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Abstract. Resolving a conjecture of Füredi from 1988, we prove that with high

probability, the random graph G(n, 1/2) admits a friendly bisection of its vertex set,

i.e., a partition of its vertex set into two parts whose sizes differ by at most one in

which n − o(n) vertices have more neighbours in their own part than across. Our

proof is constructive, and in the process, we develop a new method to study stochastic

processes driven by degree information in random graphs; this involves combining

enumeration techniques with an abstract second moment argument.

1. Introduction

In a cut of a graph, i.e., a partition of its vertex set into two parts, we call a

vertex friendly if it has more neighbours in its own part than across, and unfriendly

otherwise. Questions about finding friendly and unfriendly partitions of graphs, i.e.,

partitions in which all (or almost all) the vertices are friendly or unfriendly, have

been investigated in various contexts: in combinatorics, on account of their inherent

interest [37, 34, 10, 5, 19, 30, 26], in computer science, as ‘local’ analogues of important

NP-complete partitioning problems [4, 13], in probability and statistical physics, owing

to their connections to spin glasses [18, 20, 1, 32], and in logic and set theory [2, 31]; this

list is merely a representative sample since such partitions have been studied extremely

broadly. On the other hand, when it comes to finding friendly or unfriendly bisections,

i.e., partitions into two parts whose sizes differ by at most one, much less is known.

Our aim here is to prove an old and well-known conjecture about random graphs due

to Füredi [16]. This problem has gained some notoriety over the years, in part due to

its inclusion in Green’s list of 100 open problems [21]. Our main result is as follows.

Theorem 1.1. With high probability, an Erdős–Rényi random graph G ∼ G(n, 1/2)

admits a bisection in which n− o(n) vertices are friendly.

To place Füredi’s conjecture and its resolution here in context, we recall some

background and some simple observations. It is a classical fact that every graph admits

a partition in which every vertex is unfriendly, as evidenced by any maximum cut. On

the other hand, it is also well-known that not every graph admits a partition in which
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every vertex is friendly, though a general result of Stiebitz [34] ensures that one can

always find a partition in which every vertex is ‘almost friendly’, and it is easy to deduce

from this that G(n, 1/2) has, with high probability, a partition into two sets of size

n/2± o(n) in which n− o(n) vertices are friendly. When it comes to bisections however,

there is mostly speculation, and essentially nothing along these lines was previously

known; see [10, 5] for some interesting conjectures.

It is worth mentioning an elementary heuristic for why Theorem 1.1 should plausibly

hold. In a random graph G(n, 1/2), if we fix a bisection A ∪ B and a vertex v, and

consider the numbers degA(v) and degB(v) of v’s neighbours in A and B respectively,

then degA(v) and degB(v) are independent and have essentially the same distribution

(one is distributed as Binomial(n/2, 1/2), and the other as Binomial(n/2 − 1, 1/2)).

Thus, the probability that a particular vertex is friendly with respect to a particular

bisection is about 1/2. For different vertices v and w, it seems plausible that the

events that v is friendly and that w is friendly should be positively correlated, so the

probability that at least (1 − ε)n vertices are friendly with respect to A ∪ B should

be at least about 2−(1−ε)n. Since there are
(
n
n/2

)
= 2n−o(n) choices of A ∪ B, it seems

reasonable to expect that there should be at least one bisection satisfying the conclusion

of Theorem 1.1. It seems to be very challenging to make the above line of reasoning

rigorous. However, there are a few simple ways in which we can prove the following

weakening of Theorem 1.1: with high probability, G ∼ G(n, 1/2) admits a bisection

A∪B in which 0.6n vertices are friendly. One such argument is as follows. It is easy to

show that in a random bisection, typically about half of the vertices in G are friendly.

For some small constant ε > 0, we can then take the εn unfriendliest vertices on each

side and swap them, and it would appear that one can use this idea to construct a

bisection where at least say 0.6n vertices are friendly. An alternative iterative argument

to establish the same result is as follows: partition the vertices into pairs, go through

the pairs one-by-one, at each step revealing the edges between the current pair {x, y}
and all previous pairs, and decide whether to put x in A and y in B or to put x in

B and y in A depending on which choice would make {x, y} ‘as friendly as possible’.

Finally, one could also prove such a weakened bound by considering a maximum cut of

the complement of G, and then randomly ‘rebalancing’ it into a bisection.

Finally, the most obvious direction for improvement with regard to Theorem 1.1 is

to quantify or remove the o(n) term in the result. With appropriate quantification, our

proof allows for the o(n) in Theorem 1.1 to be replaced by O(n/ log log log log log n);

however, computer experiments seem to indicate that with iterative swapping processes

of the type considered in this paper, one can quite rapidly reach a partition in which

only a tiny number of vertices are unfriendly. In fact, we cannot rule out the possibility

that G(n, 1/2) typically admits a bisection where all the vertices are friendly. It is not

implausible that such bisections exist, but are nonetheless computationally difficult to
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find, a situation that would be somewhat reminiscent of the largest clique problem in

random graphs (see [17], for example).

Degree-driven stochastic processes. Although Theorem 1.1 is specifically about

friendly bisections of random graphs, the approach we adopt to prove this result is rather

general, and it may be that the more important point of this work is its contribution

to methodology. Concretely, we develop a method that appears suitable for analysing

many different types of stochastic processes on random graphs driven primarily by

degree information; for example, the fourth and fifth authors [29] have settled various

conjectures of Tran and Vu [38] concerning majority dynamics on random graphs using

modifications of the techniques developed here. Below, we outline how our approach

allows us to prove Theorem 1.1.

We adopt a constructive approach that yields an efficient algorithm to find the

bisection promised by Theorem 1.1. To motivate our approach, it is instructive to

consider the following basic algorithm, motivated by the classical large-cut-finding

algorithm: starting with any bisection A∪B of a graphG, repeatedly check whether there

are vertices v ∈ A and w ∈ B such that degB(v) > degA(v) and degA(w) > degB(v),

and if so, swap v and w. It is easy to see that such a swap must decrease the size (i.e.,

the number of crossing edges) of the bisection, so this algorithm must terminate. Of

course, if we are unlucky, it might happen that when the algorithm terminates, all the

vertices in A are friendly, while very few of the vertices in B are friendly, so the resulting

bisection may be very far from satisfying the conclusion of Theorem 1.1. However, it

seems plausible that such an outcome is rather unusual: if G is sampled from G(n, 1/2),

then one might expect this algorithm (interpreted as a random process) to typically

follow a predictable trajectory, and in particular, the number of friendly vertices in A

and in B to stay roughly the same for most of the duration of the algorithm.

This is a promising starting point, especially due to the fact that we do not actually

need to fully understand the typical trajectory of the process. Indeed, we only need

to show that at each step k, the number of friendly vertices in A concentrates around

some value Nk. By symmetry (assuming for the moment that n is even), the number

of friendly vertices in B would then concentrate around Nk as well, so the numbers of

friendly vertices in A and B would never get ‘too imbalanced’. However, it is far from

obvious how to actually establish concentration. Roughly speaking, the main issue is

that in order to execute even the first step of the algorithm, we have to inspect every

vertex of our graph, meaning that there is seemingly ‘no remaining randomness’ for

the second step. This is in contrast with most other random graph processes in the

literature (such as H-free or H-removal processes, as in [8, 7, 15] for example), where

each individual step is defined in terms of a random choice.

There are two ideas that allow us to salvage enough randomness to establish the

desired concentration with. First, instead of swapping vertices one at at time, we shall
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instead swap a sizeable ‘batch’ of vertices between A and B in each step; this is strongly

reminiscent of the influential ‘nibbling’ idea introduced by Rödl [28]. We will be able to

use discrepancy properties of random graphs to show that, in a typical outcome of the

random graph G(n, 1/2), when we have a bisection A ∪B in which many vertices in A

and in B are unfriendly, swapping a large number of the ‘unfriendliest’ vertices in A and

in B dramatically decreases the size of the bisection. That is to say, it should only take

a few steps, (about exp(1/ε), in fact) to reach a bisection in which one of the two parts

has (1 − ε)n/2 friendly vertices. This makes the problem of establishing concentration

more tractable, since we now only need to do this for a large constant number of steps.

Our second main observation is that in order to execute a step of our algorithm, we

only need to know the degrees degA(v) and degB(v) for each vertex v at that stage (and

not any other information about the graph). Thus, instead of revealing the whole graph

to study the first step, we may simply reveal the required degree information, meaning

that our random graph is now conditionally a degree-constrained random graph. We

then have the randomness of this degree-constrained random graph with which to show

concentration at the next step, for which we again only need to (dynamically) reveal

some more degree information, and so on.

The above observations leave us with the task of demonstrating concentration in

some (families of) degree-constrained random graphs. In order to study these degree-

constrained random graphs, we have at our disposal powerful enumeration theorems due

to McKay and Wormald [27], and extensions by Canfield, Greenhill, and McKay [12],

which give very precise asymptotic formulae for the number of graphs with specified

degree information. In principle, this allows one to write down explicit formulae for

essentially all relevant probabilities, from which one could attempt to compute the

typical trajectory of the process. However, the necessary computations are formidable,

and in particular, the various densities under consideration do not appear to have

closed-form expressions past the first few iterations.

Our approach to circumventing these issues brings us to the heart of the matter: we

develop an abstract second-moment argument with which one can establish concen-

tration of various statistics at a given step, using only stability and anti-concentration

information about the outcomes of previous steps. In particular, this enables us to

establish concentration without actually knowing the trajectory of the process. This is

superficially reminiscent of martingale arguments establishing concentration around

the mean without any knowledge of the location of the mean itself (see [3]), but the

inputs to such arguments, typically Lipschitz-like behaviour of the random variables of

interest, are rather different from the inputs to our argument. As mentioned earlier,

the methods in our argument are quite general, and we anticipate that a broad range

of similar stochastic processes will now become amenable to analysis.
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Notation. Our graph-theoretic notation is for the most part standard; see [9] for terms

not defined here. In a graph G, we write deg(v) for the degree of a vertex v ∈ V (G),

and N(v) for its neighbourhood; also, for a subset U ⊂ V (G), we write degU (v) for the

number of neighbours of v in U , i.e., for the size of N(v) ∩ U . We write G(n, p) for the

Erdős–Rényi random graph on n vertices with edge density p.

Our use of asymptotic notation is mostly standard as well. We say that an event

occurs with high probability if it holds with probability 1 − o(1) as some parameter

(usually n, unless we specify otherwise) grows large. Constants suppressed by asymptotic

notation may be absolute, or might depend on other fixed parameters; we shall spell

out the latter situation explicitly whenever there might be cause for confusion. To

lighten notation, we write f = g ± h for |f − g| ≤ h. We maintain this convention

with asymptotic notation as well, so f = g ± n−Ω(1) for example is taken to mean

|f − g| = n−Ω(1). We also adopt the following non-standard bit of notation: as a

parameter n grows large, we write f ≃ h if f = (1 ± n−Ω(1))h. Finally, following a

common abuse, we omit floors and ceilings wherever they are not crucial.

Organisation. This paper is organised as follows. In Section 2, we describe the

swapping process that allows us to prove Theorem 1.1, and also give the deduction of

our main result from a few key lemmas. In Section 3, we dispose of the more routine of

these lemmas. The beef of our argument is in Section 4, where we must work rather

hard to establish the key concentration properties of our swapping process.

2. Overview

In this section we make some initial observations, then describe a random swapping

process that underlies our argument and state some facts about this process (with

proofs to follow later). We then show how to deduce Theorem 1.1 from these facts.

Given a bisection A ∪ B of a graph, the friendliness ∆A,B(v) of a vertex v is the

difference between the number of its neighbours on its own side and the number of its

neighbours on the other side. We say a vertex is friendly if its friendliness is positive,

and otherwise, we say it is unfriendly. The total friendliness ∆A,B of the bisection

A ∪B is then given by

∆A,B =
∑

v∈V (G)

∆A,B(v).

We also make a simple observation that allows us to restrict our attention to random

graphs of even order (which in turn allows us to somewhat simplify the presentation).

A simple union bound (similar to calculations we will see in Section 3) shows that with

high probability, in any partition of the vertex set of G(n, 1/2), at most 10n/ log n

vertices have friendliness 1, i.e., have exactly one more neighbour on their own side

than across, or vice versa. Consequently, it clearly suffices to establish Theorem 1.1 for
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G(n, 1/2) when n is even; indeed, when n is odd, we may delete an arbitrary vertex from

the random graph, apply Theorem 1.1 to the result, and add back the deleted vertex to

either part to get the desired bisection. Therefore, all graphs under consideration will

be of even order unless explicitly specified otherwise, and we shall not belabour this

point any further.

The following lemma shows that for a typical outcome of the random graph G(n, 1/2),

there is a window of length O(n3/2) within which the total friendliness of any bisection

lies.

Lemma 2.1. There is a γ > 0 such that for a random graph G ∼ G(n, 1/2), with high

probability, every bisection A ∪B of G has |∆A,B| < γn3/2.

Next, we shall define a simple random ‘swap’ operation that modifies a bisection

with the aim of making it more friendly.

Definition 2.2. Given a bisection A ∪B of an n-vertex graph G and 0 < α < 1/2, the

α-swap of A ∪B is the random bisection obtained by the following procedure. First, we

take the subset A′ ⊂ A of the ⌊αn⌋ most unfriendly vertices in A, and the subset B′ ⊂ B

of the ⌊αn⌋ most unfriendly vertices in B (breaking ties according to some a priori fixed

ordering of the vertex set), and swap A′ and B′. At this stage, the parts of the resulting

bisection are then (A \ A′) ∪B′ and (B \B′) ∪ A′. Next, we make a uniformly random

choice of ⌊α4n⌋ vertices on both of these sides, and swap these subsets.

We remark that the second (random) swap in the α-swap procedure is not actually

necessary for the proof of Theorem 1.1, but the analysis later in the paper would become

substantially more involved without it.

The following lemma shows that in a typical outcome of the random graph G(n, 1/2),

for every bisection A ∪B, either our swapping operation increases the total friendliness

by Ω(n3/2), or almost all the vertices in one of the parts (either A or B) are already

friendly. Here there are two sources of randomness (the random graph and the random

swap); we emphasise that we fix a particular outcome of the random graph, and then

consider a random swap in the setting of that particular graph.

Lemma 2.3. For every fixed ε > 0, there are α ∈ (0, ε) and β > 0 for which a random

graph G ∼ G(n, 1/2) has, with high probability, the following property. In any bisection

A∪B of G in which at least εn vertices are unfriendly in each of A and B, the random

bisection A1 ∪B1 obtained from an α-swap of A ∪B always satisfies

∆A1,B1 ≥ ∆A,B + βn3/2.

Finally, the next lemma establishes concentration properties for bisections obtained

by iterating our swapping operation.
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Lemma 2.4. Fix ε > α > 0, k ∈ N, and an arbitrary bisection A ∪B of the vertex set

of G(n, 1/2). For a random graph G ∼ G(n, 1/2), let Ak ∪Bk be the bisection obtained

by performing k iterations of the α-swap procedure starting from A∪B. Writing X and

Y respectively for the number of unfriendly vertices in Ak and Bk, we have with high

probability that |X − Y | = o(n).

With these facts in hand, we may now easily deduce Theorem 1.1.

Proof of Theorem 1.1. For any fixed ε > 0, we shall show that G ∼ G(n, 1/2) with high

probability has a bisection in which at most 2εn+ o(n) vertices are unfriendly.

Say V (G) = {1, . . . , n}, define the bisection A0 ∪ B0 by A0 = {1, . . . , n/2} and

B0 = {n/2 + 1, . . . , n}. Let γ be as in Lemma 2.1 and β as in Lemma 2.3 applied to ε.

Set K = ⌈2γ/β⌉ + 1, and let

A1 ∪B1, A2 ∪B2, . . . , AK ∪BK

be the sequence of bisections arising from K iterations of the α-swap procedure starting

from A0 ∪B0.

Say that a bisection A ∪B is ε-good if there are at most εn unfriendly vertices in A

or at most εn unfriendly vertices in B. Now, the following properties hold with high

probability, by Lemmas 2.1, 2.3 and 2.4.

(1) There is an interval of length at most 2γn3/2 such that the total friendliness of

every bisection of G lies in this interval.

(2) For every 0 ≤ k ≤ K−1, either Ak∪Bk is ε-good, or ∆Ak+1,Bk+1
≥ ∆Ak,Bk

+βn2/3.

(3) For every 1 ≤ k ≤ K, the numbers of unfriendly vertices in Ak and in Bk differ

by o(n).

Fix outcomes of G and A1 ∪B1, A2 ∪B2, . . . , AK ∪BK satisfying all these properties.

Now, by property (1), it is not possible for the total friendliness to increase by βn3/2 in

each of the K iterations. So, by property (2), there must be some k for which Ak ∪Bk

is ε-good, meaning that there are at most εn unfriendly vertices in Ak or at most εn

unfriendly vertices in Bk. The third property (3) now ensures that there are at most

2εn + o(n) unfriendly vertices in total at this stage. The bisection Ak ∪ Bk has the

properties we desire, proving the result. □

Overview of the proofs of the key lemmas. We now briefly discuss the proofs of

Lemmas 2.1, 2.3 and 2.4.

First, Lemma 2.1 is proved via a Chernoff bound and a simple union bound over all

possible bisections. Second, Lemma 2.3 is also proved by a union bound: we show that

that no bisection of the graph has many vertices with friendliness very close to zero,

so that there is always some reasonably large gain from swapping unfriendly vertices;
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here, one must also control the (small) amount of additional unfriendliness potentially

introduced between pairs of swapped vertices.

The proof of Lemma 2.4 is by far the most technical ingredient in the proof. At a

high level, one runs the iterated swap algorithm on a random graph G ∼ G(n, 1/2), at

each step revealing only that information about G (namely, degrees into certain parts)

which is necessary to determine the outcome of the α-swap procedure. So, at every step,

we need to study a degree-constrained random graph model; this is accomplished using

graph enumeration techniques in the style of McKay–Wormald [27]. One can track the

fraction of vertices that live in prescribed parts at prescribed times inductively, showing

via the second moment method in our degree-constrained random graph model that the

numbers of different types of vertices are concentrated. However, several obstacles arise

naturally due to the presence of complicated conditional distributions, and the need

for all of the different ‘well-conditioned’ degree-constrained models (based on different

revelations) to converge to a single distribution of degrees. The totality of what must

be tracked to implement this argument is contained in Proposition 4.3.

In particular, we note that the first part of the proof (Lemmas 2.1 and 2.3) and

the second part of the proof (Lemma 2.4) are essentially logically independent, and

the analysis here can be extended to a variety of similar algorithms based on degree

sequences. One can think of the first part as providing a monovariant to the graph

process analysed in the second part, guaranteeing that the graph partition ‘gets better’

over time and converges to a friendly distribution of degrees rather than to an abstract

(iterated) optimiser of some associated variational problem.

3. Monotonicity of the iterated swapping process

In this section we prove Lemmas 2.1 and 2.3. To start with, we need some simple

facts about centered binomial distributions. The first is a Chernoff bound (see [22],

for example) and the second follows from either Stirling’s approximation or the Erdős–

Littlewood–Offord theorem (see [36]).

Theorem 3.1. For N ∈ N, let X1, . . . , XN be independent Rademacher random vari-

ables (satisfying P(Xi = 1) = P(Xi = −1) = 1/2), and let X = X1 + · · · +XN .

(1) For all t ≥ 0, we have P(|X| ≥ t) ≤ 2e−t
2/(2N).

(2) For all t ≥ 1 and all x ∈ R, we have P(|X − x| ≤ t) ≤
√

2t/
√
N . □

The proof of Lemma 2.1 is extremely simple, being a routine application of the union

bound.

Proof of Lemma 2.1. There are
(
n
n/2

)
≤ 2n bisections in total. For each such bisection

A ∪B, the random variable ∆A,B + n/2 has a centered binomial distribution to which
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Theorem 3.1 applies (with N =
(
n
2

)
). For sufficiently large γ, we then have

P
(
|∆A,B| ≥ γn3/2

)
≤ 2 exp

(
−(γn3/2 − n/2)2

2
(
n
2

) )
= o(2−n),

so the desired result follows from the union bound. □

Lemma 2.3 is also proved by the union bound, but for this, we will first need to prove

some auxiliary lemmas.

Lemma 3.2. For any sufficiently small fixed η > 0, a random graph G ∼ G(n, 1/2)

with high probability has the property that for every bisection A ∪ B of G, we have

|∆A,B(v)| ≥ 4−1/η
√
n for all but at most ηn vertices v ∈ A, and for all but at most ηn

vertices v ∈ B.

Proof. For each bisection A ∪ B, if we condition on an outcome of G[A], then the

random variables {∆A,B(v) : v ∈ A} become mutually independent. Conditionally, for

each v ∈ A, the random variable 2(degB(v)− n/4) = 2(−∆A,B(v) + degA(v)− n/4) has

a centered binomial distribution to which Theorem 3.1 applies (with N = n). Therefore,

P
(
|∆A,B(v)| ≤ 4−1/η

√
n
)
≤ (2

√
2 · 4−1/η

√
n)/

√
n− 1 ≤ 4 · 4−1/η

for large n, from which it follows that the probability that the property in the statement

of the lemma does not hold is at most

2+1n

(
n/2

ηn

)
(41−1/η)ηn ≤ 23n/2+2ηn4−n = o(1). □

Lemma 3.3. For any sufficiently small fixed α > 0, a random graph G ∼ G(n, 1/2)

with high probability has the property that for every bisection A∪B of G and every pair

of subsets A′ ⊂ A and B′ ⊂ B each of size αn, we have

|∆A′,B′| ≤ α4/3n3/2,

where we view A′ ∪B′ as a bisection of the induced subgraph G[A′ ∪B′].

Proof. Note that the event does not depend on A,B, only on A′, B′. For subsets A′ and

B′ as in the statement of the lemma, the random variable ∆A′,B′ + αn has a centered

binomial distribution to which Theorem 3.1 applies (with N =
(
2αn
2

)
). We then have

P
(
|∆A′,B′| ≥ α4/3n3/2

)
≤ 2 exp

(
−(α4/3n3/2 − αn)2

2
(
2αn
2

) )
= o

((
n

αn

)−2
)
,

so the desired result follows from a union bound over all choices of A′ and B′. □

Lemma 3.4. For any sufficiently small fixed δ > 0, a random graph G ∼ G(n, 1/2) with

high probability has the following property. For every bisection A ∪B, and every pair

9



of subsets A′ ⊂ A,B′ ⊂ B each of size δn, if we swap A′ and B′ to obtain a bisection

A1 ∪B1 with A1 = (A \ A′) ∪B′ and B1 = (B \B′) ∪ A′, then we have

|∆A1,B1 − ∆A,B| ≤ δ1/3n3/2.

Proof. For each bisection A ∪ B and subsets A′ and B′ as in the lemma statement,

the random variable ∆A1,B1 − ∆A,B has a centered binomial distribution to which

Theorem 3.1 applies (with N = 4(n/2 − δn)δn). We then have

P
(
|∆A1,B1 − ∆A,B| ≥ δ1/3n3/2

)
≤ 2 exp

(
− (δ1/3n3/2)2

4(n/2 − δn)δn

)
= o

(
2−n
(
n/2

δn

)−2
)
,

so the desired result follows once again from the union bound. □

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Let η < ε/2 be small enough for Lemma 3.2 to hold. Let α ∈
(0, ε/2) be small enough so that Lemma 3.3 holds and Lemma 3.4 holds for δ = α4, and

also α ≤ 4−3/η. Now assume that the properties in Lemmas 3.2 to 3.4 all hold for G

with these parameters, which occurs with high probability.

Now, consider an arbitrary bisection A ∪ B where at least εn vertices in A are

unfriendly and at least εn vertices in B are unfriendly. Let A′ be the subset of the αn

most unfriendly vertices in A, and let B′ ⊂ B be the subset of the αn most unfriendly

vertices in B. By assumption, at least εn vertices in A are unfriendly, so at least

(ε− α)n ≥ ηn vertices in A are unfriendly but not as unfriendly as the vertices in A′.

By Lemma 3.2 we deduce that for all v ∈ A′ we have ∆A,B(v) ≤ −4−1/η
√
n. Similarly,

for all v ∈ B′ we have ∆A,B(v) ≤ −4−1/η
√
n.

Next, let A′′ = (A \ A′) ∪B′ and B′′ = (B \B′) ∪ A′ be the parts resulting from the

first step in an α-swap. We know that |∆A′,B′ | ≤ α4/3n3/2 by Lemma 3.3, so we have

∆A′′,B′′ = ∆A,B − 4
∑

v∈A′∪B′

∆A,B(v) + 4∆A′,B′

≥ ∆A,B + 4(2αn)(4−1/η
√
n) − 4α4/3n3/2 ≥ ∆A,B + 4α4−1/ηn3/2

Finally, by the guarantee in Lemma 3.4, we note that the final random swap in the

definition of the α-swap procedure changes the friendliness of the bisection A′′ ∪B′′ by

at most

δ1/3n3/2 = α4/3n3/2 ≤ α4−1/ηn3/2

in passing to the final bisection A1 ∪B1. It follows that we have the desired result with

β = 3α4−1/η. □
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4. Concentration of the iterated swapping process

In this section we prove Lemma 2.4. In fact, it will follow from the more technical

Proposition 4.3, which we shall shortly state and prove by induction. To get started,

we need some definitions.

First, we introduce some notation to handle empirical distributions. Given a sequence

(ai : i ∈ I), the uniform measure L̂ on this sequence is the probability distribution

of aj where j is chosen uniformly from I. When the sequence (ai : i ∈ I) is itself

random — for example, comprised of jointly random vectors — we emphasise that

the associated uniform measure L̂ is itself a random object, i.e., each realisation of

the random sequence (ai : i ∈ I) gives rise to an associated uniform measure on this

realisation.

We now define some empirical degree distributions associated with our iterated

swapping process.

Definition 4.1. Given a graph G on the vertex set {1, . . . , n}, we consider the iterated

swapping process in which we start with the bisection A0 ∪B0, where A0 = {1, . . . , n/2}
and B0 = {n/2 + 1, . . . , n}, and repeatedly perform α-swaps k times to yield a sequence

(At ∪Bt)
k
t=0 of bisections. For a binary sequence x = (xt)

k+1
t=1 ∈ {0, 1}k+1, let Vx be the

set of vertices that are in part At at those times t with xt−1 = 0, and in part Bt at those

times t with xt−1 = 1 for 1 ≤ t ≤ k + 1. For a binary sequence x ∈ {0, 1}k+1, let L̂x be

the uniform measure on the sequence of degree vectors((
(degVy(v) − |Vy|/2)/

√
n
)
y∈{0,1}k+1

: v ∈ Vx

)
.

Next, we recall the definition of multidimensional Kolmogorov distance on Rd.

Definition 4.2. Let L and L′ be probability distributions on Rd. We define the

Kolmogorov distance dK(L,L′) between L and L′ to be the supremum of |L(A)−L′(A)|
over all sets A of the form (−∞, a1] × · · · × (−∞, ad], where a1, . . . , ad ∈ R.

Note that the Kolmogorov distance controls the probability of lying in any half-open

box: indeed, for any such box B = (b1, c1] × · · · × (bd, cd], we can use the inclusion-

exclusion principle to express L(B) as a signed sum of 2d probabilities of the form

L((−∞, a1] × · · · × (−∞, ad]), so |L(B) − L′(B)| ≤ 2d dK(L,L′).

The promised generalisation of Lemma 2.4 is now as follows.

Proposition 4.3. Fix α ∈ (0, 1/4) and k ∈ N. There are cα,k, Cα,k > 0 such that for

each x ∈ {0, 1}k+1 there are

(1) a 2k+1-dimensional probability distribution Lx, and

(2) a real number πx ≥ α4k/2,

11



both of which may depend on α and n, such that the following holds. For G ∼ G(n, 1/2),

consider a sequence of k iterated α-swaps, and for x ∈ {0, 1}k+1, let Vx and L̂x be as in

Definition 4.1. Then, with high probability, all of the following hold.

A1 For each x ∈ {0, 1}k+1, we have∣∣|Vx| − πxn
∣∣ ≤ n1−cα,k .

A2 For each x ∈ {0, 1}k+1, we have

dK(L̂x,Lx) ≤ n−cα,k .

A3 For each vertex v ∈ V (G) and each x ∈ {0, 1}k+1, we have∣∣degVx(v) − |Vx|/2
∣∣ < Cα,k

√
n log n.

A4 For each x ∈ {0, 1}k+1, and each box B =
∏

y∈{0,1}k+1(ay, by] with side lengths

by − ay = n−cα,k (and, therefore, vol(B) = (n−cα,k)2
k+1

) we have

Lx(B) ≤ vol(B) exp(Cα,k
√

log n).

Again, we emphasise that we treat α and k as fixed constants for the purpose of the

‘with high probability’ statement in the above proposition; in particular, Proposition 4.3

only holds if n grows sufficiently fast (with respect to α and k).

Before discussing the proof of Proposition 4.3, we explain how it implies Lemma 2.4.

The key observation is that Items A1 to A4 essentially allow us to read off, from the

distributions Lx, arbitrary information about degree statistics (and, in particular, the

number of friendly vertices in each part). We will need the following lemma.

Lemma 4.4. Suppose that G is such that Items A2 to A4 are satisfied, and let

H ⊂ R{0,1}k+1
be any closed half-space (i.e., a region bounded by a hyperplane). Then

for any x ∈ {0, 1}k+1, we have L̂x(H) = Lx(H) + o(1).

We defer the proof of Lemma 4.4 (in a slightly stronger form, see Lemma 4.6) to

Section 4.2; we now deduce Lemma 2.4 from Proposition 4.3 and Lemma 4.4.

Proof of Lemma 2.4. Let Ak ∪ Bk be the bisection resulting from k iterations of the

α-swap process. Recall that in the statement of Lemma 2.4, the random variables X and

Y are the numbers of unfriendly vertices in Ak and Bk. It suffices to prove that there

is some value N (potentially depending on all of α, k, n) such that X = N + o(n) with

high probability. Indeed, by the symmetry of the process with respect to exchanging A

and B, it would follow that Y = N + o(n) with high probability as well, implying that

|X − Y | = o(n) with high probability, as desired.
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To this end, for i ∈ {0, 1}, let Si = {x ∈ {0, 1}k+1 : xk+1 = i} and note that a vertex

v ∈ Ak is unfriendly if and only if∑
y∈S0

degVy(v)−
∑
y∈S1

degVy(v) =
∑
y∈S0

(
degVy(v) − |Vy|/2

)
−
∑
y∈S1

(
degVy(v) − |Vy|/2

)
≤ 0.

So, defining the affine half-space

H =

{
d ∈ R{0,1}k+1

:
∑
y∈S0

dy −
∑
y∈S1

dy ≤ 0

}
,

we have X =
∑

x∈S0
|Vx|L̂x(H). By Proposition 4.3 and Lemma 4.4, with high proba-

bility we have X = n
∑

x∈S0
πxLx(H) + o(n), as desired. □

We will prove Proposition 4.3 by induction on k. In its full generality, our argument

will rely on a second moment computation that utilises results of McKay–Wormald [27]

and Canfield–Greenhill–McKay [12] about enumerating graphs with specified vertex-

degrees. Since the argument is rather technical, we shall proceed slowly, first illustrating

the base case before jumping into the meat of the argument.

4.1. The base case. In this subsection we prove Proposition 4.3 for k = 0. This entails

some explicit calculations in the random graph G(n, 1/2); the inductive step can be

seen as a ‘relativised’ version of this argument, with the randomness coming from a

well-conditioned random graph with specified degree information rather than G(n, 1/2).

Recall that we need to prove that the four properties in Items A1 to A4 each hold

with high probability. The most interesting of these properties is Item A2, which will

be established using the following lemma.

Lemma 4.5. Fix c > 0 and d ∈ N. Let (d⃗(v))v∈V be a sequence of n discrete jointly

random vectors in Rd, and let L be the (fixed) distribution on Rd defined by choosing

v uniformly at random from V and then sampling from d⃗(v). Suppose that for a box

Q = (−q, q]d with q ≥ 1, the following conditions hold :

(1) for each s⃗, t⃗ ∈ Q and each u, v ∈ V , we have

P(d⃗(u) = t⃗ and d⃗(v) = s⃗) = (1 ± n−c)P(d⃗(u) = t⃗)P(d⃗(v) = s⃗),

(2) L(Qc) ≤ n−c, and

(3) for each box B ⊂ Q with side lengths at least n−c, we have L(B) ≤ q vol(B).

For a given realisation of the random sequence (d⃗(v))v∈V , let L̂ be the (random) distri-

bution on Rd which is the uniform measure on this realisation. With probability at least

1 −O(qdn−c/8) over the randomness of (d⃗(v))v∈V , we have dK(L, L̂) = O(qdn−c/(8d)).

In applications, d⃗(v) will be a list of degrees from v to a number of other fixed

subsets, and (d⃗(v))v∈V will be the random ensemble of these lists. The above lemma
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roughly states that given decorrelation between these degree statistics, and (for technical

reasons) a tail bound and anti-concentration, the empirical degree distribution of V is

very likely to concentrate around an explicit distribution.

Here, we again reiterate that the constants suppressed by the asymptotic notation in

Lemma 4.5 are allowed to depend on the fixed parameters c and d.

Proof of Lemma 4.5. For any v ∈ V , and any box B, let Ev,B be the event that d⃗(v)

lies in B, so that nL̂(B) is the number of v ∈ V such that Ev,B holds. For u, v ∈ V and

boxes B,B′ ⊂ Q, we can sum the bound in (1) over all the points t⃗ ∈ B and s⃗ ∈ B′ to

see that

P(Eu,B ∩ Ev,B′) = P(Eu,B)P(Ev,B′) ± n−c.

It follows that Var(nL̂(B)) ≤ n + n2−c ≤ 2n2−c, so by Chebyshev’s inequality, with

probability at least 1 − n−c/2, we have∣∣∣L̂(B) − E[L̂(B)]
∣∣∣ =

∣∣∣L̂(B) − L(B)
∣∣∣ ≤ 2n−c/4. (1)

Now, consider a family B of O(nc/8qd) half-open boxes with side lengths at most

D = n−c/(8d) that partition the (big) box Q. By the union bound, with probability

1−O(qdn−c/8), the bound (1) holds for all B ∈ B. Also, since E[L̂(Qc)] = L(Qc) ≤ n−c,

by Markov’s inequality we have L̂(Qc) ≤ n−c/2 with probability at least 1−n−c/2. Now,

it is a routine matter to deduce the desired conclusion from these two facts. The details

are as follows.

For any semi-infinite box A = (−∞, a1] × · · · × (−∞, ad], we can find subcollections

B−,B+ ⊂ B such that ⋃
B∈B−

B ⊂ A ∩Q ⊂
⋃

B∈B+

B,

and |B+ \B−| = O((q/D)d−1). Then∑
B∈B−

L̂(B) ≤ L̂(A ∩Q) ≤
∑
B∈B+

L̂(B).

Furthermore, using (3) and (1) for all B ∈ B, we see that both the sum
∑

B∈B−
L̂(B)

and the sum
∑

B∈B+
L̂(B) differ from L(A ∩Q) by at most

O
(
|B+ \B−|(qDd) + |B|(2n−c/4)

)
= O

(
qdn−c/(8d)) .

So, with probability 1 −O(qdn−c/8), we have∣∣∣L(A) − L̂(A)
∣∣∣ = O

(
L(Qc) + L̂(Qc) + qdn−c/(8d)

)
= O

(
qdn−c/(8d)) ,

proving the lemma. □

Now we use Lemma 4.5 to prove the base case of Proposition 4.3.
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Proof of the k = 0 case of Proposition 4.3. First, we have |V0| = |A0| = |V1| = |B0| =

n/2, proving Item A1. Furthermore, for a sufficiently large Cα,k > 0, given a vertex v,

we have |degVi(v) − n/4| < Cα,kn
1/2

√
log n with probability at least 1 − 1/n2, say, just

by the Chernoff bound, whence a union bound demonstrates Item A3.

It remains to prove Items A2 and A4. It is enough to prove them for x = (0), by

symmetry. We will take L0 to be the distribution of the random vector

d⃗(v) =
(
|degV0(v) − n/4|/

√
n, |degV1(v) − n/4|/

√
n
)
,

where v ∈ V0 is arbitrary; clearly, this distribution does not actually depend on the

specific choice of v ∈ V0. Then, L0 has a simple description in terms of independent

binomial distributions. Although it will not be necessary for the proof, we remark

that L0 is well-approximated by the bivariate normal distribution N(0, 1/2)2, and it is

possible to take L0 to be this distribution as well.

Before proceeding further, we note that the aforementioned Chernoff bound shows

that with Q = (−Cα,k
√

log n,Cα,k
√

log n]2, we have L0(Q
c) ≤ 2/n2. Now, for every

individual point d⃗ ∈ R2, we have L0({d⃗}) = O((1/
√
n)2) = O(1/n) (by the Erdős–

Littlewood–Offord theorem applied to each coordinate, say). Since L0 is supported on

the lattice ((Z− n/4)/
√
n)2, for a box B with side lengths at least 1/

√
n, we have

L0(B) = O (vol(B)) , (2)

establishing Item A4. Now, we claim that for every pair of vertices u, v and every pair

of points s⃗, t⃗ ∈ Q, we have

P(d⃗(u) = t⃗ and d⃗(v) = s⃗) = (1 ±O(
√

log n/n))P(d⃗(u) = t⃗)P(d⃗(v) = s⃗).

Indeed, we will then be able to apply Lemma 4.5 to establish that Item A2 holds with

high probability. The claim follows from the following explicit calculation. The only

dependence between d⃗(u) and d⃗(v) comes from the potential edge between u and v, but

we can check that if we condition on this edge being present (or not), the probabilities

P(d⃗(u) = t⃗) and P(d⃗(v) = s⃗) vary only by a factor of (1±O(
√

log n/n)), which in itself

boils down to the observation that
(
n/2−1
t

)
/
(
n/2−1
t−1

)
= (n/2 − t)/t = 1 + O(1/4 − t/n)

when |t− n/4| = O(
√
n log n). □

4.2. Preliminaries for the inductive step. We start with some preparations before

proceeding to the details of the inductive step. First, we provide a proof of Lemma 4.4;

actually we prove the following more general lemma.

Lemma 4.6. For fixed c > 0, d ∈ N and any q ≥ 1, let L,L′ be probability distributions

on Rd satisfying dK(L,L′) ≤ n−c, L′ ((−q, q]d) = 1, and L(B) ≤ q vol(B) for all boxes

B with side lengths at least n−c. Then the following conclusions hold.

(1) For any region H ⊂ Rd defined as the intersection of O(1) (closed or open)

affine half-spaces, we have L′(H) = L(H) ±O(qdn−c/(2d)).
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(2) For any R ⊂ Rd obtained as the region between two parallel (closed or open)

affine hyperplanes separated by a distance of at most n−c, we have L(R) =

O(qdn−c/(2d)).

Here, the constants suppressed by the asymptotic notation in Lemma 4.6 are allowed

to depend on the fixed parameters c and d.

Proof of Lemma 4.6. Let Q = (−q, q]d, and note that L(Q) = L′(Q)±2dn−c ≥ 1−2dn−c.

As in the proof of the base case of Proposition 4.3 (in Section 4.1), we consider a family

B of O(qdnc/2) half-open boxes with side lengths at most D = n−c/(2d) that partition Q.

For the first point, let B+ ⊂ B be the subcollection of boxes which intersect H, and

let B− ⊂ B be the subcollection of boxes fully included in H, so that |B+ \B−| =

O((q/D)d−1). We then observe that |L′(H) − L(H)| is bounded by

O
(
|B+ \B−|qDd + |B|n−c + L(Qc)

)
= O

(
qdn−c/(2d)) .

For the second part, let B+ be the subcollection of boxes that intersect R. The

distance between the bounding hyperplanes of R, which is at most n−c, is less than the

width D of each box in our partition, so each box intersecting R must in fact intersect

one of its bounding hyperplanes, whence |B+| = O((q/D)d−1) as earlier. We then

observe that

L(R) = O
(
|B+|qDd + L(Qc)

)
= O

(
qdn−c/(2d)) . □

Second, we isolate the part of the proof of Lemma 4.5 in which we approximated the

Kolmogorov distance via small boxes.

Lemma 4.7. For fixed c > 0 and d ∈ N, there exists a c′ = c′(c, d) > 0 for which the

following holds. Let L,L′ be probability distributions on Rd, where L′ is (possibly) a

random object. Let Q = (−q, q]d ⊂ Rd be a box for q ≥ 1, and let B be a partition of it

into at most (3q)dnc/2 boxes with side lengths at most n−c/(2d). Suppose the following

conditions are satisfied.

(1) For each B ∈ B, we have |L′(B)−L(B)| ≤ n−c with probability at least 1−n−c.

(2) L(Qc) ≤ n−c, and L′(Qc) ≤ n−c with probability at least 1 − n−c.

(3) For each box B ⊂ Q with side lengths at least n−c, we have L(B) ≤ q vol(B).

Then, with probability at least 1 −O(qdn−c′), we have dK(L,L′) = O(qdn−c′). □

We will also need some lemmas for working with random graphs with constrained

degree sequences. These lemmas will be deduced from powerful enumeration theorems

due to McKay and Wormald [27] and Canfield, Greenhill, and McKay [12]. Before

stating these lemmas, we define a notion of ‘closeness’ between two degree sequences.

This definition is chosen to be convenient for the proof of Proposition 4.3; it has two

cases which will both arise in different parts of the proof.
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Definition 4.8. Consider a pair of sequences (a(v))v∈V and (b(w))w∈W . Let Â, B̂ be

the uniform measures on these sequences (obtained by choosing a random element of

each of these sequences). We say that (a(v))v∈V and (b(w))w∈W are C-proximate if at

least one of the following two conditions holds.

(1) There is a bijection ψ : V → W such that
∑

v∈V |a(v) − b(ψ(v))| ≤ C|V |.
(2) ||V | − |W || ≤ (|V | + |W |)1−1/C and dK(Â, B̂) ≤ (|V | + |W |)−1/C .

In applications, we simply say that (a(v))v∈V and (b(w))w∈W are proximate if they

are C-proximate for some C = O(1), recalling that implicit constants in asymptotic

notation are allowed to depend on k and α.

We are now ready to state the promised pair of lemmas. We defer the details of their

proofs to Appendix A. The first of these lemmas is for the non-bipartite setting. Recall

that ≃ means equality up to a multiplicative factor (1 ± n−Ω(1)).

Lemma 4.9. Let (dw)w∈W be a sequence with even sum on a set W of n vertices such

that

• dw = n/2 ±O(
√
n log n) for each w ∈ W ,

•
∑

w∈T dw = n|T |/2 ±O(n3/2) for all T ⊂ W , and

•
∑

w∈W (dw − n/2)2 = O(n2).

Such a sequence is a graphic sequence for all sufficiently large n. Let G be a uniformly

random graph on W with this degree sequence. Then, for any fixed v ∈ W and S ⊂ W

satisfying |S|, n− |S| = Ω(n), the following hold.

(1) For any integer 0 ≤ t ≤ |S|, parameterising t = |S|/2 + τ
√
n, if |τ | > n1/10,

then we have

P(degS(v) = t) ≤ exp(−Ω(τ 2)),

and if |τ | ≤ n1/10, then we have

P(degS(v) = t) ≤ exp
(
O
(
|τ | +

√
log n

))
P(Z = t),

where Z = |R ∩ S| for a random subset R ⊂ W of size dv, i.e.,

Z ∼ Hypergeometric(n, |S|, dv).

(2) Let us write

P(degS(v) = t) = p(v, (dw)w∈S, (dw)w/∈S, t)

as a function of v, the relevant degree sequences, and t. Then, for t = |S|/2 ±
O(

√
n log n) and the other parameters as constrained above, this function p(·)

depends continuously on its parameters, in the following sense: if

• |t− t′|, |dv − d′v′ | ≤ n1/2−Ω(1),

• (dw)w∈S and (d′w)w∈S′ are proximate, and
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• (dw)w∈W\S and (d′w)w∈W ′\S′ are proximate,

then

p(v, (dw)w∈S, (dw)w∈W\S, t) ≃ p(v′, (d′w)w∈S′ , (d′w)w∈W ′\S′ , t′),

recalling that ≃ denotes equality up to a multiplicative factor of 1 ± n−Ω(1).

Next, the second of the promised pair of lemmas is for the bipartite setting.

Lemma 4.10. Let ((dv)v∈V , (dw)w∈W ) be a pair of sequences with identical sums on a

bipartition V ∪W with |V |, |W | = Θ(n) such that

• dv = |W |/2 ±O(
√
n log n) for all v ∈ V and dw = |V |/2 ±O(

√
n log n) for all

w ∈ W ,

•
∑

v∈T dv = |W ||T |/2±O(n3/2) for all T ⊂ V and
∑

w∈T dw = |V ||T |/2±O(n3/2)

for all T ⊂ W , and

•
∑

v∈V (dv − |W |/2)2 = O(n2) and
∑

w∈W (dw − |V |/2)2 = O(n2).

Such a pair of sequences form a bipartite-graphic sequence for all sufficiently large n.

Let G be a uniformly random bipartite graph between V and W with this degree sequence.

Then, for any fixed u ∈ V and S ⊂ W satisfying |S|, n− |S| = Ω(n), the following hold.

(1) For any integer 0 ≤ t ≤ |S|, parameterising t = |S|/2 + τ
√
n, if |τ | > n1/10,

then we have

P(degS(u) = t) ≤ exp(−Ω(τ 2)),

and if |τ | ≤ n1/10, then we have

P(degS(u) = t) ≤ exp
(
O
(
|τ | +

√
log n

))
P(Z = t),

where Z = |R ∩ S| for a random subset R ⊂ W of size dv, i.e.,

Z ∼ Hypergeometric(|W |, |S|, dv).

(2) Let us write

P(degS(u) = t) = p(u, (dv)v∈V , (dw)w∈S, (dw)w∈W\S, t)

as a function of u, the relevant degree sequences, and t. Then, for t = |S|/2 ±
O(

√
n log n) and the other parameters as constrained above, this function p(·)

depends continuously on its parameters, in the following sense: if

• |t− t′|, |du − d′u′ | ≤ n1/2−Ω(1),

• (dv)v∈V and (d′v)v∈V ′ are proximate,

• (dw)w∈S and (d′w)w∈S′ are proximate, and

• (dw)w∈W\S and (d′w)w∈W ′\S′ are proximate,

then

p(u, (dv)v∈V , (dw)w∈S, (dw)w∈W\S, t) ≃ p(u′, (d′v)v∈V , (d
′
w)w∈S′ , (d′w)w∈W ′\S′ , t′),

recalling that ≃ denotes equality up to a multiplicative factor of 1 ± n−Ω(1).
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Finally, we require the following concentration properties of the edge-counts in a

random graph.

Lemma 4.11. There are absolute constants C, c > 0 such that if G ∼ G(n, 1/2) is a

random graph, then with probability at least 1 − exp(−cn) we have for all disjoint S, T

that

(1)
∑

v∈T (degS(v) − |S|/2)2 ≤ Cn2,

(2)
∑

v∈T (degT (v) − (|T | − 1)/2)2 ≤ Cn2,

(3) |
∑

v∈T (degS(v) − |S|/2)| ≤ Cn3/2, and

(4) |
∑

v∈T (degT (v) − (|T | − 1)/2)| ≤ Cn3/2. □

The proof of Lemma 4.11 is an immediate application of a Chernoff bound and the

union bound, similar to the proof of Lemma 2.1, so we omit the details.

Now we are ready to finish the proof of Proposition 4.3 by establishing its inductive

step.

4.3. Proof of the inductive step. Consider k − 1 iterations of the α-swap process,

giving rise to a partition of the vertices into sets Vx, for x ∈ {0, 1}k, as defined in

Definition 4.1. An additional iteration of the α-swap process will refine this to a

partition into sets Vx, for x ∈ {0, 1}k+1; to emphasise the difference between these two

partitions we write Wx instead of Vx when x ∈ {0, 1}k.
By the inductive hypothesis, there are real numbers πx ≥ α4(k−1)/2 and distributions

Lx for x ∈ {0, 1}k such that the following properties are satisfied with high probability.

B1 For each x ∈ {0, 1}k, we have∣∣|Wx| − πxn
∣∣ ≤ n1−cα,k−1 .

B2 For each x ∈ {0, 1}k, we have

dK(L̂x,Lx) ≤ n−cα,k−1 .

B3 For each vertex v ∈ V (G) and each x ∈ {0, 1}k, we have∣∣degWx
(v) − |Wx|/2

∣∣ ≤ Cα,k−1n
1/2
√

log n.

B4 For each x ∈ {0, 1}k, and each box B with side lengths n−cα,k−1 we have

Lx(B) ≤ vol(B) exp(Cα,k−1

√
log n).

Here, we remind the reader that L̂x is an empirical distribution measuring the degrees

of vertices in Wx into the various sets Wy. Also, we remark that although Item B4 as

written only concerns boxes with side lengths exactly n−cα,k , a simple covering argument

shows that the same conclusion holds when B is a box with side lengths at least n−cα,k

(up to a constant factor).
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Next, let

R =
(
(Wx)x∈{0,1}k , (degWx

(v))v∈V (G),x∈{0,1}k
)

record the part and degree information after k − 1 iterations of the α-swap process, so

Items B1 to B4 are all really properties of R. Let E be the event that all the conclusions

of Lemma 4.11 hold for all disjoint subsets of vertices S and T . By Lemma 4.11, we

have

P(Ec) = E [P(Ec |R)] ≤ e−cn

for some universal c > 0, so by Markov’s inequality, with high probability, R has the

property that

B5 P(E |R) ≥ 1 − e−(c/2)n.

Now, let us condition on an outcome of R satisfying Items B1 to B5; we say that

such an outcome is well-behaved. It suffices to prove that, in the resulting conditional

probability space, Items A1 to A4 hold with high probability. Note that, conditionally,

G is now a random graph with certain degree constraints. To be precise, for each

x ∈ {0, 1}k, the induced subgraph G[Wx] is uniform over all graphs in which each

v ∈ Wx has degree degWx
(v), and for each pair of distinct x, y ∈ {0, 1}k, the subgraph

G[Wx,Wy] (consisting of the edges of G between Wx and Wy) is uniform over all

bipartite graphs in which each v ∈ Wx has degree degWy
(v) and each v ∈ Wy has degree

degWx
(v). Furthermore, all these random subgraphs of the form G[Wx], G[Wx,Wy] are

independent, and Items B1, B3 and B5 in particular ensure that either Lemma 4.9 or

Lemma 4.10 apply to all these subgraphs.

Recalling that we have performed k − 1 iterations of the α-swap procedure so far, we

now consider the effect of a kth α-swap. Recall that this α-swap has two steps. First,

the ⌊αn⌋ unfriendliest vertices on each side are swapped. The information recorded in

R is enough to determine the outcome of this first step. Second, a random set of ⌊α4n⌋
vertices on each side are swapped; let S be the random pair of sets that are swapped in

this second step, and note that S is independent from G conditional on the partition at

that time.

For the remainder of this proof, asymptotic notation should be understood to be

treating k, α as fixed constants, so, for example, the inequality in Item B2 can be

described as saying dK(L̂x,Lx) ≤ n−Ω(1).

4.3.1. Concentration of the part sizes. First we prove that Item A1 holds with high

probability. Let Si = {z ∈ {0, 1}k : zk = i}, and recall that the bisection resulting

from the first k − 1 iterations of the α-swap process has parts Ak−1 =
⋃
z∈S0

Wz and

Bk−1 =
⋃
z∈S1

Wz. Here, we remind the reader that zk records whether a vertex is in

Ak−1 or Bk−1.
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Consider any z ∈ {0, 1}k, and let W ′
z be the portion of Wz that is swapped during

the first step of the kth α-swap (i.e., these vertices are among the ⌊αn⌋ unfriendliest

vertices in their part of the bisection Ak−1 ∪Bk−1; this is determined by the outcome

of R we have conditioned on). It suffices to prove that |W ′
z| = π′

zn± n1−Ω(1), for some

π′
z that does not depend on the specific choice of R that we are conditioning on (but

demanding no lower bound on π′
z). Indeed, for any b ∈ {0, 1}, the second part of the

α-swap process (in which we randomly swap sets A′, B′ of ⌊α4n⌋ vertices on both sides)

will then, with high probability, yield |V(z,b)| = π(z,b)n± n1−Ω(1), where

π(z,b) =

{
α4π′

z + (1 − α4)(πz − π′
z) if zk = b

α4(πz − π′
z) + (1 − α4)π′

z if zk ̸= b

≥ α4πz ≥ α4 · α4(k−1)/2 = α4k/2.

Here we have used Item B1 and a Chernoff bound for the hypergeometric distribution;

see for example [22].

To this end, we study the sets W ′
z. Assume without loss of generality that zk = 0

(i.e., W ′
z ⊂ Ak−1). Let A′ be the set of the ⌊αn⌋ unfriendliest vertices in Ak−1 (so

W ′
z = Wz ∩ A′), and let A(ζ) be the set of vertices in Ak−1 with friendliness at most

ζ
√
n. We will approximate A′ with A(ζ), for an appropriate choice of ζ.

For ζ ∈ R, define the affine half-space

Hζ =

{
d ∈ R{0,1}k :

∑
y∈S0

dy −
∑
y∈S1

dy ≤ ζ

}
.

Then, |A(ζ)| =
∑

y∈S0
|Wy|L̂y(Hζ). Let us set

f(ζ) =
∑
y∈S0

πyLy(Hζ).

By the second point in Lemma 4.6, the function f satisfies a Lipschitz-like prop-

erty: if |ζ − ζ ′| ≤ n−Ω(1) then |f(ζ) − f(ζ ′)| ≤ n−Ω(1). Since limζ→−∞ f(ζ) = 0 and

limζ→∞ f(ζ) =
∑

y∈S0
πy = 1/2 + o(1), there is some ζα such that |f(ζα) − α| ≤ n−Ω(1).

By the first point in Lemma 4.6, we then have ||A′| − |A(ζα)|| ≤ n1−Ω(1). That is to

say, the set A′ differs from the set A(ζα) by only n1−Ω(1) elements (noting that either

A′ ⊂ A(ζ) or A(ζ) ⊂ A′ always). Again using the first point in Lemma 4.6, it follows

that

|W ′
z| = |Wz ∩ A′| = |Wz ∩ A(ζα)| ± n1−Ω(1) = |Wz|L̂(Hζα) ± n1−Ω(1) = π′

zn± n1−Ω(1),

as desired, where π′
z = πzL(Hζα).
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4.3.2. Some intermediate empirical degree distributions. For a vertex v, define the

degree vector

g⃗(v) =
(

(degWy
(v) − |Wy|/2)/

√
n
)
y∈{0,1}k

(3)

(which is determined by R), and recall that for z ∈ {0, 1}k, L̂z is the uniform measure

on the sequence (g⃗(v))v∈Wz . For b ∈ {0, 1}, let D̂(z,b) be the uniform measure on

(g⃗(v))v∈V(z,b) (which depends on R,S, but not the remaining randomness of G). This

can be thought of as an ‘intermediate’ empirical degree distribution between L̂z and

L̂(z,b), where we consider the degrees from vertices in V(z,b) into the sets Wy.

The considerations in the previous section give us quite strong control over the

D̂(z,b). Indeed, for any box B ⊂ R{0,1}k let Wz(B) be the set of all v ∈ Wz with

g⃗(v) ∈ B, and as in the last section, assume without loss of generality that zk = 0. Let

ρ′z(B) = πzLz(B ∩Hζα), so that |Wz(B)∩W ′
z| = ρ′z(B)n±n1−Ω(1), and a concentration

inequality for the hypergeometric distribution shows that with probability 1 −O(1/n)

over the randomness of S, we have |Wz(B) ∩ V(z,b)| = ρz(B)n± n1−Ω(1), where

ρ(z,b)(B) =

{
α4ρ′z(B) + (1 − α4)(πzLz(B) − ρ′z(B)) if zk = b,

α4(πzLz(B) − ρ′z(B)) + (1 − α4)ρ′z(B) if zk ̸= b.

Since D̂(z,b)(B) = |Wz(B)∩ V(z,b)|/|V(z,b)|, Item A1 implies that D̂(z,b)(B) = D(z,b)(B)±
n−Ω(1), where D(z,b) is the probability distribution for which D(z,b)(S) is proportional to

ρ(z,b)(S) for all boxes S ⊂ R{0,1}k . Recalling Item B3 and Item B4, and partitioning

the big box

Q =
(
−Cα,k−1

√
log n,Cα,k−1

√
log n

]2k
into nc/2+o(1) boxes with side lengths n−c/(2·2k) for a sufficiently small c > 0, it fol-

lows from Lemma 4.7 that dK(D̂(z,b),D(z,b)) ≤ n−Ω(1) with high probability over the

randomness of S.

4.3.3. Controlling the outlier degrees. We next prove that Item A3 holds with high

probability. In addition to our conditioning on R, in this subsection we also condition

on an outcome of S such that each |Vx| = Ω(n). Note that we have already established

that |Vx| = πxn+ o(n) with high probability, and that πx ≥ α4(k−1)/2, so in particular,

|Vx| = Ω(n) with high probability.

Fix an arbitrary x ∈ {0, 1}k+1 and y ∈ {0, 1}k. We wish to show that with high

probability, for every v ∈ Wy we have
∣∣degVx(v) − |Vx|/2

∣∣ ≤ Cα,k
√
n log n, for some

Cα,k > 0. This suffices, since we will then be able to take the union bound over all O(1)

choices of x, y. The desired bound follows from part (1) of Lemma 4.9 and part (1)

of Lemma 4.10 along with a Chernoff bound for the hypergeometric distribution and

a union bound over v ∈ Wy: if z = (x1, . . . , xk) satisfies z = y, then we consider the
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degree-constrained random graph G[Wy], and if we instead have z ≠ y, then we consider

the degree-constrained bipartite graph G[Wy,Wz].

4.3.4. Defining the ideal distributions. We shall address Item A4 first before turning to

Item A2 (which is by far the most involved of the four properties). Therefore, at this

juncture, we take a moment to say something about how we will define the distributions

Lx for x ∈ {0, 1}k+1. First, for specific outcomes of R,S (which determine the sets

Vx for x ∈ {0, 1}k+1), we let LR,S
x be the distribution obtained by choosing a random

v ∈ Vx and sampling its degree vector

d⃗(v) =
(

(degVy(v) − |Vy|/2)/
√
n
)
y∈{0,1}k+1

according to the remaining randomness in G. We will later show that if R is well-

behaved, and S also satisfies certain properties that hold with high probability, then

LR,S
x is actually not very sensitive to the specific choice of R and S, whence we will

be able to prove that Item A2 holds with high probability when we take Lx to be any

such LR,S
x .

4.3.5. Anti-concentration. Here, we show that Item A4 holds. As in Section 4.3.3,

we condition on a well-behaved outcome of R as well as on an outcome of S such

that each |Vx| = Ω(n). By the above discussion, it suffices to show that LR,S
x satisfies

the anti-concentration property in Item A4. The rough idea for establishing this

involves combining Lemmas 4.9 and 4.10 (which provide anti-concentration subject

to the remaining randomness in G) with the anti-concentration property in Item B4

coming from the outcome of the process so far.

Fix a vertex v ∈ Wz for some z ∈ {0, 1}k. By part (1) of Lemma 4.9 and part (1) of

Lemma 4.10, for y ∈ {0, 1}k and t ∈ N, parameterising t = |V(y,0)|/2 + τ
√
n and writing

dv = degWy
(v), we have

P
(

degV(y,0)(v) = t
)
≤ exp

(
O
(√

log n
))

n−1/2

uniformly in t. Indeed, when applying Lemma 4.9, this holds with room to spare when

|τ | > |V(y,0)|1/10 = Ω(n1/10), and when |τ | ≤ |V(y,0)|1/10, we may see that we uniformly

have

P
(

degV(y,0)(v) = t
)
≤ exp

(
O
(
|τ | +

√
log n

)) (|V(y,0)|
t

)(|Wy |−|V(y,0)|
dv−t

)(
m−1
dv

)
≤ exp

(
O
(√

log n
))

n−1/2

by a standard anti-concentration inequality for the hypergeometric distribution (see for

example [14]).
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Since we are conditioning on R,S, the degree-constrained random graph G[Wz]

and the degree-constrained bipartite graphs G[Wz,Wy] are all independent, so the 2k

different degrees degV(y,0)(v), for y ∈ {0, 1}k, are all independent as well. Thus, we

obtain the uniform joint anti-concentration bound

P
(

degV(y,0)(v) = ty for all y ∈ {0, 1}k
)
≤ exp

(
O
(√

log n
)) (

n−1/2
)2k

.

Note that for each y ∈ {0, 1}k, the degrees degV(y,0)(v) and degV(y,1)(v) are certainly not

independent, since degV(y,0)(v)+degV(y,1)(v) = degWy
(v) is determined by R. Nonetheless,

our joint anti-concentration bound does imply that for any box B ⊂ R{0,1}k+1
with side

lengths D ≥ 1/
√
n, we have

P
(
d⃗(v) ∈ B

)
≤ exp

(
O
(√

log n
))

D2k . (4)

Note that vol(B) = D2k+1
, so (4) only provides ‘half as much anti-concentration’ as we

desire for Item A4. So far, we have only considered anti-concentration of d⃗(v) when v

is a fixed vertex; we will next establish the remainder of our anti-concentration and

Item A4 proper by allowing v to vary and appealing to Items B2 and B4.

Recall the definition from Section 4.3.2 of the degree vectors g⃗(v) and the intermediate

empirical distributions D̂(z,b): the empirical distribution L̂z is defined in terms of a

uniformly random vertex v ∈ Wz, and D̂(z,b) is then obtained by conditioning on the

event that v ∈ V(z,b). Recall that |V(z,b)| = Ω(n) = Ω(|Wz|), meaning that we are

conditioning on an event that holds with probability at least Ω(1). So, Item B4 implies

the same anti-concentration property in the D̂(z,b), i.e.,

D̂x(B) ≤ exp
(
O
(√

log n
))

vol(B). (5)

for all boxes B ⊂ R{0,1}k with side lengths at least n−c, where c = cα,k−1, and all

x ∈ {0, 1}k+1.

Let π : R{0,1}k+1 → R{0,1}k be the linear map (dx)x∈{0,1}k+1 7→ (d(y,0) + d(y,1))y∈{0,1}k .

Note that g⃗(v) = π(d⃗(v)) for all v, and note that if B ⊂ R{0,1}k+1
is a box with side

lengths n−c, then π(B) is contained in a box with side lengths 2n−c. So, by (4) and (5),

we have

LR,S
x (B) =

∑
v∈Vx:g⃗(v)∈π(B)

1

|Vx|
· P
(
d⃗(v) ∈ B

)
≤ D̂x(π(B)) sup

v∈Vx
P
(
d⃗(v) ∈ B

)
≤ exp

(
O
(√

log n
))

(2n−c)2
k

(n−c)2
k

≤ exp
(
O
(√

log n
))

vol(B)
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for all x ∈ {0, 1}k+1, as desired.

4.3.6. Concentration of the empirical degree distributions. In this subsection we use a

second moment calculation as in Section 4.1 to show that, if we condition on appropriate

outcomes of R and S, then with high probability, for any x ∈ {0, 1}k+1, we have

dK

(
L̂x,LR,S

x

)
≤ n−Ω(1).

We shall later prove that the distributions LR,S
x , for appropriate R,S, are all Kolmogorov-

close to each other; it will then follow that Item A2 holds with high probability.

As in the previous two subsections, we condition on a well-behaved outcome of R and

an outcome of S for which |Vx| = Ω(n) for all x ∈ {0, 1}k+1. Fix an x ∈ {0, 1}k+1, and as

before, let Q = (−Cα,k
√

log n,Cα,k
√

log n]2
k+1

, where Cα,k is as chosen in Section 4.3.3

(so, we have say Lx(Qc) ≤ n−2).

We wish to apply Lemma 4.5. To this end, we shall, for an arbitrary pair of vertices

u and v, study conditional probabilities of the form

P
(

degV(z,b)(v) = t
∣∣∣NWz(u) = T

)
,

where z ∈ {0, 1}k, b ∈ {0, 1}, and T is a set of degWz
(u) elements of Wz \ {u}. Let

R(z,b) =
{
t :
∣∣t− |V(z,b)|/2

∣∣ ≤ Cα,k
√
n log n

}
. We will show that for such data u, v, z, b,

and each t ∈ R(z,b), the value of the above conditional probability is not very sensitive

to the choice of T .

Let y ∈ {0, 1}k be such that v ∈ Wy. As usual, we need to consider separately the

case where y = z and where y ̸= z; in the former case, we study the degree-constrained

random graph G[Wy], and in the latter case we study the degree-constrained random

bipartite graph G[Wy,Wz].

If y = z, then having conditioned on the event NWy(u) = T , now G[Wy \ {u}] is a

random graph with a particular degree sequence (namely, the degree sequence where

we delete u if it is in Wy, and if so we also decrement the degree of every vertex in T

by one). Considering how this degree sequence varies for different choices of T, T ′, it

follows from part (2) of Lemma 4.9 (and the first part of Definition 4.8) that for each

u, v, z, b as above, each t ∈ R(z,b), and each such pair T, T ′, we have

P
(

degV(z,b)(v) = t
∣∣∣NWz(u) = T

)
≃ P

(
degV(z,b)(v) = t

∣∣∣NWz(u) = T ′
)
.

We obtain the same conclusion if z ̸= y by considering the bipartite graph G[Wy,Wz],

except now relying on Lemma 4.10.

The above argument implies that for all u, v, z, b, t as above, we in fact have

P
(

degV(z,b)(v) = t
∣∣∣NWz(u) = T

)
≃ P

(
degV(z,b)(v) = t

)
.
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Observing that all the random subgraphs of the form G[Wy], G[Wy,Wz] are independent,

we deduce that for any τ⃗ , σ⃗ ∈ Q, we have

P(d⃗(v) = τ⃗ and d⃗(u) = σ⃗) ≃ P(d⃗(v) = τ⃗)P(d⃗(u) = σ⃗).

Therefore we can apply Lemma 4.5, using Item A4 (which we have already proved)

and the fact that Lx(Qc) ≤ 1/n2 for all x ∈ {0, 1}k+1, to conclude that Item A2 holds

with high probability.

4.3.7. Sensitivity to the conditioned information. To finish, we wish to show that for all

x ∈ {0, 1}k+1, well-behaved R and R′, and almost all outcomes S and S ′, we have

dK

(
LR,S
x ,LR′,S′

x

)
≤ n−Ω(1).

This will complete the proof of the inductive step of Proposition 4.3.

Recall the definitions of the degree vectors g⃗(v) and the intermediate degree distribu-

tions D̂x, Dx from Section 4.3.2. In that subsection, we showed for all well-behaved R
that, with high probability over S, we have dK(D̂x,Dx) ≤ n−Ω(1). Let c (depending on

α, k) be sufficiently small such that dK(D̂x,Dx) ≤ n−c with high probability, and let us

now call an outcome of S well-behaved if this is the case for all x ∈ {0, 1}k+1.

Let π : R{0,1}k+1 → R{0,1}k be the linear map (dx)x∈{0,1}k+1 7→ (d(y,0) + d(y,1))y∈{0,1}k ,

as was the case in Section 4.3.5. If we condition on any R,S, then for any v ∈ Vx and

any τ⃗ ∈ R{0,1}k+1
with g⃗(v) = π(τ⃗), we have

P(d⃗(v) = τ⃗) =
∏

y∈{0,1}k
P(degV(y,0)(v) = ty),

where (ty − |V(y,0)|/2)/
√
n = τy. Now, probabilities of the form P(degVx(v) = t) are

actually not very sensitive to the specific choice of v, t,R,S, in the following sense.

Suppose R,S,R′,S ′ are all well-behaved, and for some y ∈ {0, 1}k, let v ∈ WR
y and

v′ ∈ WR′
y be vertices in the ‘same part’ with respect to R and R′. Moreover, suppose

that ∥∥∥g⃗R(v) − g⃗R
′
(v′)
∥∥∥
∞

≤ n1/2−Ω(1).

Then for any x ∈ {0, 1}k+1 and t, t′ = πxn/2 ± n1/2−Ω(1), by part (2) of Lemma 4.9 and

part (2) of Lemma 4.10 (and using the second part of Definition 4.8), we have

P
(

degVR,S
x

(v) = t
∣∣∣R,S) ≃ P

(
deg

VR′,S′
x

(v′) = t′
∣∣∣R′,S ′

)
. (6)

Now, consider well-behaved data R,S,R′,S ′, and fix some x ∈ {0, 1}k+1. Our next

objective is to construct an injective mapping ϕ between (subsets of) V R,S
x and V R′,S′

x

that maps a vertex v ∈ V R,S
x to a vertex ϕ(v) ∈ V R′,S′

x with ‘roughly the same statistics’

as v. This will allow us to compare probabilities conditional on the outcomes (R,S)

with probabilities conditional on the outcomes (R′,S ′).
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First, let Q = (−Cα,k
√

log n,Cα,k
√

log n]2
k+1

, so by the same considerations as in

Section 4.3.3, we know that

LR,S
x (Qc) ≤ 1/n and LR′,S′

x (Qc) ≤ 1/n.

Now, partition Q into a collection B of nc/2+o(1) boxes with side lengths n−c/(2·2k+1).

Since R,S,R′,S ′ are all well-behaved, we have

dK

(
D̂R,S
x , D̂R′,S′

x

)
≤ n−c.

Also, we may assume with no loss of generality that c is sufficiently small, and in

particular, that c < cα,k, so by Item A1, we have |V R,S
x | = |V R′,S′

x | ± n1−c. It follows

that, for each B ∈ B, if we consider the sets

V R,S
x (B) = {v ∈ V R,S

x : g⃗(v) ∈ π(B)} and V R′,S′

x (B) = {v ∈ V R′,S′

x : g⃗(v) ∈ π(B)},

then we have

|V R,S
x (B)| = |V R′,S′

x (B)| ±O
(
n1−c) .

Now, let

m(B) = min
{
|V R,S
x (B)|, |V R′,S′

x (B)|
}
,

and let U ⊂ V R,S
x be obtained by choosing m(B) elements from each V R,S

x (B) for

B ∈ B, so that

|U | ≥ |V R,S
x | −O

(
n1−c/2+o(1)) .

Let ϕ : U → V R′,S′
x be an injection such that ϕ(v) ∈ V R′,S′

x (B) for each v ∈ U∩V R,S
x (B);

here, we think of ϕ as providing a coupling between a uniformly random vertex in V R,S
x

and a uniformly random vertex in V R′,S′
x , up to a change of O(n−c) in total variation

distance. Each B ∈ B has ℓ∞-diameter O(n−c/(2·2k+1)), so applying (6) and summing

over points in B, we see for all v ∈ U that

P
(
d⃗(v) ∈ B |R,S

)
= (1 ± n−c′)P

(
d⃗(ϕ(v)) ∈ B |R′,S ′

)
,

for some c′ > 0 depending on c and k. Now, if we coarsen B into a partition B′

of nc
′/2+o(1) boxes with side lengths at most n−c′/(2·2k+1), then we easily see that the

conditions of Lemma 4.7 are satisfied, and we deduce that dK(LR,S
x ,LR′,S′

x ) ≤ n−Ω(1) as

desired. This finishes the inductive proof of Proposition 4.3.

5. Conclusion

Our main result suggests a few different directions for further investigation, and we

conclude by discussing those that we find particularly attractive.

Theorem 1.1 establishes the fact that a random graph G ∼ G(n, 1/2) with high

probability admits an almost-friendly bisection, i.e., one in which n − o(n) vertices

are friendly. It seems plausible that there must be many such bisections. Note that

given a bisection A ∪ B of G, the events {v is friendly : v ∈ V (G)} are positively

27



associated. Consequently, a heuristic computation of the first moment of the number of

almost-friendly bisections suggests the following possibility.

Conjecture 5.1. There exists a δ > 0 such that G ∼ G(n, 1/2) with high probability

has at least (1 + δ)n almost-friendly bisections.

It is worth remarking that our arguments can be adapted to show something slightly

weaker: there are at least (1 + δ)n bisections with at least (1 − ε)n friendly vertices,

but for some δ = δ(ε) depending on ε.

An alternative candidate for an almost-friendly bisection of the random graph is the

min-bisection; here, by a min-bisection, we mean a bisection minimising the number of

edges between its two parts.

Conjecture 5.2. With high probability, any min-bisection of G ∼ G(n, 1/2) is almost-

friendly.

Gaining a fine understanding of the structure of the min-bisection is a notoriously

difficult problem. In particular, determining the second order term in the size of the

minimum bisection in G(n, 1/2) is essentially equivalent to the Parisi formula which

was established in celebrated work of Talagrand [35].

Finally, the heuristics governing both the above predictions suggest something much

stronger than what we have established here; concretely, we make the following conjec-

ture.

Conjecture 5.3. The random graph G ∼ G(n, 1/2) admits, with high probability, a

bisection where ever vertex is friendly.
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Appendix A. Probabilities in degree-constrained graph models

We start by showing how Lemma 4.9 follows from a series of results of increasing

precision about random graphs with specified degree sequences.

Proposition A.1. Let (dw)w∈W be a sequence with even sum on a set W of n vertices

such that, defining βw by dw = (n− 1)/2 + βw
√

(n− 1)/2, we have

• |βw| ≤ log n for each w ∈ W , and

•
∑

w∈W β2
w ≤ n(log n)1/9.

Such a sequence is a graphic sequence for all sufficiently large n. Let G be a uniformly

random graph with this degree sequence on the vertex set W . Consider any fixed v ∈ W ,

any fixed subset S ⊂ W of size h satisfying min(h, n−h) ≥ n/(log n)1/8, and an integer

t ∈ [0, dv]. If |t− h/2| > n3/5, then we have

P(degS(v) = t) ≤ exp(−Ω((t− h/2)2/n)). (7)

If |t− h/2| ≤ n3/5 on the other hand, then we have

P(degS(v) = t) = (1 ±O(n−1/10))

(
h
t

)(
n−h−1
dv−t

)(
n−1
dv

) exp(Λ1 − Λ2 − Λ3 + Λ4), (8)

where Λ1, Λ2, Λ3 and Λ4 are given by

Λ1 =
1

2n2

(∑
i∈W

βi

)(∑
i∈W

βi − 2nβv

)
,

Λ2 =
∑
i∈S\v

(
1 − 2t

h

)
βi√
n− 1

+
∑
i∈Sc\v

(
1 − 2(dv − t)

(n− h)

)
βi√
n− 1

,

Λ3 =
1

2

∑
i∈W\v

β2
i

n− 1
, and

Λ4 =
1

2nh

∑
i,j∈S\v

(βi − βj)
2 +

1

2n(n− h)

∑
i,j∈Sc\v

(βi − βj)
2,

the sums in the definition of Λ4 being over all (unordered) two-element subsets.
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First, we deduce Lemma 4.9 from Proposition A.1. To this end, we need the following

lemma comparing the moments of distributions that are bounded and Kolmogorov-close.

Lemma A.2. Fix c > 0 and k ∈ N. If (av)v∈V and (bu)u∈U are two sequences of Ω(n)

real numbers with
∣∣|V | − |U |

∣∣ ≤ n1−c satisfying |av|, |bu| < q, and such that the uniform

measures Â, B̂ on the two lists satisfy dK(Â, B̂) ≤ n−c, then we have∣∣∣∣∣∑
v∈V

akv −
∑
u∈U

bku

∣∣∣∣∣ = O(qkn1−c).

Proof. First, note that

1

|V |
∑
v∈V

akv =

∫ q

0

ktk−1(1 − Â ((−∞, t])) dt−
∫ 0

−q
ktk−1Â((−∞, t]) dt

=

∫ q

0

ktk−1(1 − B̂ ((−∞, t])) dt−
∫ 0

−q
ktk−1B̂((−∞, t]) dt±O(qkn−c)

=
1

|U |
∑
u∈U

bku ±O(qkn−c).

The desired result now follows from the fact that |V | = (1 ±O(n−c))|U |. □

We are now ready for the proof of Lemma 4.9.

Proof of Lemma 4.9. We shall estimate the probabilities in question using Proposi-

tion A.1. Indeed, the hypothesis in the statement of Lemma 4.9, in the language of

Proposition A.1, may be stated as

• |βw| = O(
√

log n) (and hence |βw| ≤ log n) for each w ∈ W ,

• |
∑

w∈T βw| = O(n) for all T ⊂ W , and

•
∑

w∈W β2
w = O(n),

whence it is clear that Proposition A.1 applies.

For part (1) of Lemma 4.9, we may argue as follows. If |t − h/2| > n3/5, then (7)

gives us what we need. If |t − h/2| ≤ n3/5, we claim that (8) implies the bound in

part (1) of Lemma 4.9. To see this, it suffices to verify in this regime that each of |Λ1|,
|Λ2|, |Λ3| and |Λ4| are O(|τ | +

√
log n), where τ is defined by t = h/2 + τ

√
n.

Using the facts that |
∑

i∈W βi| = O(n), and
∑

i∈W β2
i = O(n), we may bound |Λ1| by

|Λ1| =

∣∣∣∣∣ 1

2n2

(∑
i∈W

βi

)(∑
i∈W

βi − 2nβv

)∣∣∣∣∣
≤ 1

2n2

(∑
i∈W

βi

)2

+
|βv|
n

∣∣∣∣∣∑
i∈W

βi

∣∣∣∣∣
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= O(1) +O(|βv|) = O
(√

log n
)
.

Next, we bound |Λ2| using the facts that h, n − h = Ω(n), |
∑

i∈S\v βi| = O(n) and

|
∑

i∈Sc\v βi| = O(n) by

|Λ2| ≤

∣∣∣∣∣∣
∑
i∈S\v

(
1 − 2t

h

)
βi√
n− 1

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈Sc\v

(
1 − 2(dv − t)

(n− h)

)
βi√
n− 1

∣∣∣∣∣∣ ,
≤ O (|τ |/n)

∣∣∣∣∣∣
∑
i∈S\v

βi

∣∣∣∣∣∣+O
(
|τ |/n+

√
log n/n

) ∣∣∣∣∣∣
∑
i∈Sc\v

βi

∣∣∣∣∣∣
= O(|τ | +

√
log n).

Finally, since
∑

i∈W β2
i = O(n), it is immediate that |Λ3| = O(1), and it follows from

the facts that
∑

i∈W β2
i = O(n), |

∑
i∈S\v βi| = O(n) and |

∑
i∈Sc\v βi| = O(n) that

|Λ4| = O(1) as well.

For part (2) of Lemma 4.9, it is sufficient to verify that the expression in (8) is

polynomially-stable when the parameters in question vary by the amounts specified in

the statement of Lemma 4.9; here, we say that an expression is polynomially-stable if it

varies by at most a multiplicative factor of 1 ± n−Ω(1). This may be done term by term,

as we outline below.

Suppose (d′w)w∈W ′ , |W ′| = n′, v′ ∈ W ′, S ′ ⊂ W ′, |S ′| = h′ and t′ satisfy the hypothesis

in the statement of the lemma, and additionally, are such that

• |t− t′|, |dv − d′v′ | ≤ n1/2−Ω(1),

• (dw)w∈S and (d′w)w∈S′ are proximate, and

• (dw)w∈W\S and (d′w)w∈W ′\S′ are proximate.

• |n− n′|, |h− h′| ≤ n1−Ω(1), this being a consequence of the previous two points.

In the regime where h, n− h = Ω(n), d = n/2 ± O(
√
n log n), t = h/2 ± O(

√
n log n),

the expression (
h

t

)(
n− h− 1

d− t

)(
n− 1

d

)−1

is polynomially-stable when n and h vary by n1−Ω(1), and d and t vary by n1/2−Ω(1),

which in particular tells us that(
h

t

)(
n− h− 1

dv − t

)(
n− 1

dv

)−1

≃
(
h′

t′

)(
n′ − h′ − 1

d′v′ − t′

)(
n′ − 1

d′v′

)−1

.

This can be seen via a careful (and rather tedious) application of Stirling’s approximation,

or alternately, by using a sufficiently precise form of the de Moivre—Laplace normal

approximation, as in [41] for example.
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Next, we need to verify that each of exp(Λ1), exp(−Λ2), exp(−Λ3) and exp(Λ4)

are similarly polynomially-stable, and this may be accomplished in a straightforward

manner using Lemma A.2. To illustrate, we spell out the details for exp(−Λ3) below.

Recall that

Λ3 =
1

2

∑
i∈W\v

β2
i

n− 1
=

1

2

∑
i∈W

β2
i

n− 1
±O(log n/n).

Our goal is to show, with β′
i defined by d′i = (n′− 1)/2 +β′

i

√
(n′ − 1)/2 for i ∈ W ′, that

Λ′
3 =

1

2

∑
i∈W ′\v′

(β′
i)

2

n′ − 1
=

1

2

∑
i∈W ′

(β′
i)

2

n′ − 1
±O(log n/n)

is close enough to Λ3 to ensure exp(−Λ3) ≃ exp(−Λ′
3).

Since (dw)w∈S and (d′w)w∈S′ are proximate, we claim that∣∣∣∣∣∑
i∈S

β2
i −

∑
i∈S′

(β′
i)

2

∣∣∣∣∣ ≤ n1−Ω(1).

This is true with room to spare if the two sequences are proximate on account of the

first part of Definition 4.8, since in this case, we know that∑
i∈S

∣∣βi − β′
ψ(i)

∣∣ = O(
√
n)

for some bijection ψ : S → S ′, from which it follows that∣∣∣∣∣∑
i∈S

β2
i −

∑
i∈S′

(β′
i)

2

∣∣∣∣∣ ≤
(

max
i∈S

∣∣βi + β′
ψ(i)

∣∣)(∑
i∈S

∣∣βi − β′
ψ(i)

∣∣) = O(
√
n log n).

If the two sequences are proximate on account of the second part of Definition 4.8, then

since |n− n′| ≤ n1−Ω(1), it is easily checked that the Kolmogorov distance between the

uniform measures on (βi)i∈S and (β′
i)i∈S′ is at most n−Ω(1), so by Lemma A.2 (with

k = 2 and q = log n), we have∣∣∣∣∣∑
i∈S

β2
i −

∑
i∈S′

(β′
i)

2

∣∣∣∣∣ ≤ n1−Ω(1)

as claimed. Reasoning similarly about the proximate pair (dw)w∈W\S and (d′w)w∈W ′\S′ ,

we deduce that ∣∣∣∣∣∣
∑
i∈W\S

β2
i −

∑
i∈W ′\S′

(β′
i)

2

∣∣∣∣∣∣ ≤ n1−Ω(1)

as well. Putting these pair of estimates together shows that |Λ3 − Λ′
3| ≤ n−Ω(1), whence

it is clear that exp(−Λ3) ≃ exp(−Λ′
3).

The details in the other three cases (i.e., for Λ1, Λ2 and Λ4) are similar, and we leave

them to the reader. □
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Proposition A.1 is a consequence of the following more general statement, the proof

of which will be given in Appendix C once we have collected the requisite machinery in

Appendix B.

Proposition A.3. Let (dw)w∈W be a sequence with even sum on a set W of n vertices

such that, defining βw by dw = (n − 1)/2 + βw
√

(n− 1)/2, we have |βw| ≤ log n for

each w ∈ W . Such a sequence is a graphic sequence for all sufficiently large n. Let G

be a uniformly random graph with this degree sequence on the vertex set W . For any

fixed v ∈ W , S ⊂ W of size h satisfying min(h, n− h) ≥ n/(log n)1/8, and an integer

t ∈ [0, dv], we have

P(degS(v) = t) = (1 ±O(n−1/6))

(
h−1S(v)

t

)(
n−h−1Sc (v)

dv−t

)(
n−1
dv

) exp(Λ1 − Λ3)ET [exp(−ΛT )] ,

where T = T1 ∪ T2 is a random set chosen by picking T1 uniformly from
(
S\v
t

)
and T2

uniformly from
(
Sc\v
dv−t

)
, and where Λ1, Λ3 and ΛT are given by

Λ1 =
1

2n2

(∑
i∈W

βi

)(∑
i∈W

βi − 2nβv

)
,

Λ3 =
1

2

∑
i∈W\v

β2
i

n− 1
, and

ΛT =
∑
i∈W\v

(−1)1T (i) βi√
n− 1

.

To proceed, we will need to understand expressions as appearing in the right side

of Proposition A.3. To this end, we state two general results about sums of random

variables constrained to live on a “slice” of the Boolean hypercube.

Lemma A.4. Let a1, . . . , an ∈ R and let X =
∑n

i=1 aiξi, where ξ = (ξ1, . . . , ξn) is

uniform on the subset of binary vectors in {0, 1}n whose coordinates sum to an integer

s ≤ n. Writing η2 =
∑n

i=1 a
2
i − (

∑n
i=1 ai)

2/n, we have

P(|X − E[X]| ≥ t) ≤ 2 exp(−t2/(4η2))

and

E
[
eX−E[X]

]
≤ 2eO(η2).

Proof. The first part follows from the Azuma–Hoeffding inequality, as outlined in [23],

for example. The second part follows from integrating the first; see [39]. □

Lemma A.5. Let a1, . . . , an ∈ R and let X =
∑n

i=1 aiξi, where ξ = (ξ1, . . . , ξn)

is uniform on the subset of binary vectors in {0, 1}n whose coordinates sum to an
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integer s with min(s, n − s) ≥ n(log n)−2. Suppose that |ai| ≤ n−1/2(log n)2 and

η2 =
∑n

i=1 a
2
i − (

∑n
i=1 ai)

2/n ≤
√

log n. Then we have

E
[
eX
]

= exp

(
E[X] +

1

2
Var[X] ±O(n−1/9)

)
.

Proof. Writing σ2 = Var[X], we clearly have

σ2 =
∑
i ̸=j

aiaj(E[ξiξj] − E[ξi]E[ξj]) +
∑
i

a2i (E[ξ2i ] − E[ξi]
2)

=
∑
i ̸=j

aiaj

(
s(s− 1)

n(n− 1)
− s2

n2

)
+
∑
i

a2i

(
s

n
− s2

n2

)
=
s(n− s)

n(n− 1)
η2.

First, by Lemma A.4, we have

P[|X − E[X]| ≥ t] ≤ 2 exp(−t2/(4η2))

for all t ≥ 0. Now

E
[
eX−E[X]

]
=

∫ ∞

−∞
etP(X − E[X] ≥ t)dt

=

∫ 8η
√
logn

−∞
etP(X − E[X] ≥ t)dt+O

(∫ ∞

8η
√
logn

et−t
2/(4η2)dt

)
=

∫ 8η
√
logn

−∞
etP(X − E[X] ≥ t)dt+O

(∫ ∞

8η
√
logn

e−t
2/(8η2)dt

)
=

∫ 8η
√
logn

−∞
etP(X − E[X] ≥ t)dt+O(n−4).

If σ ≤ n−1/8, then η = (n(n − 1)/(s(n − s)))1/2σ ≤ n−2/17, in which case we have

E[eX−E[X]] ≤ 1 +O(n−1/9), and combining this with E[eX ] ≥ eE[X] yields the result. If

σ > n−1/8, then a combinatorial central limit theorem of Bolthausen [11] (applied to

the n× n matrix in which the first s rows are copies of the vector (a1, . . . , an), and the

last n− s rows are zero) shows that

dK(X − E[X],N (0, σ2)) = O

(
n∑
i=1

|ai|3/σ3

)
= O(n−2/17).

This allows us the replace the integrand above with the cumulative distribution function

of a Gaussian, and we easily derive

E
[
eX−E[X]

]
= e

σ2

2 ±O
(
n−2/17e8η

√
logn
)

= exp(σ2/2 ±O(n−1/9)). □

Proposition A.1 is now easily deduced from Proposition A.3.
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Proof of Proposition A.1. With T = T1∪T2 a random set chosen by picking T1 uniformly

from
(
S\v
t

)
and T2 uniformly from

(
Sc\v
dv−t

)
, we have

ET [ΛT ] = ET

 ∑
i∈W\v

(−1)1T (i) βi√
n− 1


=
∑
i∈S\v

(
1 − 2t

h

)
βi√
n− 1

+
∑
i∈Sc\v

(
1 − 2(dv − t)

(n− h)

)
βi√
n− 1

±O(n−1/3)

= Λ2 ±O(n−1/3),

where the small additive error term comes from the fact that whether v ∈ S or v ∈ Sc

slightly change the fractions listed above, but not by much.

At this point, if |t− h/2| > n3/5, we have(
h−1S(v)

t

)(
n−h−1Sc (v)

dv−t

)(
n−1
dv

) ≤ exp(−Ω((t− h/2)2/n))

by a standard tail bound for the hypergeometric distribution (see [22], for example).

Since |βw| ≤ log n for each w ∈ W , clearly both |Λ1| and |Λ3| are O((log n)2), whence

exp(Λ1 − Λ3) ≤ exp(O((log n)4)), and we are left with estimating E[exp(−ΛT )]. Now

Lemma A.4 demonstrates

E[exp(−ΛT )] ≤ exp(E[−ΛT ] +O((log n)2)),

since the coefficient variance in −ΛT is O((log n)2/n) by the given conditions. The

above explicit expression for E[ΛT ] demonstrates that

|E[−ΛT ]| = O

(
|t− h/2|(log n)2√

n

)
when |t − h/2| > n3/5. These estimates together immediately yield a bound of the

claimed quality.

From now on we assume |t − h/2| ≤ n3/5. We next compute the variance of ΛT .

Following the computation in the proof of Lemma A.5, we see

Var[ΛT ] =
4

(n− 1)

(
t(h− t)

h(h− 1)

∑
i,j∈S\v(βi − βj)

2

h

+
(dv − t)((n− h) − (dv − t))

(n− h)(n− h− 1)

∑
i,j∈Sc\v(βi − βj)

2

n− h

)
+O(n−1/4),

these sums being over all (unordered) two-element subsets; here, we again use the fact

that the fraction t/|S \ v| is close to t/h regardless of if v ∈ S or v ∈ Sc. Now using
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t = h/2 ± n3/5 and dv = n/2 +O(
√
n(log n)), we find

Var[ΛT ] =
1

nh

∑
i,j∈S\v

(βi − βj)
2 +

1

n(n− h)

∑
i,j∈Sc\v

(βi − βj)
2 ±O(n−1/4)

= 2Λ4 ±O(n−1/4).

Note that Var[ΛT ] ≤
∑n

i=1 β
2
i /min(h, n−h) = O(n(log n)1/9/min(h, n−h)), and apply

Lemma A.5 to the two slices defining ΛT . Note that the condition η2 ≤
√

log n follows

from the inequalities (n/h)(log n)1/9 <
√

log n and the relation between σ2 and η2 in

the proof of Lemma A.5. Therefore

E[exp(−ΛT )] = exp

(
E[−ΛT ] +

1

2
Var[ΛT ] ±O(n−1/9)

)
= exp

(
−Λ2 + Λ4 ±O(n−1/9)

)
.

Plugging this last estimate into Proposition A.3, we obtain

P(degS(v) = t) = (1 ±O(n−1/10))

(
h
t

)(
n−h−1
dv−t

)(
n−1
dv

) exp(Λ1 − Λ2 − Λ3 + Λ4),

as desired, using the fact that the product of binomials in question changes by a small

factor depending on whether v ∈ S or v ∈ Sc, a factor which is nonetheless subsumed

by the error term with room to spare. □

The proof of Lemma 4.10 is analogous to the argument above, so in this case, we

only record the appropriate intermediate results needed, and omit the details.

Lemma 4.10 may be deduced from the following result in the same fashion as

Lemma 4.9 was from Proposition A.1.

Proposition A.6. Let ((dv)v∈V , (dw)w∈W ) be a pair of sequences with identical sums

on a bipartition V ∪ W with |V | = m, |W | = n such that, defining αv by dv =

(n − 1)/2 + αv
√

(n− 1)/2 for v ∈ V and βw by dw = (n − 1)/2 + βw
√

(n− 1)/2 for

w ∈ W , we have

• (log n)−1/4 ≤ m/n ≤ (log n)1/4,

• |αv| ≤ log n for each v ∈ V and |βw| ≤ log n for each w ∈ W , and

• (n/m)
∑

w∈W β2
w ≤ n(log n)1/9.

Then it is a bipartite-graphic degree sequence (for n large). Let G be a uniformly random

bipartite graph with these degree sequences on the vertex set V ∪W . Consider any fixed

u ∈ V , any fixed subset S ⊂ W of size h satisfying min(h, n− h) ≥ n/(log n)1/8, and

an integer t ∈ [0, du]. If |t− h/2| > n3/5, then we have

P(degS(u) = t) ≤ exp(−Ω((t− h/2)2/n)). (9)
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If |t− h/2| ≤ n3/5 on the other hand, then we have

P(degS(u) = t) = (1 ±O(n−1/10))

(
h
t

)(
n−h
du−t

)(
n
du

) exp(Λ1 − Λ2 − Λ3 + Λ4), (10)

where Λ1, Λ2, Λ3 and Λ4 are given by

Λ1 =
1

2mn

(∑
i∈W

βi

)(∑
i∈W

βi − 2
√
mnαu

)
,

Λ2 =
∑
i∈S

(
1 − 2t

h

)
βi√
m

+
∑
i∈W\S

(
1 − 2(dv − t)

(n− h)

)
βi√
m
,

Λ3 =
1

2

∑
i∈W

β2
i

m
, and

Λ4 =
1

2mh

∑
i,j∈S

(βi − βj)
2 +

1

2m(n− h)

∑
i,j∈W\S

(βi − βj)
2,

the sums in the definition of Λ4 being over all (unordered) two-element subsets. □

As before, Proposition A.6 itself is a consequence of the following result, whose proof

will be sketched in Appendix C once we have collected the requisite machinery in

Appendix B.

Proposition A.7. Let ((dv)v∈V , (dw)w∈W ) be a pair of sequences of identical sums

on a bipartition V ∪ W with |V | = m, |W | = n such that, defining αv by dv =

(n − 1)/2 + αv
√

(n− 1)/2 for v ∈ V and βw by dw = (n − 1)/2 + βw
√

(n− 1)/2 for

w ∈ W , we have

• (log n)−1/4 ≤ m/n ≤ (log n)1/4,

• |αv| ≤ log n for each v ∈ V and |βw| ≤ log n for each w ∈ W .

Such a pair of sequences form a bipartite-graphic sequence for all sufficiently large n. Let

G be a uniformly random bipartite graph with these degree sequences on the vertex set

V ∪W . For any fixed u ∈ V , S ⊂ W of size h satisfying min(h, n− h) ≥ n/(log n)1/8,

and an integer t ∈ [0, du], we have

P(degS(u) = t) = (1 ±O(n−1/8))

(
h
t

)(
n−h
du−t

)(
n
du

) exp(Λ1 − Λ3)ET [exp(−ΛT )] ,

where T = T1 ∪ T2 is a random set chosen by picking T1 uniformly from
(
S
t

)
and T2

uniformly from
(
W\S
du−t

)
, and where Λ1, Λ3 and ΛT are given by

Λ1 =
1

2mn

(∑
i∈W

βi

)(∑
i∈W

βi − 2
√
mnαu

)
,
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Λ3 =
1

2

∑
i∈W

β2
i

m
, and

ΛT =
∑
i∈W

(−1)1T (i) βi√
m
.

Appendix B. Graph enumeration results and related estimates

The main tools needed to prove Propositions A.3 and A.7 are the following enumera-

tion theorems of McKay and Wormald [27] and of Canfield, Greenhill, and McKay [12].

Theorem B.1. There exists a fixed constant ε > 0 such that the following holds.

Consider a sequence d = (d1, . . . , dn) with even sum such that, writing d = (1/n)
∑n

i=1 di,

we have

• |di − d| ≤ n1/2+ε for 1 ≤ i ≤ n, and

• d ≥ n/ log n.

Writing m = dn/2 ∈ Z, µ = d/(n−1), and γ22 = (1/(n−1)2)
∑n

i=1(di−d)2, the number

of labelled graphs with degree sequence d is

(1 ±O(n−1/4)) exp

(
1

4
− γ22

4µ2(1 − µ)2

)
×
(
n(n− 1)/2

m

)(
n(n− 1)

2m

)−1 n∏
i=1

(
n− 1

di

)
. □

Theorem B.2. There exists a fixed constant ε > 0 such that the following holds.

Consider a pair of sequences (s = (s1, . . . , sn), t = (t1, . . . , tm)) with identical sums such

that, writing s = (1/n)
∑n

i=1 si and t = (1/n)
∑m

i=1 ti, we have

• n/(log n)1/2 ≤ m ≤ n(log n)1/2,

• |si − s| ≤ n1/2+ε for 1 ≤ i ≤ n and |ti − t| ≤ m1/2+ε for 1 ≤ i ≤ m, and

• s ≥ n/(log n)1/2 and t ≥ m/(logm)1/2.

Writing µ =
∑n

i=1 si/(mn) =
∑m

i=1 ti/(mn), γ2(s)
2 = (1/n2)

∑n
i=1(si − s)2 and

γ2(t)
2 = (1/m2)

∑m
i=1(ti − t)2, the number of labelled bipartite graphs whose partition

classes have degree sequences s and t is

(1 ±O(n−1/8)) exp

(
−1

2

(
1 − γ2(s)

2

µ(1 − µ)

)(
1 − γ2(t)

2

µ(1 − µ)

))
×
(
mn

mnµ

)−1 n∏
i=1

(
m

si

) m∏
i=1

(
n

ti

)
. □

We remark that these enumeration results are now known to hold under even

broader conditions on the degree sequences (i.e., d, s and t) due to works of Barvinok
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and Hartigan [6], and for essentially all sparsities by recent work of Liebenau and

Wormald [25, 24]. We refer the reader to [40] for an excellent survey of these results.

In order to estimate the expressions in Theorems B.1 and B.2, we shall also require

the following estimates for binomial coefficients. These follow from sufficiently precise

versions of Stirling’s approximation for the factorial. These estimates are nonetheless

somewhat nonstandard, and so we include proofs, following the exceptionally clean

approach in [33].

Lemma B.3. We have the following pair of estimates.

(1) For integers e,m, d ∈ N, let ∆1 = e−m(m− 1)/4 and ∆2 = (m− 1)/2 − d. If

|∆1| = O(m3/2) and |∆2| = O(
√
m logm), then(

m(m−1)/2
e

)(
m(m−1)

2e

)−1(
(m−1)(m−2)/2

e−d

)(
(m−1)(m−2)

2e−2d

)−1 = (1 ±O(m−2/5))2−(m−1) exp(−8(∆2
1 + ∆1∆2m)/m3).

(2) For integers e,m, d, n ∈ N, let ∆1 = e −mn/2 and ∆2 = n/2 − d. If |∆1| ≤
O(m3/2), |∆2| ≤ O(

√
m logm), and m = Θ(n), then(

mn

e

)−1(
(m− 1)n

e− d

)
= (1 ±O(m−2/5))2−n exp(−2(2m∆1∆2 + ∆2

1)/(m
2n)).

Proof. We start with an auxiliary estimate. We claim, for |i| ≤ N4/5, that(
N

(N + i)/2

)
=

(
N

N/2

)
(1 − i2/(2N) − i4/(12N3) ±O(N−1/5)). (11)

Indeed, note that(
N

(N + i)/2

)(
N

N/2

)−1

=

i/2∏
j=1

N/2 − j + 1

N/2 + j
=

i/2∏
j=1

N/2 − j

N/2 + j

i/2∏
j=1

N/2 − j + 1

N/2 − j
.

The final product on the right hand side is (1 ± O(N−1/5)). For the first of the two

products on the right hand side, note that

i/2∑
j=1

log((N/2 − j)/(N/2 + j)) =

i/2∑
j=1

−4j/N − 2(2j/N)3/3 ±O(N−1/5)

= −i2/(2N) − i4/(12N3) ±O(N−1/5),

proving (11).

Now, for the first estimate, we have ∆1 = e−m(m− 1)/4 and ∆2 = (m− 1)/2 − d.

Applying (11) to each term, we find that(
m(m−1)/2

e

)(
m(m−1)

2e

)−1(
(m−1)(m−2)/2

e−d

)(
(m−1)(m−2)

2e−2d

)−1 = (1 ±O(m−2/5))2−(m−1) exp(−8(∆2
1 + ∆1∆2m)/m3),
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establishing what we need.

For the second estimate, we have ∆1 = e−mn/2 and ∆2 = n/2 − d. Then we have(
mn

e

)−1(
(m− 1)n

e− d

)
= (1 ±O(m−2/5))2−n exp(−2(2m∆1∆2 + ∆2

1)/(m
2n)),

establishing the desired bound. □

Appendix C. Proofs of the main technical estimates

With the results in Appendix B in hand, we are now ready to prove Propositions A.3

and A.7. We start with Proposition A.3.

Proof of Proposition A.3. Given d = (dw)w∈W , v ∈ W and T ⊆ W \ v of size dv, we

shall estimate the probability of the neighbourhood of v in G being exactly T .

To this end, let dT = (dw − 1T (w))w∈W . As in Theorem B.1, let

d =
1

n

∑
i∈W

di, dT =
1

n− 1

∑
i∈W\v

(di − 1T (i)) =
nd− 2dv
n− 1

,

r =
dn

2
, rT =

dT (n− 1)

2
= r − dv,

µ =
d

n− 1
, µT =

dT
n− 2

=
n

n− 2
µ− 2dv

(n− 1)(n− 2)
,

γ22 =
1

(n− 1)2

∑
i∈W

(di − d)2, γ22(T ) =
1

(n− 2)2

∑
i∈W\v

(dT,i − dT )2.

Note that d and dT both clearly satisfy the conditions of Theorem B.1 due to our

hypotheses, and that

γ22(T ) = γ22 ±O(n−1/4) and µT = µ±O(1/n),

again, from the given hypotheses. Now define

Φ =

(
(n−1)(n−2)/2

r−dv

)(
(n−1)(n−2)

2r−2dv

)−1(
n(n−1)/2

r

)(
n(n−1)

2r

)−1 2−(n−1)

and recall di = (n− 1)/2 + βi
√

(n− 1)/2. We have

r − 1

2

(
n

2

)
=

1

2

∑
i∈W

(di − (n− 1)/2) =

√
(n− 1)

4

∑
i∈W

βi.

From our hypotheses and the first estimate in Lemma B.3, we then deduce that

Φ = exp

(
(
∑

i∈W βi)(
∑

i∈W βi − 2nβn)

2n2
±O(n−1/6)

)
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= exp(Λ1 ±O(n−1/6)).

The above estimates for γ22(T ) and µT imply that

exp
(

1
4
− γ22(T )

4µ2T (1−µT )2

)
exp

(
1
4
− γ22

4µ2(1−µ)2

) = 1 ±O(n−1/4),

and this fact in conjunction with Theorem B.1 yields

P[N(v) = T ] = (1 ±O(n−1/4))

(
(n−1)(n−2)/2

rT

)(
(n−1)(n−2)

2rT

)−1∏
i∈W\v

(
n−2

di−1T (i)

)
(
n(n−1)/2

r

)(
n(n−1)

2r

)−1∏
i∈W

(
n−1
di

)
= (1 ±O(n−1/4))

Φ2n−1(
n−1
dv

) ∏
i∈T

di
n− 1

∏
i/∈T

n− 1 − di
n− 1

= (1 ±O(n−1/4))
Φ(
n−1
dv

) ∏
i∈T

(
1 +

βi√
n− 1

)∏
i/∈T

(
1 − βi√

n− 1

)

=
Φ(
n−1
dv

) exp

−
∑
i∈W\v

(−1)1T (i) βi√
n− 1

− 1

2

∑
i∈W\v

β2
i

n− 1
±O(n−1/4)


=

Φ(
n−1
dv

) exp
(
−ΛT − Λ3 ±O(n−1/4)

)
.

Since the above estimate holds for every choice of T ⊆ W \v, we may finish by noting

that

(1 ±O(n−1/4))

(
n−1
dv

)
Φ
(
h−1S(v)

t

)(
n−h−1Sc (v)

dv−t

)P[degS(v) = t] = exp(−Λ3)ET [exp(−ΛT )],

where T = T1 ∪ T2 is a random set chosen by picking T1 uniformly from
(
S
t

)
and T2

uniformly from
(
W\S
dv−t

)
. Rearranging this, and recalling that Φ = exp(Λ1 ± O(n−1/6)),

gives us the desired result. □

To finish, we outline the proof of Proposition A.7.

Proof of Proposition A.7. The proof of this proposition mirrors that of Proposition A.3,

except now using Theorem B.2 instead of Theorem B.1, and the second estimate in

Lemma B.3 instead of the first. Since the requisite calculations are routine (and are

analogous to those spelled out in the proof of Proposition A.3), we leave the details of

these calculations to the reader. □
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