ‘supersaturation’ for

4-cycles in dense graphs, a special case of the results of Erdős and Simonovits [6].

Proposition 2.4. For every α > 0, there exists β > 0 such that every n-vertex graph

G with |E(G)| ≥ αn2 contains at least βn4 copies of the 4-cycle C4. □

We shall use the multiplicative Chernoff bound; see [9], for instance.

Proposition 2.5. Let X be a binomial random variable with mean µ. Then for any

fixed δ > 0, we have

P(X > (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ

and

P(X < (1− δ)µ) <

(
e−δ

(1− δ)1−δ

)µ

. □

For completeness, we also recall the classification theorem of surfaces; see [24, 26],

for example.

Theorem 2.6. Every surface is homeomorphic to either the sphere S2, a connected sum

of finitely many tori, or a connected sum of finitely many real projective planes. □

Finally, we need some notation for dealing with hierarchies of constants in our proofs.

We shall say that a statement holds ‘for δ ≪ ε’ if for any fixed ε ∈ (0, 1], there exists

δε ∈ (0, 1] such that the statement in question holds for all δ ∈ (0, δε]. Hierarchies with

more constants are defined analogously and are to be read from the right to the left.

To avoid clutter, we shall frequently drop the subscript specifying the graph or 3-graph

in the notation above when the graph or 3-graph in question is clear, abbreviating, for

example, EG(X, Y ) by E(X, Y ) or LH(v) by L(v). Additionally, we systematically omit

floors and ceilings whenever they are not crucial.

3. Overview of our strategy

Let us briefly discuss our approach to establishing Theorem 1.4. To begin with, we

discuss finding spanning copies of the sphere since this captures most of the difficulties

involved. We shall then say a few words about how we find spanning copies of a general

surface.
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Figure 3. A double pyramid with apexes x and y.

It is not hard to see that a 3-graph H on n vertices with δ2(H) ≳ 3n/4 contains a

spanning copy of the sphere. This follows from Dirac’s theorem; indeed, fix a pair of

vertices of H, say x and y, and consider a graph G on V (H) \ {x, y} where two vertices

u and v are joined if x, y ∈ NH(u, v), i.e., if uvx, uvy ∈ E(H). It is easy to verify that

δ(G) ≳ n/2, so it follows from Dirac’s theorem that G contains a Hamiltonian cycle.

Of course, a Hamiltonian cycle in G translates back to a ‘spanning double pyramid’ in

H (see Figure 3), and this is of course a spanning copy of the sphere in H.

While the above argument is not particularly efficient, it does contain the following

useful idea: it is easy to find reasonably large spheres in any dense 3-graph. Indeed, if

we repeat the argument above in a dense 3-graph H, then the auxiliary graph Gx,y that

we construct will be dense for most pairs of vertices x, y ∈ V (H); consequently, Gx,y

will typically contain long cycles, and these translate back into large double pyramids in

H. This idea may be used to show that a 3-graph H on n vertices with δ2(H) ≳ 2n/3

contains a spanning copy of the sphere: in such a graph H, every edge is in a tetrahedron,

and we may use this to build ‘absorbing structures’ in the spirit of Rödl, Ruciński

and Szemerédi [22] that may be used to combine a small number of large spheres that

almost span the vertex set into a single sphere spanning the vertex set.

Approaches based on the ideas discussed above however reach a natural barrier at

the threshold of n/2. Indeed, above this threshold, all the edges of a 3-graph under

consideration necessarily belong to a single tight component, but this is no longer true

below this threshold, as shown by the following proposition.

Proposition 3.1. If H is a 3-graph on n vertices with δ2(H) > (n− 3)/2, then all the

edges of H belong to a single tight component. Moreover, for each n ∈ N, there exists a

3-graph H on n vertices with δ2(H) = ⌊(n− 3)/2⌋ whose edge set decomposes into two

tight components.
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Proof. First, let H be a 3-graph on [n] with δ2(H) > (n − 3)/2. Let us induce an

edge-colouring of the complete graph on [n] by setting the colour of an edge e of the

complete graph to be the tight component corresponding to all the edges of H containing

e; that this colouring is well-defined follows immediately from the definition of a tight

component. Now, observe that no two edges of the complete graph incident to the

same vertex can be coloured differently; indeed, if xy and xz constitute such a pair

of edges for some x, y, z ∈ [n], then it is clear that z /∈ NH(x, y), y /∈ NH(x, z) and

NH(x, y)∩NH(x, z) = ∅, which leads to an easy contradiction since δ2(H) > (n− 3)/2.

It follows instantly that this induced edge-colouring of the complete graph uses only one

colour since the complete graph is connected (and every edge is coloured). Therefore,

all the edges of H belong to a single tight component, proving the first part of the

claim.

Next, given n ∈ N, let X and Y be two disjoint sets of ⌊n/2⌋ and ⌈n/2⌉ vertices

respectively, and let H be the 3-graph on the vertex set X ∪ Y whose edge set consists

of all the triples meeting Y in an odd number of vertices. It is easy to see that

δ2(H) = ⌊(n− 3)/2⌋, and it is not hard to verify that the edge set of H decomposes

into two tight components, one consisting of all the triples meeting Y in three vertices

and the other consisting of all the triples meeting Y in one vertex. This construction

proves the second part of the claim. □

To get down to the threshold of n/3, we need to work somewhat harder. As remarked

earlier, it is clear that only those edges from a spanning tight component of a 3-graph

H are of any use in constructing a spanning copy of the sphere in H. An argument

similar to the one used to prove Proposition 3.1 shows that a 3-graph H on n vertices

whose minimum codegree exceeds n/3 contains a spanning tight component. However,

to prove Theorem 1.4, it will be necessary to say something more about the structure

of, and the interaction between, the tight components of a 3-graph H on n vertices

with δ2(H) ≳ n/3.

First, we shall demonstrate that at least one of the spanning tight components of such

a 3-graph has reasonably good ‘connectibility properties’; this will help us in forming

connected sums of smaller surfaces that we will build over the course of our proof. Next,

we shall show that it is possible to find a small number of spheres that almost span

the vertex set, while crucially ensuring that these spheres meet sufficiently many edges

with the good connectibility properties. Finally, we shall use the fact that the 3-graphs

T9 and P12, which respectively represent the torus and the real projective plane, are

degenerate to either add handles or crosscaps as needed.

In order to implement the above ideas, we shall rely on a number of techniques from

extremal and probabilistic combinatorics, including those of absorption, regularity and

supersaturation.

9



4. Proof of the main result

We shall divide the proof of Theorem 1.4 into stages, each addressing different aspects

of the strategy outlined in the previous section.

Let us point out two notational conventions that we adopt. Given a subgraph G of a

3-graph H, the subset of the vertex set V (H) spanned by G is denoted by V (G); in the

case where G consists of a single edge e ∈ E(H), we abuse notation slightly and write

V (e) for V (G). To avoid clutter, we will also talk about ‘spheres in a 3-graph’ when,

strictly speaking, we mean ‘copies of the sphere S2 in a 3-graph’, and similarly for the

torus and the real projective plane.

We shall make use of the following simple averaging lemma at several points.

Lemma 4.1. For any r ∈ N and γ ∈ (0, 1), the following holds for all sufficiently large

m ∈ N. For any finite set X , and any system X1, . . . , Xm of subsets of X satisfying
m∑
i=1

|Xi| ≥ γm|X |,

we may find a set K ⊂ [m] with |K| = r such that∣∣∣∣∣⋂
i∈K

Xi

∣∣∣∣∣ ≥ γr|X |/2.

Proof. Choose a random subset K ⊂ [m] of size r. For each x ∈ X , x belongs to

∩i∈KXi with probability
(
f(x)
r

)/(
m
r

)
, where f(x) is the number of indices i ∈ [m] such

that x ∈ Xi. By Jensen’s inequality, we have

E

(∣∣∣∣∣⋂
i∈K

Xi

∣∣∣∣∣
)

≥ |X |
(
γm

r

)(
m

r

)−1

provided that γm > r. It is now straightforward to prove that the claim holds for all

sufficiently large m ∈ N. □

4.1. Double pyramids in dense 3-graphs. Recall that a 3-graph is said to be

degenerate or 3-partite if its vertex set may be partitioned into three classes in such

a way that each edge meets all three classes. The following lemmas make precise our

earlier observation that it is easy to find large spheres in any dense 3-graph.

Lemma 4.2. Let 1/n ≪ δ, 1/k ≪ 1, let H be a 3-graph on n vertices, and let T ⊂ V (H)

meet at least δn3 edges of H. Then H contains a double pyramid on 2k + 2 vertices

with apexes in T .

Proof. For each vertex v ∈ T , recall that L(v) denotes the graph on V (H) \ {v} with

xy ∈ E(L(v)) whenever vxy ∈ E(H). Applying Lemma 4.1 to these graphs — with

r = 2 and X = V (H)2 — we can find a pair of vertices v, w ∈ T such that there are at
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least δ2n2/2 edges common to L(v) and L(w). By Theorem 2.1 — applied with r = 2 —

we may find a copy of the cycle C2k among these common edges. Such a cycle yields a

double pyramid in H with apexes v and w and 2k + 2 vertices in total. □

Lemma 4.3. Let 1/n ≪ δ, ε, η ≪ 1, and let H be a 3-partite 3-graph with vertex classes

A, B and T with |A| = |B| = n and |T | ≥ εn such that for each A′ ⊂ A and B′ ⊂ B

with |A′|, |B′| ≥ εn, there are at least δ|A′||B′||T | edges in H[T ∪ A′ ∪ B′]. Then H
contains at most ηn disjoint spheres that each have 2 vertices in T and together cover

at least (1− ε)n vertices from each of A and B.

Proof. Fix an integer k such that 1/n ≪ 1/k ≪ δ, ε, η. Iteratively, remove spheres S

from H with |V (S) ∩ A| = |V (S) ∩B| ≥ k and |V (S) ∩ T | = 2, until it is not possible

to find another sphere with these properties. This removes at most ηn disjoint spheres.

Suppose that we are left with A′ ⊂ A, B′ ⊂ B and T ′ ⊂ T .

We will show that |A′| = |B′| < εn, completing the proof. Suppose for the sake of

contradiction that |A′| = |B′| ≥ εn. Note that we have

|T ′| ≥ |T | − 2n/k ≥ (1− δ/2)|T |,

so there are at least δ|A′||B′||T |/2 edges in H[T ′ ∪ A′ ∪ B′]. Applying Lemma 4.2 to

H[T ′ ∪ A′ ∪ B′], we may find a double pyramid on 2k + 2 vertices with apexes in T ′.

Since H is 3-partite, the remaining 2k vertices are evenly divided between A′ and B′,

yielding a contradiction. □

4.2. Colouring and connecting edges. Next, we detail how we will connect spheres

together into a larger sphere. In this section, we work towards showing that the edges

in our 3-graph can be (mostly) coloured red and green so that any disjoint edges of the

same colour can be connected together into a sphere (and, moreover, in many different

ways). Thus, two disjoint spheres which share some colour among their edges can be

connected together into a larger sphere.

More precisely, given an integer k ∈ N and a 3-graph H on n vertices, we say two

edges e, f ∈ E(H) are (α, k)-connectible if, for some l with 1 ≤ l ≤ k, there are at least

αnl sets A ⊂ V (H) with |A| = l for which there is a sphere in H containing the edges e

and f with vertex set A ∪ V (e) ∪ V (f). This will be the most convenient definition to

use in proving connectibility properties, however, we shall then only use the following

simple consequence of (α, k)-connectibility.

Lemma 4.4. If two edges e, f ∈ E(H) are (α, k)-connectible, then for some l with

1 ≤ l ≤ k there are at least αn/l pairwise disjoint sets A ⊂ V (H) with |A| = l for which

there is a sphere with vertex set A ∪ V (e) ∪ V (f) in H containing the edges e and f .

Proof. Let l with 1 ≤ l ≤ k be a number witnessing the fact that e, f are (α, k)-

connectible. Choose a maximal collection A1, A2, . . . , Ar of disjoint sets with the
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required properties and note that U = ∪r
i=1Ai comprises rl vertices. By the maximality

of our choice, U intersects every set of vertices of size l which can be used to create a

sphere including e and f . There are at least αnl such sets, but at most rlnl−1 sets of

size l meet U , so we must have rl ≥ αn, as required. □

Next, we demonstrate that almost all touching pairs of edges in a dense 3-graph are

easily connectible.

Lemma 4.5. Let 1/n ≪ δ ≪ ε < 1, and let H be a 3-graph on n vertices. Then all but

at most εn4 touching pairs of edges of H are contained in at least δn2 spheres with 6

vertices in H.

Proof. We need to show that if F is any set of εn4 touching edge-pairs of H, then at

least one of these pairs is contained in at least δn2 spheres with 6 vertices. To this

end, fix a set F of εn4 touching edge-pairs of H. By averaging, there are two vertices

x, y ∈ V (H) such that e△f = {x, y} for at least εn2 edge-pairs {e, f} ∈ F , where △
denotes the symmetric difference.

Let G = Gx,y be the graph on the vertex set V (H) where we join two vertices u and

v if uvx, uvy ∈ E(H). As |E(G)| ≥ εn2, we know from Proposition 2.4 that G contains

δn4 copies of the 4-cycle C4. Consequently, there is some uv ∈ E(G) such that there

are at least δn2 pairs w, z ∈ V (H) such that the set {u, v, w, z} induces a copy of C4

in G containing the edge uv. For any such a copy of C4, note that {x, y, u, v, w, z} is

the vertex set of a sphere in H containing the touching edge-pair {uvx, uvy}. Thus, we
have shown that F contains a pair {uvx, uvy} that is contained in at least δn2 spheres

in H with 6 vertices, proving the claim. □

Our next (rather coarse) lemma develops the connectibility properties of dense

3-graphs further.

Lemma 4.6. Let 1/n ≪ α ≪ β ≪ ε ≪ 1, and let H be a 3-graph on n vertices with

δ2(H) ≥ n/3. Then all but at most εn3 edges of H can be coloured so that

(1) there are at least βn3/2 edges of each colour, and

(2) any two disjoint edges of the same colour are (α, 33)-connectible.

It is worth remarking that here and in what follows, when we speak of a pair edges

of the same colour being connectible, we mean this in H (and not necessarily in their

own colour class) unless we explicitly say otherwise.

Proof of Lemma 4.6. Take δ, η > 0 so that β ≪ δ ≪ η ≪ ε and call a pair of touching

edges good if it can be completed into a sphere using two more vertices in at least δn2

different ways and bad otherwise. Note that by Lemma 4.5, there are at most ηn4 bad

pairs in H.
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We iteratively colour the edges of H as follows. Suppose that we have a set F ⊂ E(H)

of at least εn3 uncoloured edges. Let us write E and F for the sets of ordered 3-

tuples (x, y, z) such that xyz ∈ E(H) and xyz ∈ F respectively. Given a 3-tuple

f = (v1, v2, v3) ∈ F, we define

A(f) = {(x, y, z) : v2v3x, v3xy, xyz ∈ E(H)},

noting that

|A(f)| ≥ (n/3− 1)(n/3− 2)(n/3− 3) ≥ n3/54.

Clearly, there are at least εn6/9 ordered pairs (f , e) of 3-tuples with f ∈ F and e ∈ A(f)

since every edge of F corresponds to 6 different 3-tuples in F.

For f ∈ F, let B(f) ⊂ A(f) be the set of 3-tuples (x, y, z) ∈ A(f) such that the pairs

{v1v2v3, v2v3x}, {v2v3x, v3xy}, and {v3xy, xyz} of touching edges are all good. Note

that every bad pair {w′x′y′, x′y′z′} in H arises as one of the three pairs corresponding

to (v1, v2, v3, x, y, z) as above for at most 12n2 choices of this 6-tuple. Therefore, there

are at most 12ηn6 ordered pairs (f , e) with f ∈ F and e ∈ A(f) \B(f).

Now, if |B(f)| < ηn3 for some f ∈ F, then |A(f) \ B(f)| ≥ (1/54 − η)n3, so our

previous observation implies that there are at most 12ηn3/(1/54− η) ≤ 3εn3 different

3-tuples f ∈ F for which |B(f)| < ηn3. Hence, there are at least 6εn3 − 3εn3 ≥ 3εn3

different 3-tuples f ∈ F for which |B(f)| ≥ ηn3, and correspondingly, there is a set

F ′ ⊂ F of at least εn3/2 edges for which at least one of the six 3-tuples corresponding

to that edge has this property.

Next, we create an auxiliary bipartite graph G between F ′ and E(H) with an edge

between f ∈ F ′ and e ∈ E(H) if some pair {f , e} of 3-tuples corresponding to these

edges of H satisfies e ∈ B(f); note that G has at least εηn6/12 edges. We appeal to

Proposition 2.3 and find a subset F ′′ ⊂ F ′ of size at least βn3, such that for any two

edges f1, f2 ∈ F ′′ there are at least βn3/2 edges f3 ∈ F ′′ with the property that the

pairs f1, f3 and f2, f3 each have at least βn3 common neighbours in G.

Thus, for disjoint edges f1, f2 ∈ F ′′, there are at least βn3/4 edges f3 ∈ F ′′ disjoint

from f1 and f2 so that the pairs f1, f3 and f2, f3 each have at least βn3 common

neighbours in G. For each such f3, note that there are at least (βn3)2/4 choices of

e1, e2 ∈ E(H) which are disjoint from each other and from f1, f2 and f3 and such that

f1e1, e1f3, f3e2, e2f2 ∈ E(G). For any such pair e1 and e2, we proceed as follows. There

are at least (δn2)3 −O(n5) ≥ δ3n6/2 ways to find a sphere S1 joining f1 and e1 using 6

extra vertices and avoiding the vertices in f3, e2 and f2; to see this, note that f1 and

e1 are joined in G, which means that we may walk from f1 to e1 along three good

touching pairs of edges in H, so gluing three spheres, one sitting each of these good

touching pairs, furnishes us with a candidate for S1, and ignoring candidates that meet

f3, e2 and f2 gives us the required bound. A similar argument for each of the edges

e1f3, f3e2, e2f2 ∈ E(G) in turn shows that we can find spheres S2, S3 and S4 containing
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the pairs e1f3, f3e2 and e2f2 in turn, each with 6 vertices in addition to those in the

edge pair, and so that all the additional vertices are distinct and not in any of the edges

f1, f2, f3, e1 and e2. Furthermore, when choosing each sphere we have at least δ3n6/2

choices. Thus, we can choose such spheres in at least δ12n24/16−O(n23) ≥ δ12n24/32

different ways so that gluing S1, S2, S3 and S4 together (i.e., taking their symmetric

difference) results in a sphere containing f1 and f2 and 33 extra vertices.

There were at least βn3/4 choices of f3 and (βn3)2/4 choices of e1 and e2, so thus in

total we can find at least δ12β3n33/512 ≥ αn33 spheres containing f1, f2 and 33 extra

vertices. Thus, f1 and f2 are (α, 33)-connectible. As f1 and f2 were arbitrary disjoint

edges in F ′′, we can colour all the edges in F ′′ using a new colour.

It is clear that this procedure colours the edges of H as required, thereby proving the

lemma. □

The next observation refines the previous lemma, and is the starting point of our

characterisation of the connectibility properties of the tight components of a sufficiently

dense 3-graph.

Lemma 4.7. Let 1/n ≪ α, 1/k ≪ ε ≪ 1, and let H be a 3-graph on n vertices with

δ2(H) ≥ n/3. Then all but at most εn3 edges of H can be coloured so that any two

disjoint edges of the same colour are (α, k)-connectible and there are at most εn4 pairs

of touching edges with different colours.

Proof. Take δ, η > 0 so that α, 1/k ≪ δ ≪ η ≪ ε and set k0 = 33. By Lemma 4.5,

there are at most η2εn4/2 touching edge-pairs in H which are not contained in at least

δn2 spheres with size 6 in H. By Lemma 4.6, we can colour the edges of H so that at

most εn3 edges are uncoloured, there are at least ηn3 edges of each colour, and any two

disjoint edges of the same colour are (δ, k0)-connectible. Let l be the number of colours

used by this colouring C0, and note that

l ≤
(
n

3

)(
ηn3
)−1

< 1/η.

We iteratively construct a sequence of colourings (Ci)1≤i≤m as follows. For each i ≥ 0,

if there are at least η2εn4 touching pairs of edges each using two fixed colours c1, c2 of

Ci, then we define the colouring Ci+1 by replacing c1, c2 with a common new colour (if

there is more than one choice for such a pair of colours, we pick any acceptable pair).

Of course, these recolourings may be performed at most l − 1 times, and we stop after

m < l steps when there are at most(
l

2

)
η2εn4 < εn4

non-monochromatic touching edge-pairs in the colouring Cm.
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For 0 ≤ i ≤ m, we prove by induction that any two disjoint edges of the same colour

in Ci are (δ3
i
, 3ik0)-connectible in H. This is certainly true for i = 0, so suppose that

we have established this fact for i, and that e, f ∈ E(H) have the same colour in Ci+1

but not in Ci, where they are coloured, say, red and blue respectively. Then there are

at least η2εn4 touching red-blue edge pairs in Ci, and at least η2εn4/2 of these pairs are

contained in at least δn2 spheres with size 6 in H. At least half of the latter pairs (e′, f ′)

satisfy the additional requirement that V (e) ∪ V (f) and V (e′) ∪ V (f ′) are disjoint,

since there are only O(n3) touching-edge pairs which fail to satisfy it. By the induction

hypothesis and the pigeonhole principle, we observe that for some k1, k2 ≤ 3i−1k0, there

are at least

η2εn4/4(3i−1k0)
2 > δn4

of the above red-blue pairs of touching edges (e′, f ′) such that there are

(1) at least δ3
i−1

nk1 ways to complete e and e′ into a sphere S1 using k1 extra

vertices,

(2) at least δ3
i−1

nk2 ways to complete f ′ and f into a sphere S2 using k2 extra

vertices, and

(3) at least δn2 ways to complete e′ and f ′ into a sphere S3 using two extra vertices.

Thus, there are at least δ2(1+3i−1)nk1+k2+6 < 2δ3
i
nk1+k2+6 ways to choose a combination

of these objects, namely a pair (e′, f ′) and three spheres S1, S2 and S3 with the above

properties. Note that for every such choice, the symmetric difference of the edge sets of

S1, S2 and S3 forms a sphere containing e and f and k1 + k2 + 6 ≤ 2 · 3i−1k0 + 6 < 3ik0
additional vertices, provided the sets of extra vertices used in 1, 2 and 3 above are

disjoint from each other and from V (e) ∪ V (e′) ∪ V (f ′) ∪ V (f). As the number of

ways to choose any triple of vertex sets, let alone spheres, with k1, k2 and 2 elements

respectively, such that two of the sets intersect or one intersects a given 10-element set,

is O(nk1+k2+1), we deduce that there are at least

2δ3
i

nk1+k2+6 −O(nk1+k2+5)

spheres in H including e, f and k1 + k2 + 6 extra vertices, so it follows that e and f are

(δ3
i
, 3ik0)-connectible in H.

It is now clear that our final colouring Cm has the required properties, completing

the proof. □

4.3. Colour interaction. We say that a 3-graph H on n vertices is (ε, µ)-coloured if

δ2(H) ≥ (1/3 + µ)n and all but εn3 of its edges are coloured red or green so that

(1) there are at most εn4 pairs of touching red and green edges, and

(2) at least µn/4 vertices are contained in fewer than εn2 red edges.

The following lemma turns the (ε, µ)-coloured property into a property of the link

graphs L(v) we will use in Section 4.6 to construct almost spanning spheres. For an
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edge-coloured 3-graph H as above, and v ∈ V (H), we define the green link graph GL(v)

to be the graph on V (H) \ {v} where two vertices x and y are joined with an edge if

vxy is a green edge of H.

Lemma 4.8. Let 1/n ≪ ε ≪ µ ≪ 1, and let H be an n-vertex (ε, µ)-coloured 3-graph.

Then, for all but at most µ4n vertices v ∈ V (H), the green link graph GL(v) has at

least (1/3 + µ/2)n vertices with degree at least (1/3 + µ/2)n.

Proof. We construct an auxiliary red-green coloured graph G on the vertex set V (H) as

follows. For each pair x, y ∈ V (H) such that there are at least (1/3 + 3µ/4)n edges of

one colour in H containing x and y, add the edge xy to G, giving it that colour, where

if this pair satisfies this condition for both colours, we colour xy green. It suffices to

show that all but at most µ4n vertices are in at least (1/3 + µ/2)n green edges of G,

since if xy is a green edge of G then there are at least (1/3 + 3µ/4) green edges of the

form xyz, and it follows that y has degree at least (1/3 + 3µ/4) in GL(x).

If xy is not an edge of G, then the edges of H containing x and y either include at

least µn/8 uncoloured edges or include at least µn/8 edges of each colour. In the latter

case, there are at least µ2n2/64 pairs of differently-coloured edges in H which touch

along xy; since there are at most εn4 pairs of differently-coloured touching edges in H,

no more than 64εn2/µ2 non-edges xy can occur for this reason. Similarly, since there

are at most εn3 uncoloured edges in H, at most 24εn2/µ non-edges xy can occur in G

for the former reason. Hence there are at most 88εn2/µ2 < µ6n2 non-edges in G.

Since H is (ε, µ)-coloured, there are at least µn/4 vertices in fewer than εn2 red edges

of H; let A be a set of µn/4 such vertices. Since each red edge of G extends to more

than n/3 red edges of H, each vertex in A is in fewer than 6εn red edges of G, so there

are fewer than 3εµn2/2 < µ6n2 red edges of G meeting A.

Let B be the set of vertices with fewer than µn/8 green edges in G to A. Since for

each such vertex there are at least µn/8 non-edges or red edges with the other end in A,

and there are fewer than 2µ6n2 pairs which are non-edges or red edges meeting A, each

of which is counted at most twice, we deduce that |B| < 32µ5n. Let B′ be the set of

vertices with degree less than (1− µ/8)n in G. Since G has fewer than µ6n2 non-edges,

we have |B′| < 8µ5n.

Now, fix a vertex v ∈ V (H)\(B∪B′), and suppose that v is in fewer than (1/3+µ/2)n

green edges in G. Since v ̸∈ B, there are at least µn/8 choices of u ∈ A for which uv is

a green edge of G; by definition, for each choice of u there are at least (1/3 + 3µ/4)n

choices of w for which uvw is a green edge of H. Since v is in fewer than (1/3 + µ/2)n

green edges in G, and v ̸∈ B′, it must be the case that vw is a red edge of G for at least

µn/8 of these choices of w, so there are at least µ2n2/64 pairs (e, f) where e is a red

edge of G, f is a green edge of H and v ∈ e ⊂ f .
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However, there are at most 3εn3 < µ7n3 pairs (e, f) for which e is a red edge of G,

f is a green edge of H and e ⊂ f , since each such pair corresponds to at least n/3

differently-coloured touching edge pairs in H, of which there are at most εn4. Each

such pair corresponds to at most two choices of v, so there are at most 128µ5n vertices

in V (H) \ (B ∪B′) which are in fewer than (1/3 + µ/2)n green edges of G; it follows

that, in total, at most 168µ5n < µ4n vertices are in fewer than (1/3 + µ/2)n green

edges of G, as required. □

Crucial for our purposes is the fact that any sufficiently dense 3-graph admits an

(ε, µ)-colouring with strong connectibility properties within each colour class.

Lemma 4.9. Let 1/n ≪ α, 1/k ≪ ε ≪ µ, and let H be a 3-graph on n vertices with

δ2(H) ≥ (1/3 + µ)n. Then it is possible to (ε, µ)-colour H so that any monochromatic

pair of disjoint edges of H is (α, k)-connectible.

Proof. Choose η > 0 so that α, 1/k ≪ η ≪ ε. By Lemma 4.7, all but at most ηn3

edges of H can be coloured so that any two disjoint edges of the same colour are (α, k)-

connectible and there are at most ηn4 pairs of touching edges with different colours. It

only remains to show then that some two colours account for all but (ε− η)n3 of the

coloured edges, and that at least µn/4 vertices appear in fewer than εn2 edges of one

of these colours.

To prove this, we shall first show that for all but a few pairs of vertices, there are a

large number of edges of a single colour containing that pair which also meet a large

number of edges of the same colour along each of the other pairs they contain. In

order to consider pairs of vertices in this way, we will find it convenient to define an

auxiliary coloured graph G. We then show that there is only room in H for such large

monochromatic structures in at most two colours; this is similar to proving that a

3-graph with minimum codegree exceeding n/3 can have at most two tight components.

Finally, we shall use a double counting argument on the interactions between colours to

show that there is a similar obstacle to nearly all vertices meeting many edges of both

colours.

We start by defining an auxiliary graph G on V (H) where we join a pair x, y ∈ V (H)

of vertices if there is a unique colour c so that there are at least (1/3 + µ− ε)n edges

with colour c in H containing x and y; moreover, we assign the colour c to such an

edge. If xy is not an edge of G, then it follows that at least

(δ2(H)− εn)εn > εn2/3

pairs of differently-coloured touching edges of H have intersection {x, y}. Thus, G is

‘nearly complete’, missing at most 3ηn2/ε edges.

Claim 4.10. At most ε2n2 pairs of vertices are in fewer than (1/3+µ− ε)n monochro-

matic triangles of G.
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Proof. Since G has at most 3ηn2/ε < ε3n2/6 non-edges, fewer than ε3n3/6 edges of H
contain a non-edge of G. For every coloured edge of H which contains an edge of G

coloured differently, there are at least (1/3+µ−ε)n pairs of differently-coloured touching

edges of H, so we conclude that at most ε3n3/6 such edges exist. Therefore, all but at

most ε3n3/3 edges of H correspond to monochromatic triangles in G. Consequently, at

most ε2n2 pairs of vertices lie in more than εn edges of H which do not correspond to

a monochromatic triangle, so all other pairs of vertices lie in at least (1/3 + µ− ε)n

monochromatic triangles in G, proving our claim. □

Now, let us remove all the edges of G which are in fewer than (1/3 + µ − ε)n

monochromatic triangles of G, resulting in a graph missing at most

3ηn2/ε+ ε2n2 < 2ε2n2

edges, and then remove, iteratively, at most εn/2 vertices with minimum degree from

this graph to obtain a graph G′ of minimum degree at least (1 − 4ε)n. In G′, every

edge is in at least (1/3 + µ/2)n monochromatic triangles, since any edge of G′ was in

at least (1/3 + µ− ε)n monochromatic triangles of G, and in passing to G′, edges have

been removed from at most 8εn such triangles and vertices have been removed from at

most εn/2 of these triangles. Calling a triangle rainbow if its edges have three different

colours, we then have the following claim.

Claim 4.11. There are at most ε3n3 rainbow triangles in G′.

Proof. If xyz is a rainbow triangle in G′, say with xy red, yz green and xz blue, then

write Wr for the set of vertices w ∈ V (H) such that wxy is a red edge of H, and define

Wg and Wb analogously. We clearly have

|Wr|, |Wg|, |Wb| ≥ (1/3 + µ− ε)n,

so we can find µn vertices in more than one set, and hence µn pairs of differently-

coloured touching edges. Each such pair arises from at most two rainbow triangles, so

it follows that there are at most 2ηn3/µ < ε3n3 rainbow triangles in G′. □

Next, suppose there are at least three colours in G′, say red, green and blue. Each

colour meets at least (1/3 + µ/2)n vertices by the definition of G′, and at most εn

vertices are in ε2n2 rainbow triangles by Claim 4.11, so we may pick a vertex v incident

to edges of at least two colours, red and green say, which is in fewer than ε2n2 rainbow

triangles. Let Vr and Vg be the red and green neighbourhoods of v in G′. Since

|Vr ∪ Vg| ≥ (2/3 + µ)n, at least 3µn/2 > 2εn vertices in Vr ∪ Vg meet blue edges, and

at least one of these vertices is in fewer than εn rainbow triangles containing v. Pick

such a vertex w, and assume without loss of generality that w ∈ Vr. Note that, as

vw ∈ E(G′) is red, and thus in at least (1/3 + µ/2)n red triangles in G′, w has at

least (1/3 + µ/2)n red neighbours in Vr. Furthermore, as w meets a blue edge, it must
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be in at least (1/3 + µ/2)n blue edges, at most εn of which are with a vertex in Vg

(for each such edge gives rise to a rainbow triangle containing vw). In total, w is in

at least (2/3 + µ− ε)n blue or green edges without a vertex in Vg, which contradicts

|Vg| ≥ (1/3 + µ/2)n.

Therefore, G′ only has two colours, say, red and green. Write Br and Bg for the set

of vertices spanned by the red and green edges respectively, and suppose without loss

of generality that |Br| ≤ |Bg|.

Claim 4.12. |Br| ≤ (1− µ/4− 6ε)n, whence |V (G′) \Br| ≥ (µ/4 + 3ε)n.

Proof. Suppose, for the sake of a contradicton, that

|Bg| ≥ |Br| ≥ (1− µ/4− 6ε)n.

At least (1 − µ/2 − 12ε)n vertices are in both Br and Bg, and each such vertex is

incident to at least (1/3 + µ/2)n edges of each colour, and to at least (1− 4ε)n edges

in total by the definition of G′. Consequently, for each such vertex v, there are at least

(1/3 + µ/2)(2/3− µ/2− 4ε)n2 ≥ n2/5

pairs x, y ∈ V (G′) with vx red and vy green. Each such pair produces a triple which

is not a monochromatic triangle in G′, and no such triple is counted more than twice,

so there are at least n3/11, say, distinct triples of this kind. However, G′ has at least

(1−ε/2)(1−4ε)n2/2 edges and each edge of G′ is in at least (1/3+µ/2)n monochromatic

triangles, so the number of triples inducing monochromatic triangles is at least

(1− ε/2)(1− 4ε)(1/3 + µ/2)n3/3 > n3/11.

We therefore find at least

n3/11 + n3/11 >

(
n

3

)
distinct triples on V (G′), which is a contradiction. □

We now obtain the colouring we seek as follows: we un-colour all the edges of H not

coloured red or green, as well as all the edges of H containing either a non-edge of G′

or a vertex not in V (G′). Let us count the number of edges of H that are no longer

coloured after we do this. At most ηn3 edges of H were not coloured in the original

colouring, at most 2ε2n3 edges of H contain a non-edge of G′, and at most εn3/2 edges

of H contain a vertex not in V (G′). Finally, any edge of H containing an edge of G′

not coloured either red or green contributes at least n/3 pairs of differently-coloured

touching edges, so there are at most 3ηn3 such edges. Therefore, the number of edges

of H not coloured in our final colouring is at most

ηn3 + 2ε2n3 + εn3/2 + 3ηn3 < εn3.
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Finally, notice that any red edge in our final colouring of H incident to a vertex in

V (G′)\Br is in at least n/3 pairs of differently-coloured touching edges, so the number of

such edges is at most 3ηn3 < ε2n3. It follows from Claim 4.12 that at least µn/4 vertices

in V (G′) \Br meet fewer than εn2 red edges, as required. All the other properties that

we need are inherited from the original colouring of H, proving the statement. □

4.4. Green-tinged absorbers. We now build absorbing structures in an (ε, µ)-coloured

3-graph. These structures will be crucial in transforming an ‘almost spanning’ copy of

a surface into a spanning one.

Fix an (ε, µ)-coloured 3-graph H. We say a subgraph of H is green-tinged if it has at

least two green edges. Given a subset U of the vertices of H, a green-tinged absorber

for U is a sphere S in H[V (H) \ U ] which contains two green edges e and f so that for

every U ′ ⊂ U , there is a sphere in H on the vertex set V (S)∪U ′ containing both e and

f .

Lemma 4.13. Let 1/n ≪ ε ≪ µ ≪ 1, 1/n ≪ η, and suppose that H is an (ε, µ)-

coloured 3-graph with n vertices. Then for any R ⊂ V (H) with |R| ≤ µn/72, there is

a collection of l ≤ ηn vertex-disjoint spheres in H[V (H) \ R], spanning at most 8|R|
vertices in total, which are respectively green-tinged absorbers for some pairwise disjoint

sets R1, R2, . . . , Rl ⊂ R with R1 ∪R2 ∪ · · · ∪Rl = R.

Proof. Fix an integer k ≥ µ/(36η). We shall use a greedy procedure to iteratively

find ‘large’ absorbers for subsets of R of size k until fewer than ηn/2 vertices of R

remain, and then find ‘small’ absorbers for the remaining vertices one by one. We shall

also ensure that the absorber that we construct for a subset X ⊂ R at any particular

iteration of our procedure uses at most 8|X| vertices. Observe that our choice of k

ensures that at most ηn/2 large absorbers and ηn/2 small absorbers are built.

Let us now describe a step of our iterative procedure. Write A for the union of the

vertices in the vertex-disjoint absorbers selected so far, and R′ for the remaining vertices

in R for which we have yet to built an absorber; in particular, we initially have A = ∅
and R′ = R. Note that we shall always ensure that |A ∪R| < 9|R| ≤ µn/8.

We first describe how we proceed when |R′| ≥ ηn/2. Let B ⊂ V (H) be the set of

vertices contained in at most εn2 red edges, so that |B| ≥ µn/4, and choose a set

B′ ⊂ B \ (A ∪ R) with |B′| = µn/8. For each v ∈ R′, let Lv be the subgraph of the

link-graph L(v) induced by the set V (H) \ (A ∪ R). Let L′
v ⊂ Lv be the subgraph of

Lv consisting of those edges of Lv which are additionally in at least n/3 green edges of

H. We shall show that L′
v contains many edges incident with B′.

Since |A ∪R| ≤ µn/8, it follows that Lv has minimum degree (1/3 + 7µ/8)n. Every

vertex x ∈ B′ has at least (1/3+3µ/4)n edges in Lv to V (H) \ (A∪R∪B′), and by the

definition of B′, at most 4εn/µ of these edges in Lv are contained in more than µn/4
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k

Figure 4. The double ladder DLk.

red edges of H, for otherwise we would get (4εn/µ)(µn/4) = εn2 red edges incident

with x ∈ B′. A similar calculation shows that at most 12εn2/µ edges of Lv are in

more than µn/4 uncoloured edges of H.Easily, if e is an edge of Lv contained in at

most µn/2 edges of H that are either red or uncoloured, then e lies in L′
v. From these

facts, we conclude that L′
v contains more than one third of all edges between B′ and

V (H) \ (A ∪R ∪B′) for each v ∈ R′.

For a set U ⊂ R′ of size k, write LU = ∩v∈UL
′
v. Now, by Lemma 4.1 — applied with

X being the set B′× (V (H)\ (A∪R∪B′)) of possible edges of LU , r = k and γ = 1/3 —

we may find a set U ⊂ R′ of size k such that LU contains more than a 3−k/2 proportion

of the pairs in B′× (V (H) \ (A∪R∪B′)), so |E(LU )| ≥ 3−kµn2/17. Each edge in LU is

contained in at least n/3 green edges of H by definition, so averaging using Lemma 4.1

again — now with X = E(LU ), m = |V (H) \ (A ∪R)|, each set Xi being the subset of

E(LU) which form green edges with a given vertex in V (H) \ (A ∪R), r = k + 1 and

γ = 1/4 — we can find a set T = {t1, t2, . . . , tk+1} of k + 1 vertices disjoint from U ,

and a subgraph L′
U of LU with at least 12−kµn2/136 edges with the property that each

edge in L′
U and each vertex in T together form a green edge of H.

We can now find a copy of the double ladder DLk with k spaces, depicted in Figure 4,

in L′
U ; indeed, since DLk is bipartite, Theorem 2.1 guarantees the existence of such

a copy. The green edges consisting of vertices of T and edges of the copy of DLk

contain an absorbing sphere SU for U , shown in Figure 5. Since all the edges of SU

containing tk+1 are green, and are present no matter which vertices are absorbed, SU is

a green-tinged absorber; it has 4(k + 1) ≤ 8k vertices, as required.

We now turn to dealing with how to proceed when |R′| < ηn/2. In this case, we find

absorbing spheres for the vertices in R′ one by one as follows. We pick v ∈ R′, construct

the graph L′
v as above, and use Lemma 4.1 with X = E(L′

v), r = 2 and γ = 1/4, to find

a pair of vertices T = {t1, t2} disjoint from A ∪R and a graph L′′
v ⊂ L′

v with at least

|E(L′
v)|/32 > n2/800

21



t1 t2 t3 t4

tk+1

tk+1

v w

t1 t2

t3 t4

tk+1

tk+1

Figure 5. The absorbing sphere SU for U is shown on the left; each

triangle in the figure corresponds to an edge of H, which exists because

the underlying double ladder lies in L′
U . On the right, we show how SU

can absorb two arbitrary vertices v, w ∈ U .

edges, each of which forms a green edge of H with both t1 and t2. We may find a copy

of DL1 in L′′
v using Theorem 2.1, and the corresponding green edges of H contain a

green-tinged absorber for {v} of order 8, obtained by repeating the construction of

Figure 5 with k = 1.

The iterative procedure described above clearly produces the absorbers we require,

proving the lemma. □

By letting the spheres we construct absorb all of R in Lemma 4.13, we immediately

obtain the following corollary.

Corollary 4.14. Let 1/n ≪ ε ≪ µ ≪ 1, 1/n ≪ η and suppose that H is a (ε, µ)-

coloured 3-graph on n vertices. Then for any R ⊂ V (H) with |R| ≤ µn/72, there is a

collection of at most ηn vertex-disjoint green-tinged spheres in H which cover R. □

4.5. Spheres covering twice as many bad vertices as good vertices. The

following lemma will allow us to create spheres that use twice as many vertices from

some specific set of ‘bad’ vertices as from a specific set of ‘good’ vertices. This will

prove useful in Section 4.6 since the connectibility properties of our 3-graphs will impose

constraints of precisely this nature.

Lemma 4.15. Let 1/N ≪ β, γ, 1/k and suppose that H is a 3-graph on vertex classes

A and B, where A has at least N vertices and every edge has one vertex in B and two

vertices in A. Suppose that for at least βN vertices v ∈ B, the link-graph L(v) has at

least (1/2 + γ)|A| vertices with degree at least (1/2 + γ)|A|. Then there is a sphere S in

H which has 4k vertices in B and 2k + 2 vertices in A.
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Proof. Write B′ for the set of vertices v ∈ B for which L(v) has at least (1/2 + γ)|A|
vertices with degree at least (1/2+γ)|A|. For each v ∈ B′, let Hv be the 3-graph of edges

which are triangles in L(v). Choose a vertex v1 with degree at least (1/2+γ)|A| in L(v),

and note that at least 2γ|A| of its neighbours must have degree at least (1/2 + γ)|A| in
L(v) also. Thus, choosing v2 to be such a neighbour, there are at least 2γ|A| triangles
containing v1 and v2. As there were at least 2γ(1/2+ γ)|A|2 choices for the pair (v1, v2),
L(v) contains at least γ2|A|3/3 triangles. Hence, Hv has at least γ2|A|3/3 edges.

By Lemma 4.1 we can now find a set K ⊂ B′ of size 4k for which the 3-graph

HK = ∩v∈KHv has at least (2γ2)4k|A|3/12 edges. By Lemma 4.2, applied with T = A

and δ = (2γ2)4k/12, we can find a double pyramid on exactly 2k + 2 vertices in HK .

This double pyramid has 4k faces, and by putting a vertex from K into each face of

this double pyramid, we get a sphere in H with 4k vertices from B and 2k + 2 vertices

from A. □

4.6. Almost spanning green spheres. We now show that we can find a reasonably

small set of disjoint spheres which span all but a small fraction of the vertices of

an (ε, µ)-coloured 3-graph H. The proof uses Szemerédi’s regularity lemma, and the

following lemma will be used to partition the reduced graph.

Lemma 4.16. Let 1/n ≪ ε, and suppose that G is an n-vertex graph. Then we can

find a partition of V (G) into sets Z , B, C and D such that

(1) there is a perfect matching in Z ,

(2) there is a perfect matching between C and D, and

(3) |E(B ∪D,Z ∪B ∪D)| ≤ εn2.

Proof. Let M be a matching of maximum size in G, and for a set of vertices X, write

NM(X) for the neighbourhood of X in M , i.e., for the set of vertices joined to X by

edges of M . Let B be the set of vertices which are not in M . We will find sequences of

disjoint sets C1, . . . , Cr and D1, . . . , Dr as follows: iteratively, for each i ≥ 1, if there

are at least εn/2 vertices in

V (M) \
⋃
j<i

(Ci ∪Di)

each with at least εn/2 neighbours in

B ∪

(⋃
j<i

Dj

)
,

then let Ci be the set of those vertices and set Di = NM(Ci).

Note that the sets C1, C2, . . . , Cr as constructed above are disjoint, and each such set

has size at least εn/2; this ensures that r ≤ 2/ε. We may also assume that r ≥ 1, since

if not, we are done by setting Z = V (M), B = V (G) \ Z and C = D = ∅. Indeed,
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then E(B ∪D,Z ∪B ∪D) = E(B,Z) by the maximality of M . Since no iterations of

our procedure were possible, there are at most εn/2 vertices in Z with more than εn/2

neighbours in B, contributing at most εn2/2 edges in total, and the remaining vertices

contribute at most εn2/2 edges, giving the required result.

Now, let C = ∪r
i=1Ci and let D = ∪r

i=1Di = NM(C), and note that 1 ≤ r ≤ 2/ε. We

shall now deduce some properties of the sets of vertices we have constructed thus far.

Claim 4.17. For any vertex v ∈ B ∪D and any set U ⊂ B ∪ C ∪D with size at most

εn/8 such that v /∈ U ∪ NM(U), there is, for some 0 ≤ s ≤ 1/ε, a path of length 2s

from v into B in G[(B ∪ C ∪D) \ U ] which contains s edges from M .

Proof. Starting with x0 = v, find the longest sequence of distinct vertices

x0, y0, x1, y1, . . . , ys−1, xs

in (B ∪ C ∪D) \ U such that

(i) for each 0 ≤ i < s, xiyi ∈ M ,

(ii) for each 0 ≤ i ≤ s, xi ∈ (B ∪ (∪j≤r−iDj)) \ (U ∪NM(U)), and

(iii) for each 0 ≤ i < s, yixi+1 ∈ E(G).

Note that such a sequence exists as the one-term sequence x0 satisfies these conditions.

Note also that if xi ∈ B for some i, then i = s and the sequence stops at that point

since there are no subsequent choices for yi. In particular, since xr, if it exists, must be

in B, we have s ≤ r ≤ 1/ε. We claim that xs ∈ B, and that this sequence consequently

gives us the desired path.

Suppose for the sake of a contradiction that xs ̸∈ B. Then

xs ∈

( ⋃
j≤r−s

Dj

)
\ (U ∪NM(U)),

so choosing ys such that xsys ∈ M , we have

ys ∈

( ⋃
j≤r−s

Cj

)
\ U.

Note that since xiyi ∈ M for each i < s, we have that ys is distinct from y1, . . . , ys−1.

We know that ys ∈ ∪j≤r−sCj, so, by definition, ys has at least εn/2 neighbours in

B ∪ (∪j≤r−(s+1)Dj). Therefore, since

|U ∪NM(U) ∪ {x0, y0, x1, y1, . . . , ys−1, xs}| ≤ εn/4 + 2/ε < εn/2,

we can find a vertex xs+1 which is a neighbour of ys satisfying

xs+1 ∈ B ∪

 ⋃
j≤r−(s+1)

Dj

 \ (U ∪NM(U) ∪ {x0, y0, x1, y1, . . . , ys−1, xs}),
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contradicting maximality of the sequence, and proving the claim. □

Claim 4.18. At most one vertex in each edge of M has at least three neighbours in

B ∪D.

Proof. Suppose to the contrary that for some edge u0v0 ∈ M , each of u0 and v0 has

at least three neighbours in B ∪ D. Then there exist distinct vertices u1 and v1 in

(B ∪D) \ {u0, v0} with u0u1, v0v1 ∈ E(G). Note that B ∪D contains no edges of M by

definition, so we necessarily have u1 ̸= NM(v1).

Appealing to Claim 4.17, we now find an integer 0 ≤ s1 ≤ r and a path P1 in

G[(B ∪ C ∪D) \ {u0, v0, v1, NM(v1)}] with length 2s1 from u1 into B which contains

s1 edges in M . Note that NM(V (P1)) ⊂ V (P1), since this path contains edges of M

covering all but the last vertex of the path, which is in B and hence not in V (M).

Using Claim 4.17 again, we find another integer 0 ≤ s2 ≤ r and a path P2 in

G[(B ∪ C ∪D) \ ({u0, v0} ∪ V (P1))] with length 2s2 from v1 into B which contains s2
edges in M .

Switching edges into the matching M along P1 and P2 creates a matching in G with

the same number of edges as M which does not contain either u1 or v1. Removing u0v0
from M and adding u0u1 and v0v1 thus creates a matching larger than M in G, which

is a contradiction. □

By construction, every vertex in C has at least εn/2 neighbours in B ∪ D, so

Claim 4.18 implies that C contains no edges of M . Since C ⊂ V (M), and D = NM (C),

we have that C ∩ D = ∅ and that M contains a perfect matching between C and

D. Now, let Z = V (M) \ (C ∪D) and note that M also contains a perfect matching

on Z, and that Z, B, C and D partition V (G). It therefore suffices to show that

|E(B ∪D,Z ∪B ∪D)| ≤ εn2. To do so, we first make the following simple observation.

Claim 4.19. There are no edges of G within the set B ∪D.

Proof. Suppose not, so that there is an edge uv ∈ E(G) with u, v ∈ B ∪D. Note that

uv ̸∈ M since every edge of M meets Z ∪ C.

Appealing to Claim 4.17, we first find an integer 0 ≤ s1 ≤ r and a path P1 in

G[B ∪ C ∪D \ {v,NM(v)}] with length 2s1 from u into B which contains s1 edges in

M . As in the proof of Claim 4.18, we have NM(V (P1)) ⊂ V (P1), and consequently

v,NM(v) ̸∈ NM(P1)

Using Claim 4.17 again, we find another integer 0 ≤ s2 ≤ r and a path P2 in

G[B ∪ C ∪D \ V (P1)] with length 2s2 from v into B which contains s2 edges in M .

Switching edges into the matching M along P1 and P2 creates a matching in G with

the same number of edges as M which does not contain u or v. Adding uv creates a

matching larger than M in G, which is a contradiction. □
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We know that there are at most εn/2 vertices in Z with at least εn/2 neighbours in

G in B ∪D (for otherwise, the iterative process we used above would have continued).

We know by Claim 4.19 that the set B ∪D induces no edges, so we deduce that

|E(B ∪D,Z ∪B ∪D)| ≤ (εn/2)|Z|+ (εn/2)|B ∪D| ≤ εn2,

as required. □

We are now in a position to prove the ‘almost covering’ lemma that we require.

Lemma 4.20. Let 1/n ≪ η ≪ ε ≪ µ ≪ 1, and suppose that H is an (ε, µ)-coloured

3-graph on n vertices. Then we can find a collection of at most ηn vertex-disjoint green

spheres in H which cover at least (1− µ3)n vertices of H.

Proof. Our primary strategy is to set aside a small set T of vertices which will be used

as apexes of double pyramids covering most of the vertices of H; in fact, we shall find

it convenient to divide T into three parts to be used at different stages of the proof.

We also set aside a larger set A of vertices that lie in few red edges; these vertices

will be used to create additional spheres that cover vertices that are difficult to cover

using double pyramids. Having set aside these sets, we define an auxiliary graph on

the remaining vertices whose edges are those pairs which form green edges of H with

a reasonable number of vertices in T . We then use the regularity lemma to partition

this graph. Regularity properties will then ensure that we may find double pyramids

with apexes in T covering almost all of any given regular pair of reasonable density.

Applying Lemma 4.16 to the reduced graph, we shall find disjoint regular pairs covering

all but a few ‘bad’ parts, and the additional conditions imposed by Lemma 4.16 on

these bad parts will allow us to use Lemma 4.15 to find spheres covering most of the

vertices from these bad parts with the help of additional ‘good’ vertices, typically from

A. We make this outline precise below.

Let k and l be integers such that 1/n ≪ 1/k ≪ η and 1/k ≪ 1/l ≪ ε. Here l will

be the number of parts of a regularity partition, and k will correspond to the size of

spheres used in Lemma 4.15.

Pick random disjoint sets T1, T2, T3 ⊂ V (H) by including each vertex independently

at random in Ti with probability µ3/10 for each i ∈ [3], and in none of them with the

remaining probability 1− 3µ3/10. Observe that, by a simple application of Proposi-

tion 2.5, the properties A1 and A2 below hold with high probability for such random

choices; thus, we can find sets T1, T2, T3 ⊂ V (H) satisfying the following conditions.

A1 For each i ∈ [3], µ3n/20 ≤ |Ti| ≤ µ3n/8.

A2 For each i ∈ [3], every pair of vertices contained in at least ε2n green edges of

H is in at least ε3n green edges with a third vertex in Ti.
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Let A be the set of vertices in V (H) \ (T1 ∪T2 ∪T3) that are in at most εn2 red edges.

Let G be the graph with vertex set V (H) \ (A ∪ T1 ∪ T2 ∪ T3) where for each pair of

vertices x, y ∈ V (G), we have xy ∈ E(G) if and only if for each i ∈ [3], there are at

least ε3n green edges in H of the form xyt with t ∈ Ti. In particular, by A2, we have

xy ∈ E(G) for every pair x, y ∈ V (G) contained in at least ε2n green edges of H.

By Theorem 2.2, we can find a partition V (G) = Y0∪Y1∪· · ·∪Yl so that |Y0| ≤ ε2n/100,

|Y1| = |Y2| = · · · = |Yl|, and all but at most ε2l2/100 pairs of these sets are (ε2/100)-

regular in G. Let R be the reduced graph on the vertex set {Y1, Y2, . . . , Yl} with edges

corresponding to regular pairs with density at least ε2/10 in G. Using Lemma 4.16,

we obtain, for some m, a partition of V (R) into sets Z, B, C = {C1, C2, . . . , Cm} and

D = {D1, D2, . . . , Dm} so that

(1) R[Z] has a perfect matching,

(2) CiDi ∈ E(R) for each i ∈ [m], and

(3) |ER(B ∪ D,Z ∪ B ∪ D)| ≤ ε2l2/10.

Now, let Z, B, C and D be, respectively, the vertices of G contained in the classes

in Z, B, C and D. Note that the sets T1, T2, T3, A, B, C, D, Z and Y0 partition V (H).

We begin with some simple properties of these sets.

Claim 4.21. There are at most εn vertices u ∈ B ∪D for which there are more than

εn2 green edges of H containing u and at least one other vertex in Z ∪B ∪D.

Proof. Suppose to the contrary that there are more than εn such vertices. For each

such vertex u, let Xu be the set of vertices v ∈ Z ∪B ∪D for which at least εn/2 green

edges of H contain u and v. We must have |Xu| ≥ εn/2, since otherwise fewer than

εn2/2 green edges contain u and some vertex in Xu, and fewer than εn2/2 contain u

but no vertex in Xu. Every ordered pair of the form (u, v) with v ∈ Xu corresponds

to an edge of G, since there are more than ε2n green edges containing {u, v}, and
u, v ∈ Z ∪ B ∪ D ⊂ V (G). There are at least

∑
u|Xu| ≥ ε2n2/2 such ordered pairs,

yielding

|EG(B ∪D,Z ∪B ∪D)| ≥ ε2n2/4.

Now, G has at most n2/l2 edges within Yi for each i, at most ε2n2/100 edges between

irregular pairs, and at most ε2n2/10 edges between pairs of density below ε2/10. Thus,

all but at most ε2n2/8 edges of G lie between regular pairs corresponding to an edge in

R, so we also have

|EG(B ∪D,Z ∪B ∪D)| <
(n
l

)2
|ER(B ∪ D,Z ∪ B ∪ D)|+ ε2n2

8
<

ε2n2

4
,

contradicting the bound above and establishing the claim. □

27



Claim 4.22. For all but at most µ3n/64 vertices v ∈ B∪D, the green link graph GL(v)

has at least (1/3 + µ/4)n vertices in A ∪ C with at least (1/3 + µ/4)n neighbours in

A ∪ C .

Proof. By Claim 4.21 and Lemma 4.8, there is a set U ⊂ B ∪D of size at least

|B ∪D| − εn− µ4n > |B ∪D| − µ3n/64

such that for each v ∈ U , the green link graph GL(v) has the following properties.

B1 The number of edges of GL(v) with a vertex in Z ∪B ∪D is at most εn2.

B2 At least (1/3 + µ/2)n vertices of GL(v) have degree at least (1/3 + µ/2)n.

Fixing v ∈ U , we shall show the property in the claim holds for this vertex v, thereby

completing the proof of the claim.

Write Wv for the set of vertices with degree at least (1/3 + µ/2)n in GL(v). Let

W1 = Wv ∩ (Z ∪B ∪D). There are at least |W1|(1/3 + µ/2)n/2 edges in GL(v) with a

vertex in Z ∪B ∪D, so by B1, we have |W1| < 6εn < µ2n.

Let W2 ⊂ A ∪ C be the set of vertices which, in GL(v), have more than µn/6

neighbours in Z ∪B ∪D. There are at least |W2|µn/6 edges in GL(v) with a vertex in

Z ∪B ∪D, so by B1, we again have |W2| < µ2n.

Every vertex in Wv \ (W1∪W2∪T1∪T2∪T3) is in A∪C and has at least (1/3+µ/3)n

neighbours in A ∪ C ∪ T1 ∪ T2 ∪ T3, and consequently has more than (1/3 + µ/4)n

neighbours in A ∪ C. Since

|Wv \ (W1 ∪W2 ∪ T1 ∪ T2 ∪ T3)| > |Wv| − 5µ2n > (1/3 + µ/4)n,

the required property in the claim holds for v; this completes the proof. □

We are now in a position to start constructing the ‘almost spanning’ collection of

spheres that we require. Let S0 be a collection of vertex-disjoint green spheres in

H[A ∪B ∪ C ∪D] so that |V (S0)| is maximal, subject to the following conditions.

C1 Each sphere in S0 has 4k vertices in B ∪D and 2k + 2 vertices in A ∪ C.

C2 |Di ∩ V (S0)| ≤ |Ci ∩ V (S0)| for each i ∈ [m].

First, note that S0 consists of at most n/(6k + 2) ≤ ηn/4 spheres, since each sphere

in S0 spans 6k + 2 vertices and we chose 1/k ≪ η. Second, note that if S0 ≠ ∅ then,

by C1, we have

|(A ∪ C) ∩ V (S0)|
|V (S0)|

=
(2k + 2)|S0|
(6k + 2)|S0|

<
1

3
+

1

k
<

1

3
+

ε

3
; (1)

therefore, we have the following.

3|(A ∪ C) ∩ V (S0)| < |V (S0)|+ εn. (2)
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Second, since A ∪ C and B ∪D are disjoint sets in V (H), we have the following.

|(B ∪D) \ V (S0)| ≤ n− |V (S0)| − |(A ∪ C) \ V (S0)|. (3)

We now argue that (2) and (3), along with the maximality of S0, imply the following.

Claim 4.23. |(B ∪D) \ V (S0)| ≤ |(A ∪ C) \ V (S0)|+ µ3n/16.

Proof. Assume for the sake of a contradiction that

|(B ∪D) \ V (S0)| > |(A ∪ C) \ V (S0)|+ µ3n/16. (4)

We will distinguish between values of i for which C2 holds with enough extra room

that it cannot be the barrier to adding another sphere to S0 and values of i for

which C2 is closer to equality. To this end, let X ⊂ [m] be the set of values of i for

which |Di ∩ V (S0)| > |Ci ∩ V (S0)| − 4k, or equivalently for which |Di \ V (S0)| <
|Ci \ V (S0)|+ 4k, and let D̃ = (∪i ̸∈XDi) \ V (S0). It follows from C2 that

|D̃| = |D \ V (S0)| −
∑
i∈X

|Di \ V (S0)|

> |D \ V (S0)| −
∑
i∈X

(|Ci \ V (S0)|+ 4k)

≥ |D \ V (S0)| − |C \ V (S0)| − 4mk

> |D \ V (S0)| − |C \ V (S0)| − εn. (5)

Finally, let B̃ = B \ V (S0) and note that by (4) and (5), we have

|B̃ ∪ D̃| ≥ |(B ∪D) \ V (S0)| − |C \ V (S0)| − εn

> µ3n/16− εn > µ3n/32.

Thus, by Claim 4.22, there are at least µ3n/64 vertices x ∈ B̃ ∪ D̃ for which there

are at least

(1/3 + µ/4)n− |(A ∪ C) ∩ V (S0)|
vertices in (A∪C)\V (S0) with at least (1/3+µ/4)n−|(A∪C)∩V (S0)| neighbours in
(A∪C) \V (S0) in the green link graph GL(x). Since |(A∪C)∩V (S0)| < (1/3+ ε/3)n

by (1), we must have |(A ∪ C) \ V (S0)| > µn/8.

By the maximality of S0, there are no green spheres with exactly 4k vertices in B̃∪D̃

and 2k + 2 vertices in (A ∪ C) \ V (S0), since such a sphere would be disjoint from all

other spheres in S0, and, by the choice of D̃, adding it to S0 would not violate C2. By

Lemma 4.15 applied to the green edges of H meeting two vertices of (A ∪ C) \ V (S0)

and one vertex of B̃ ∪ D̃, with N = µn/8, β = µ2/8 and γ = µ/4, we have

(1/3 + µ/4)n− |(A ∪ C) ∩ V (S0)| ≤ (1/2 + µ/4)|(A ∪ C) \ V (S0)|
≤ |(A ∪ C) \ V (S0)|/2 + µn/4;
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in a little more detail, with these values of N , β and γ, there are at least βN vertices in

B̃ ∪ D̃ whose link-graphs have at least (1/3 + µ/4)n− |(A ∪ C) ∩ V (S0)| vertices with
degrees at least (1/3 + µ/4)n− |(A ∪ C) ∩ V (S0)|, so for Lemma 4.15 to not apply, we

need this common quantity to be at most (1/2 + γ)|(A ∪ C) \ V (S0)|. We therefore

have the following property.

n− 3|(A ∪ C) ∩ V (S0)| ≤ 3|(A ∪ C) \ V (S0)|/2. (6)

Adding (2), (3) and (6) together, and rearranging, we have

|(B ∪D) \ V (S0)| ≤ |(A ∪ C) \ V (S0)|/2 + εn

≤ |(A ∪ C) \ V (S0)|+ µ3n/16,

contradicting (4) and completing the proof of the claim. □

Now, for each i ∈ [m], let C ′
i = Ci \V (S0) and choose a set D′

i ⊂ Di \V (S0) be a set

of size |C ′
i|, noting that such a choice is made possible by C2. Let A′ = A \ V (S0) and

B′ = (B ∪D) \

 ⋃
i∈[m]

D′
i

 ∪ V (S0)

,

and note that by Claim 4.23, we have

|B′| = |(B ∪D) \ V (S0)| −
∑
i∈[m]

|D′
i|

≤ |(A ∪ C) \ V (S0)| −
∑
i∈[m]

|C ′
i|+ µ3n/16

= |A′|+ µ3n/16. (7)

Furthermore, note that the sets

T1, T2, T3, Y0, Z, V (S0), A
′, B′, C ′

1, . . . , C
′
l , D

′
1, . . . , D

′
l (8)

constitute a partition of V (H).

Claim 4.24. There is a set S1 of at most ηn/4 vertex-disjoint green spheres in H with

vertices in T1 ∪ Z ∪ Y0 which cover all but at most µ3n/4 vertices in T1 ∪ Z ∪ Y0.

Proof. Set n′ = |Y1| = · · · = |Yl| and note that we have

(1− ε2/100)n/l ≤ n′ ≤ n/l.

Since R[Z] has a perfect matching, there exist distinct integers a1, a2, . . . , ar and

b1, b2, . . . , br such that

Z =
r⋃

i=1

(Yai ∪ Ybi),
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where each pair (Yai , Ybi) is (ε
2/100)-regular with density at least ε2/10. In particular,

for any subsets P ⊂ Yai and Q ⊂ Ybi with |P |, |Q| ≥ ε2n′/100, there are at least

9ε2|P ||Q|/100 pairs p ∈ P , q ∈ Q for which there are at least ε3n vertices t ∈ T1 so

that pqt is a green edge of H. Consequently, if T ′
1 is any set obtained by removing at

most ε4n vertices from T1, the induced 3-partite 3-graph of green edges of H between

P , Q and T ′
1 contains at least ε5|P ||Q||T ′

1| edges.
For each i ∈ [r] in turn, we use Lemma 4.3 to find at most ηn′/2 green spheres in

Yai ∪ Ybi ∪ T ′
1, each with two vertices in T ′

1, covering at least (1− ε2/100)n′ vertices in

each of Yai and Tbi , where T ′
1 ⊂ T1 is the dynamically-updated set of vertices not yet

used; at each stage, note that we we have |T1 \ T ′
1| ≤ ηn/2 ≤ ε4n.

The iterative procedure above gives us a total of at most η|Z|/4 ≤ ηn/4 spheres

covering all but at most ε2|Z|/100 vertices of Z. Since |T1| ≤ µ3n/8 and |Y0| ≤ ε2n/100,

all but at most

µ3n/8 + ε2n/50 < µ3n/4

vertices in T1 ∪ Z ∪ Y0 are covered, as required. □

Claim 4.25. There is a set S2 of at most ηn/4 vertex-disjoint green spheres with vertices

in T2∪(∪i∈[m](C
′
i∪D′

i)) which cover all but at most µ3n/4 vertices in T2∪(∪i∈[m](C
′
i∪D′

i)).

Proof. As we did in the proof of Claim 4.24, for each i ∈ [m] in turn, we may find at

most ηn′/2 green spheres covering all but at least (1 − ε2/100)n′ vertices in each of

C ′
i and D′

i, using only vertices from those sets and vertices from T2 which have not

previously been used. This covers all but at most

µ3n/8 + ε2n/100 < µ3n/4

vertices in T2 ∪ (∪i∈[m](C
′
i ∪ D′

i)), using at most ηn/4 vertex-disjoint green spheres,

establishing the claim. □

Claim 4.26. There is a set S3 of at most ηn/4 vertex-disjoint green spheres with

vertices in T3 ∪ A′ ∪B′ which cover all but at most µ3n/4 vertices in T3 ∪ A′ ∪B′.

Proof. Choose partitions A′ = A1 ∪ A2 ∪ A3 and B′ = B1 ∪ B2 such that |A1| = |B1|,
|A2| = |A3| and |B2| ≤ µ3n/16, noting that this is made possible by (7).

First we show that we may find at most ηn/8 vertex-disjoint green spheres in

T3 ∪ A1 ∪B1 covering all but at most µ3n/64 vertices in each of A1 and B1, with each

sphere using two vertices from T3. We may of course assume that |A1| = |B1| ≥ µ3n/64

as there is nothing to prove otherwise. Suppose A′
1 ⊂ A1 and B′

1 ⊂ B1 each have size

at least µ4n. By the definition of A, there are at most εn3 red edges of H meeting A′
1,

and since H is (ε, µ)-coloured, there are at most εn3 uncoloured edges in H. Hence, at

most 6εn2 pairs (a, b) with a ∈ A′
1 and b ∈ B′

1 are in at least n/3 non-green edges of H,
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so at least |A′
1||B′

1| − 6εn2 > |A′
1||B′

1|/2 pairs are in at least ε3n green edges with the

third vertex in T3. By Lemma 4.3, we can find the required spheres.

Similarly, since we have |T3 \T ′
3| ≤ ηn/4 < ε4n, where T ′

3 is the set of unused vertices

from T3 after almost covering A1∪B1 as above, we may find at most ηn/8 vertex-disjoint

green spheres in T ′
3 ∪ A2 ∪ A3 covering all but at most µ3n/64 vertices in each of A2

and A3. In total, these spheres cover all but at most

µ3n/8 + µ3n/16 + 4µ3n/64 = µ3n/4

vertices in T3 ∪ A′ ∪B′. □

Therefore, recalling the partition in (8), it is now clear that S0 ∪S1 ∪S2 ∪S3 is a

set of at most ηn vertex-disjoint green spheres covering all but at most µ3n vertices in

H, as required. □

4.7. Proof of the main result. We have now gathered all the ingredients we require

to complete the proof of our main result.

Proof of Theorem 1.4. By Theorem 2.6, if the surface S we wish to find a spanning

copy of is not homoeomorphic to S2, then it is homeomorphic either to a connected

sum of g tori or to a connected sum of g projective planes for some integer g ≥ 1; if S

is homeomorphic to S2, then we set g = 0.

Let 1/n ≪ η ≪ α, 1/k ≪ ε ≪ µ ≪ 1/g (with the convention that if g = 0, then we

replace 1/g by 1), and suppose that H is a 3-graph on n vertices with δ2(H) ≥ n/3+µn.

We construct a spanning copy of S in H as follows.

Colour the edges of H. By Lemma 4.9, for 1/n ≪ α, 1/k ≪ ε ≪ µ, we can colour

some of the edges of H red and green to get an (ε, µ)-coloured 3-graph in which any

monochromatic disjoint pair of edges is (α, k)-connectible.

Construct reservoirs. Next, we choose two disjoint subsets R1, R2 ⊂ V (H) with

|R1| = |R2| = µn/144 and the following additional properties.

D1 For any pair (e, f) of disjoint green edges of H, and any subset F ⊂ R1 with

|F | ≤ 4ηkn, there exists a set A ⊂ R1 \ F with |A| ≤ k for which there is a

sphere with vertex set V (e) ∪ V (f) ∪ A containing e and f .

D2 For each pair of vertices x, y ∈ V (H), there are at least (1/3 + µ/2)|R2| vertices
u in R2 such that uxy ∈ E(H).

D3 There are at least µ|R2|/8 vertices in R2 contained in fewer than εn2 red edges

each.

To show that such a choice of R1 and R2 is possible, we employ the probabilistic

method: we pick two disjoint subsets R′
1, R

′
2 ⊂ V (H) with |R′

1| = |R′
2| = µn/144
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uniformly at random, and show that they satisfy each of the above properties with

probability at least 3/4.

First, let us verify that that R′
1 satisfies D1 with probability at least 3/4. Let

e and f be two arbitrary disjoint green edges. Since both these edges are green, e

and f are (α, k)-connectible, so by Lemma 4.4, for some l with 1 ≤ l ≤ k, there are

r ≥ αn/l pairwise disjoint sets A1, A2, . . . , Ar ⊂ V (H) for which there is a sphere with

vertex set V (e) ∪ V (f) ∪ Ai containing e and f . Each of these sets independently has

probability (µ/144)l of being contained in R′
1, so Proposition 2.5 implies that at least

α(µ/144)ln/(2l) of the Ai are contained in R′
1 with probability 1− o(n−6). In this case,

for any F ⊂ R′
1 with |F | ≤ 4ηkn, since each vertex in F is in at most one of the disjoint

sets Ai, at least

α(µ/144)ln/(2l)− |F | > 0

of the Ai lie entirely within R′
1 \F . Since there are O(n6) possible pairs (e, f), it follows

that D1 holds with high enough probability.

Next, we prove that R′
2 satisfies D2 with probability at least 3/4. For a given pair

of vertices x, y ∈ V (H), at least (1/3 + µ)n vertices form an edge with x and y in H.

Each such vertex independently has probability |R′
2|/n of being in R′

2. Consequently,

Proposition 2.5 implies that at least (1/3 + µ/2)|R′
2| such vertices end up in R′

2 with

probability 1− o(n−2); it follows from the union bound that D2 holds with high enough

probability.

Finally, we prove that R′
2 satisfies D3 with probability at least 3/4. By virtue of

being (ε, µ)-coloured, there are at least µn/4 vertices in fewer than εn2 red edges in H,

and each such vertex ends up in R′
2 with probability |R′

2|/n, so Proposition 2.5 again

implies that at least µ|R′
2|/8 such vertices are in R′

2 with very high probability, proving

that D3 also holds with high enough probability.

Going forward, we fix these two disjoint sets R1 and R2 with the properties described

above and set R = R1 ∪R2.

Build absorbers. Appealing to Lemma 4.13, we find a collection S1 of at most ηn

vertex-disjoint green-tinged spheres disjoint from R, which can absorb any subset of R

and which have at most µn/9 vertices in total; let U be the set of vertices belonging to

spheres in S1.

Find an almost-spanning collection of spheres. Let G = H[V (H) \ (R ∪ U)]

with colours inherited from H. Note that because |R ∪ U | ≤ µn/8, we have |V (G)| ≥
(1− µ/8)n, so

δ2(G) ≥ (1/3 + 7µ/8)n > (1/3 + µ/2)|V (G)|.
Additionally, G has at most εn3 < 2ε|V (G)|3 uncoloured edges and at most εn4 <

2ε|V (G)|4 pairs of touching red and green edges. Finally, G has at least µn/8 vertices

in fewer than εn2 < 2ε|V (G)|2 red edges. Consequently G is (2ε, µ/2)-coloured; in
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R1 R2

U

BW

Figure 6. The situation after finding an almost-spanning collection of

spheres; the arrows signify the ability of the spheres in U to absorb any

subset of R.

particular it contains at least µn3/100 green edges. If S is not homeomorphic to S2,

then we employ Theorem 2.1 to obtain a collection G of g green copies of T9 or P12 in

G as appropriate, using at most 12g vertices; if S is homeomorphic to S2, then we set

G = ∅.

Easily, the 3-graph G ′ obtained by removing vertices of surfaces in G from G is

(3ε, µ/3)-coloured, so by Lemma 4.20, we can find a collection S2 of at most ηn vertex-

disjoint green spheres in G ′ which cover all but at most µ3n of the vertices of G ′. Let B

be the set of vertices in V (H) \ (R ∪ U) which are not in any surface in G ∪S2, and

write W for V (G ∪S2).

To summarise, we have now decomposed the vertices of H into R = R1 ∪ R2, U =

V (S1),W = V (G ∪S2) and B, as shown in Figure 6.

Mop up uncovered vertices using the reservoir R2. Next, we show that we can

mop up the set B of uncovered vertices with green-tinged spheres using vertices in

B ∪R2 alone.

Claim 4.27. H[B ∪R2], with colours inherited from H, is (1444ε/µ4, µ/3)-coloured.

Proof. Indeed, this 3-graph has m vertices where m = |B ∪R2| ≥ |R2|, so

µn/144 ≤ m < µn/144 + µ2n/1442.
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By D2, each pair of vertices in B ∪ R2 has codegree at least (1/3 + µ/2)µn/144 >

(1/3 + µ/3)m in H[B ∪R2]. Also, H[B ∪R2] certainly contains at most

εn3 ≤ 1443εm3/µ3 < 1444εm3/µ4

uncoloured edges, and at most εn4 ≤ 1444εm4/µ4 pairs of differently-coloured touching

edges. Finally, D3 ensures that at least µ|R2|/8 > µm/12 vertices are in fewer than

εn2 ≤ 1442εm2/µ2 red edges. □

Consequently, it follows from Corollary 4.14 that there is a collection S3 of at most

ηn vertex-disjoint green-tinged spheres in H[B ∪R2] which cover all the vertices in B.

Connect into a single spanning surface using the reservoir R1. Order the

surfaces in S1 ∪ S2 ∪ S3 ∪ G as S1, S2 . . . , Sl where S1 = {S1, S2 . . . , Sq}; since Si

contains at most ηn spheres for each 1 ≤ i ≤ 3, and |G| ≤ g, we have l ≤ 4ηn.

Since V (S1) = U , V (G) and V (S2) are disjoint and W = (V (G) ∪ V (S2)) ⊂
V (H) \ (R ∪ U), and V (S3) ⊂ B ∪R2, where B = V (H) \ (R ∪ U ∪W ), all the above

surfaces are disjoint both from each other and from R1. By the choice of S1, for each

sphere Si with 1 ≤ i ≤ q, there are two green edges ei, fi ∈ Si and a set of vertices

Qi ⊂ R such that for any set Q′ ⊂ Qi, there is a sphere on the vertex set V (Si) ∪Q′

containing ei and fi, where the Qi are pairwise disjoint and ∪q
i=1Qi = R. Every sphere

in S2 ∪S3 is green-tinged, as is every surface in G, so for each i with q < i ≤ l, we

again choose two different green edges ei, fi ∈ Si.

For each 1 ≤ i ≤ l − 1 in turn, by D1, we find a sphere Ŝi containing fi and ei+1 on

the vertex set V (fi) ∪ V (ei+1) ∪ Ai, where |Ai| ≤ k and Ai ⊂ R1 \ Fi, where Fi is a

nested sequence of sets given by Fi = ∪j<iAj; note that |Fi| < ik < lk ≤ 4ηnk, so this

is indeed possible. The role of these spheres Ŝi will be to connect the Si together into a

single surface. This works as follows: if we remove fi and ei+1 from Ŝi as well as from

Si and Si+1 respectively, then the rest of Ŝi yields a cylindrical tube that helps us form

the connected sum of Si and Si+1.

However, in addition to gluing the Si together, we still need to take care of some

uncovered vertices in R. Here, we rely on the properties of our absorbers, which allows

us to incorporate them into the Si without affecting our gluing plans. Indeed, writing

F = ∪j<lAj, let R′
1 = R1 \ F be the set of vertices in R1 not used in any of the

connecting spheres Ŝi for 1 ≤ i ≤ l− 1, and let R′
2 be the set of vertices in R2 not used

in any sphere in S3, i.e., R
′
2 = B ∪R2 \V (S3). For each i ≤ q, let Q′

i = Qi ∩ (R′
1 ∪R′

2),

and let S ′
i be a sphere on vertex set V (Si)∪Q′

i containing ei and fi. For each i > q, set

S ′
i = Si.
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To finish, we observe that the symmetric difference of the union of the edge-sets of

all the S ′
i and all the Ŝi, or in other words, the edge set(

l⋃
j=1

S ′
j

)
∪

(
l−1⋃
j=1

Ŝj

)
\ {e2, e3, . . . , el, f1, f2, . . . , fl−1},

yields a surface homeomorphic to S. The vertex set of this copy of S is

V ′ = V (S1) ∪R′ ∪ V (S2 ∪G) ∪ V (S3) ∪ F.

Finally, since

V (S1) ∪R′ = U ∪R′
1 ∪R′

2,

V (S2 ∪G) = V (H) \ (R1 ∪R2 ∪ U ∪B),

V (S3) = B ∪R2 \R′
2, and

F = R1 \R′
1,

we see that V ′ = V (H), so the copy of S that we have found is spanning, proving the

result. □

5. Conclusion

In this paper, our main result, Theorem 1.4, asymptotically determines the minimum

codegree guaranteeing the existence of a spanning copy of the sphere in a 3-graph.

Several natural questions remain; to begin with, it would be nice to eliminate the error

term in our result, and in this direction, we conjecture the following.

Conjecture 5.1. Every 3-graph H on n > 3 vertices with δ2(H) > n/3 contains a

spanning copy of the sphere S2.

Just as natural is to ask what happens in ‘higher dimensions’, or in other words, what

the analogue of our main result for r-graphs ought to be for an arbitrary r ∈ N. For
any integer r ≥ 2, the codegree of a set of r − 1 vertices in an r-graph H is the number

of edges of H containing the set in question, and writing δr−1(H) for the minimum

codegree of an r-graph H, we conjecture the following.

Conjecture 5.2. For each r ≥ 2, any r-graph H on n > r vertices with δr−1(H) > n/r

contains a spanning copy of the (r − 1)-dimensional sphere Sr−1.

That such a bound would be asymptotically best-possible is seen by the following

construction generalising the one presented in Figure 1. Given a positive integer n

divisible by r, let X1, X2, . . . , Xr, be r disjoint sets of vertices of size n/r each, and

consider an r-graph H on the vertex set V = X1 ∪X2 ∪ · · · ∪Xr constructed as follows.

For a vertex v ∈ V , write i(v) for the index such that v ∈ Xi(v), and for a set Y of

r vertices, let i(Y ) =
∑

y∈Y i(y) (mod r); we then take the edge set of H to consist
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precisely of those sets of Y of r vertices for which i(Y ) = 1. Note that each ‘pattern’

comprising r choices among the Xi (with repetitions allowed) gives rise to a distinct

tight component in H, none of which are spanning because
∑

1≤i≤r i ̸= 1 (mod r); here,

as before, we say that two edges in an r-graph touch if they meet in r − 1 vertices, and

a tight component is, once again, an equivalence class of the transitive closure of this

relation. In particular, this r-graph H does not contain a spanning copy of any closed

manifold.

In this paper, we addressed all two-dimensional surfaces simultaneously in Theo-

rem 1.4. In the same spirit, one can also ask about other higher-dimensional manifolds

than spheres, and in particular, whether there exist manifolds for which the codegree

threshold differs qualitatively from that of the corresponding sphere; however, it is

also perhaps worth remembering that unlike in the two-dimensional setting, not all

higher-dimensional manifolds are triangulable; see [11, 21] for example.

Given that a minimum codegree of n/3 is the threshold at which an n-vertex 3-graph

is guaranteed to both have a spanning tight component and a spanning copy of the

sphere, it is natural to wonder to what extent the main obstacle to finding a spanning

copy of the sphere is the existence of a spanning tight component. In particular, one

could ask whether the global codegree condition in the statement of Theorem 1.4 of

δ2(H) ≥ (1/3 + µ)n for an n-vertex 3-graph H can be relaxed if we assume that H has

a spanning tight component T and, say, that the codegrees of pairs inside T are large.

Perhaps surprisingly, this is not the the case! The following 3-graph H on n vertices

has minimum codegree almost n/2 in its unique tight component, and no spanning

copy of any surface. The vertex set of H consist of two designated vertices u and v

and disjoint sets X and Y of size (n− 2)/2 each, and the edge set of H is obtained by

starting with the complete 3-graph on its vertex set and subsequently removing every

edge meeting both X and Y . Assuming H contains a spanning copy of any surface S,

remove any edges containing both u and v from S to split it into two tight components;

this easily leads to a contradiction by elementary topological arguments.

The construction above, and its generalisation to r-graphs obtained by replacing the

set {u, v} by a set of r − 1 vertices, leads to the following natural conjecture, made

particularly attractive by the fact that it predicts a threshold at the codegree density

of 1/2, independent of the dimension.

Conjecture 5.3. For each r ≥ 2, if H is an r-graph on n > r vertices comprising a

single tight component such that, for every set Z of r− 1 vertices of H that is contained

in some edge of H, there are at least n/2 edges of H containing Z , then H contains a

spanning copy of the (r − 1)-dimensional sphere Sr−1.

Let us close by remarking that many extremal results about cycles in graphs ought

to have natural generalisations formulated in terms of triangulations of spheres in
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hypergraphs. We shall resist the temptation to list further open problems of this kind

here, although we would certainly be very interested to see more results of this nature.

Perhaps the main message of this paper is that it is possible to do ‘extremal simplicial

topology’ with a flavour similar to extremal graph theory, and that some of the major

techniques in the latter field, like regularity and absorption, can be brought to bear on

the former.
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22. V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform

hypergraphs, Combin. Probab. Comput. 15 (2006), 229–251. 1, 8

23. , Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hy-

pergraphs, Adv. Math. 227 (2011), 1225–1299. 1

24. H. Seifert and W. Threlfall, A textbook of topology, Pure and Applied Mathematics,

vol. 89, Academic Press, New York, 1980. 2, 7
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