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Abstract. Proving a conjecture of Talagrand from 2010, a fractional version of the

‘expectation-threshold conjecture’ of the second author and Kalai, we show that for

any increasing family F on a finite set X, we have pc(F) = O(qf (F) log ℓ(F)), where

pc(F) and qf (F) are the threshold and ‘fractional expectation-threshold’ of F , and

ℓ(F) is the maximum size of a minimal member of F . This easily implies several

heretofore difficult results and conjectures in probabilistic combinatorics: thresholds

for perfect hypergraph matchings (Johansson–Kahn–Vu), bounded-degree spanning

trees (Montgomery), and bounded-degree spanning graphs (new), amongst others. We

also give optimal bounds on the extrema of ‘hypergraph-indexed’ stochastic processes;

these resolve, and vastly extend, the random multi-dimensional assignment problem

(earlier considered by Martin–Mézard–Rivoire and Frieze–Sorkin). Our approach to

both results builds on a recent breakthrough of Alweiss–Lovett–Wu–Zhang on the

Erdős–Rado ‘sunflower conjecture’.

1. Introduction

Our most important contribution here is the proof of a conjecture of Talagrand [30]

that is a fractional version of the ‘expectation-threshold’ conjecture of the second author

and Kalai [17]. With definitions following shortly, for an increasing family F on a

finite set X, we write pc(F), qf (F) and ℓ(F) for the threshold, fractional expectation-

threshold, and size of a largest minimal element of F . In this language, our main result

is the following.

Theorem 1.1. There is a universal K > 0 such that for every finite X and increasing

F ⊂ 2X ,

pc(F) ≤ Kqf (F) log ℓ(F).

As we shall see, qf (F) is a more or less trivial lower bound on pc(F), and Theorem 1.1

says this bound is never far from the truth; furthermore, apart from the constant K,

this upper bound is tight in many of the most interesting cases.

Thresholds have been a — maybe the — central concern of the study of random

discrete structures (random graphs and hypergraphs, for example) since its initiation by

Erdős and Rényi [7], with much work around locating thresholds of specific properties
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of interest (see [3, 14]), though it was not observed until [4] that every increasing family

admits a threshold (in the Erdős–Rényi sense). See also [11] for developments, since [10],

on the very interesting question of sharpness of thresholds, though it is perhaps worth

mentioning here that establishing sharpness typically does not require locating the

threshold in question.

Our second main result is Theorem 1.7 below, which was motivated by work of Frieze

and Sorkin [12] on the random multi-dimensional assignment problem; the statement of

this result is postponed until we have filled in some background, to which we now turn.

Thresholds. For a given finite set X and p ∈ [0, 1], µp is the product measure on the

power set 2X of X given by

µp(S) = p|S|(1 − p)|X\S| ∀S ⊂ X.

A family F ⊂ 2X is increasing if it is closed under taking supersets, and if this is true

(and F ̸= 2X , ∅), then µp(F) =
∑

S∈F µp(S) is strictly increasing in p, and the threshold

pc(F) of F is the unique p for which µp(F) = 1/2. This is finer than the original

Erdős–Rényi notion, according to which p∗ = p∗(n) is a threshold for the sequence

F = Fn if µp(F) → 0 if p ≪ p∗ and µp(F) → 1 if p ≫ p∗; that pc(F) is always an

Erdős–Rényi threshold for F follows from [4].

Following Talagrand [27, 28, 30], we say an increasing F ⊂ 2X is p-small if there is a

G ⊂ 2X such that F ⊂ ⟨G⟩, where ⟨G⟩ is the increasing family generated by G, and∑
S∈G p

|S| ≤ 1/2. (1)

Then q(F) = max{p : F is p-small}, which we call the expectation-threshold of F (note

that this term is used slightly differently in [17]), is a trivial lower bound on pc(F),

since for G as above and T drawn from µp,

µp(F) ≤ µp(⟨G⟩) ≤
∑

S∈G µp(T ⊃ S) =
∑

S∈G p
|S|. (2)

The following statement, the main conjecture of [17], says that for any increasing F ,

this trivial lower bound on pc(F) is close to the truth.

Conjecture 1.2. There is a universal K > 0 such that for every finite X and increasing

F ⊂ 2X ,

pc(F) ≤ Kq(F) log |X|.

We should emphasise that this conjecture is very strong; indeed, quoting [17], “It

would probably be more sensible to conjecture that it is not true.” For example, it easily

implies — and was largely motivated by — Erdős–Rényi thresholds for the appearance

of a perfect matching in a random r-uniform hypergraph, and the appearance of a given

bounded-degree spanning tree in a random graph. These have since been resolved: the

first — Shamir’s problem, circa 1980 — in [15], and the second — a mid-90’s suggestion
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of the second author — in [24]. Both arguments are difficult and specific to the problems

they address; they are utterly unrelated either to each other or to what we do here.

Talagrand [27, 30] suggests relaxing the notion of p-small by replacing the set system

G above by what we may think of as a fractional set system g. We say an increasing

F ⊂ 2X is weakly p-small if there is a g : 2X → R+ such that∑
T⊂S

g(T ) ≥ 1 ∀S ∈ F and
∑
T⊂X

g(T )p|T | ≤ 1/2.

Then qf (F) = max{p : F is weakly p-small}, the fractional expectation-threshold of F ,

satisfies

q(F) ≤ qf (F) ≤ pc(F); (3)

here, the first inequality is trivial and the second is similar to (2). Talagrand [30]

proposes a ‘linear programming relaxation’ of Conjecture 1.2, and then a strengthening

thereof. The first of these, the following, replaces q by qf in Conjecture 1.2; the second,

which suggests the replacement of |X| by the smaller ℓ(F), is our Theorem 1.1.

Conjecture 1.3. There is a universal K > 0 such that for every finite X and increasing

F ⊂ 2X ,

pc(F) ≤ Kqf (F) log |X|.

Talagrand further suggests the following ‘very nice problem of combinatorics’, which

implies equivalence of Conjectures 1.2 and 1.3, as well as of Theorem 1.1 and the

corresponding strengthening of Conjecture 1.2.

Conjecture 1.4. There is a universal K > 0 such that, for any increasing F on a

finite set X , we have q(F) ≥ qf (F)/K .

Note the interest here is in Conjecture 1.4 for its own sake, and as the most likely

route to Conjecture 1.2. The equivalence predicted by this conjecture is not necessary

for all the applications of Conjecture 1.2 that we are aware of; they follow just as easily

from Theorem 1.1.

Spread hypergraphs and spread measures. In this paper, a hypergraph H on a

finite set X (the vertices of H) is a collection of subsets of X (the edges of H), with

reptitions allowed. For S ⊂ X, we use ⟨S⟩ for {T ⊂ X : T ⊃ S}, and for a hypergraph

H on X, we write ⟨H⟩ for ∪S∈H⟨S⟩, the increasing family generated by H. We say H
is ℓ-bounded (respectively, ℓ-uniform or an ℓ-graph) if each of its members has size at

most (respectively, exactly) ℓ, and κ-spread if

|H ∩ ⟨S⟩| ≤ κ−|S||H| ∀S ⊂ X; (4)

note that edges are counted with multiplicities on both sides of (4). For example,

a reasonably ‘generic’ ℓ-graph H on n vertices might — and in some of the more
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interesting cases will — have spread like n/ℓ, since a set of s vertices would naturally

lie in about an (ℓ/n)s-fraction of the edges of H.

A major advantage of the fractional versions (i.e., Conjecture 1.3 and Theorem 1.1)

over Conjecture 1.2 — and the source of the present relevance of [2] — is that they

admit, via linear programming duality, reformulations in which the specification of

qf (F) gives us a usable starting point. Following [30], we say that a probability measure

ν on 2X is q-spread if

ν(⟨S⟩) ≤ q|S| ∀S ⊂ X.

Thus a hypergraph H is κ-spread if and only if the uniform measure on H is q-spread

with q = κ−1. As observed by Talagrand [30], the following is an easy consequence of

duality.

Proposition 1.5. For an increasing F on a finite X , if qf(F) ≤ q, then there is a

(2q)-spread probability measure on 2X supported on F . □

This allows us to reduce Theorem 1.1 to the following alternate (actually, equivalent)

statement. In this paper, with high probability means with probability tending to 1 as

ℓ→ ∞.

Theorem 1.6. There is a universal K > 0 such that for any ℓ-bounded, κ-spread

hypergraph H on a finite X , a uniformly random ((Kκ−1 log ℓ)|X|)-element subset of

X belongs to ⟨H⟩ with high probability.

Minima of hypergraph-indexed stochastic processes. Our second main result

provides upper bounds on the minima of a large class of hypergraph-based stochastic

processes, somewhat in the spirit of [29] (see also [28, 31]), saying that in ‘smoother’

settings, the logarithmic corrections of Conjectures 1.2 and 1.3 and Theorem 1.1 are

not needed. For a hypergraph H on a finite set X, let (ξx)x∈X be independent random

variables, each uniform from [0, 1], and set

ξH = min
S∈H

∑
x∈S

ξx and ZH = E[ξH]. (5)

In this language, our second main theorem is as follows.

Theorem 1.7. There is a universal K > 0 such that for any ℓ-bounded, κ-spread

hypergraph H, we have ZH ≤ Kℓ/κ, and ξH ≤ Kℓ/κ with high probability.

These bounds are again tight up to the value of the constant K. Furthermore, the

distribution of the ξx’s is not very important; for example, it is not hard to adapt the

present argument to show that the same statement holds for Exp(1) random variables,

as in the next example.

4



Theorem 1.7 was motivated by the work of Martin, Mézard and Rivoire [23] and

Frieze and Sorkin [12] on the random d-dimensional assignment problem. This asks, for

fixed d and large n, for the estimation of

ZA
d (n) = E

[
min
S∈A

∑
x∈S

ξx

]
, (6)

where X = [n]d, the ξx’s are independent Exp(1) weights for x ∈ X, and A is the

family of ‘axial assignments’, meaning S ∈ A meets each axis-parallel hyperplane

({x ∈ X : xi = a} for some i ∈ [d] and a ∈ [n]) exactly once. For d = 2, this is classical;

see [12] for its rather glorious history. For d = 3, the deterministic version was one of

Karp’s [18] original NP-complete problems. Progress on the random version in higher

dimensions has been limited; see [12] for a guide to the literature.

Frieze and Sorkin show for suitable c1, c2 > 0 that

c1n
−(d−2) < ZA

d (n) < c2n
−(d−2) log n. (7)

Here, the lower bound is easy, and the upper bound follows from the bounds of [15] on

Shamir’s problem. In present language, ZA
d (n) is essentially (that is, apart from the

difference in the distributions of the ξx’s) ZH, with H the family of perfect matchings

of the complete, balanced d-uniform d-partite hypergraph on dn vertices. This is easily

seen to be κ-spread with κ = (n/e)d−1 (apart from the nearly irrelevant d-particity, it

is the same H in Shamir’s problem), so the correct bound, as heuristically predicted by

the ‘cavity method’ in [23], is an instance of Theorem 1.7.

Corollary 1.8. For all fixed d ∈ N, we have

ZA
d (n) = Θ(n−(d−2)).

Frieze and Sorkin also consider another version of the problem, in which A in (6)

consists of those S that meet each axis-parallel line ({x ∈ X : xj = yj ∀j ≠ i} for some

i ∈ [d] and y ∈ X) exactly once, and one may of course generalise from hyperplanes/lines

to k-dimensional ‘subspaces’ for any given k ∈ [d− 1]. It is easy to see what to expect

here, and one may hope Theorem 1.7 will eventually apply, but we at present lack the

technology to say that the relevant hypergraphs are suitably spread.

Organisation. Section 2 includes minor preliminaries and the derivation of Theorem 1.1

from Theorem 1.6. The main lemma at the heart of our argument is proved in Section 3.

Our approach here strengthens that of the recent breakthrough of Alweiss, Lovett, Wu

and Zhang [2] on the Erdős–Rado sunflower conjecture [6]; see also [25, 32] for other

views of the argument of [2]. The proofs of Theorems 1.6 and 1.7 follow in Section 4.

Finally, Section 5 outlines a few applications already alluded to here, and Section 6

discusses unresolved questions.
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2. Preliminaries

As is usual, we use [n] for {1, 2, , . . . , , n}, 2X for the power set of X,
(
X
r

)
for the

family of r-element subsets of X, and [S, T ] for {R : S ⊂ R ⊂ T}. Our default universe

is X, with |X| = n.

In what follows, we assume ℓ and n are somewhat large (and when there is an ℓ, it

will be at most n), as we may do since smaller values can by handled by adjusting the

constants in Theorems 1.6 and 1.7. Asymptotic notation referring to some parameter λ

(usually ℓ) is used in the natural way: implied constants in O(·) and Ω(·) are independent

of λ, and we use f = o(g) and f ≪ g synonymously. Following a standard abuse, we

usually pretend large numbers are integers.

For p ∈ [0, 1] and m ∈ [n], Xp and Xm are (respectively) a p-random subset of X

(drawn from µp) and a uniformly random m-element subset of X. The latter is not

entirely kosher, since we will also see sequences Xi; however, we will never see both

interpretations in close proximity, and the overlap should cause no confusion.

In a couple places it will be helpful to assume uniformity, which we will justify using

the next little point.

Observation 2.1. If H is ℓ-bounded and κ-spread, and we replace each S ∈ H by M

new edges, each consisting of S plus ℓ− |S| new vertices (each used just once), then for

large enough M , the resulting ℓ-graph G is again κ-spread.

We close this section with the reduction promised earlier.

Derivation of Theorem 1.1 from Theorem 1.6. Let F be as in Theorem 1.1 with G its

set of minimal elements, let ℓ with ℓ(F) ≤ ℓ = O(ℓ(F)) be large enough that the

exceptional probability in Theorem 1.6 is less than 1/4, and let ν be the (2q)-spread

probability measure promised by Proposition 1.5, where q = qf(F). We may assume

ν is supported on G (since transferring weight from S to T ⊂ S does not destroy

the spread condition) and that ν takes values in Q (where we should really relax to

((2 + ε)q)-spread, but we ignore this immaterial difference). We may then replace G by

H whose edges are copies of edges of G, and ν by the uniform measure on H. Setting

m = ((2Kq log ℓ)n) and p = 2m/n (with n = |X| and K as in Theorem 1.6), we then

see (using Theorem 1.6 with κ = 1/(2q)) that

µp(F) ≥ P(Xp ∈ ⟨H⟩) ≥ P(|Xp| ≥ m)P(Xm ∈ ⟨H⟩) ≥ 3P(|Xp| ≥ m)/4 > 1/2,

implying that pc(F) < p = 4Kq log ℓ. Note that H being q-spread with ∅ ̸∈ H implies

that q ≥ 1/n, so that m is somewhat large and P(|Xp| ≥ m) > 2/3, with room to

spare. □

Remark 2.2. This was done fussily to cover smaller ℓ in Theorem 1.1; if ℓ→ ∞, then

the above reduction gives P(Xp ∈ ⟨H⟩) → 1.
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3. Main lemma

Let γ be a small constant (γ = 0.1 certainly suffices), and let C0 be a constant

large enough to support the estimates that follow. Let H be an r-bounded, κ-spread

hypergraph on a set X of size n, with r, κ ≥ C2
0 . Set p = C/κ with C0 ≤ C ≤ κ/C0

so that p ≤ 1/C0, r
′ = (1 − γ)r and N =

(
n
np

)
. Finally, fix ψ : ⟨H⟩ → H satisfying

ψ(Z) ⊂ Z for all Z ∈ ⟨H⟩; set, for W ⊂ X and S ∈ H,

χ(S,W ) = ψ(S ∪W ) \W,

and say the pair (S,W ) is bad if |χ(S,W )| > r′ and good otherwise.

The heart of our argument is an improvement of the main lemma of [2], regarding

which a little of orientation may be helpful. We will (in Theorems 1.6 and 1.7) be

choosing a random subset of X in small increments and would like to say we are likely

to be making good progress toward containing some S ∈ H. Of course, such progress is

not to be expected for a typical S, but this is not the goal: having chosen some portion

W of our eventual set, we just need the remainder to contain some S \W , and may

focus on those that are more likely (meaning small). The key idea (introduced in [2]

and refined here) is that a general S \W , while not itself small, will in consequence

of the spread assumption, typically contain some small S ′ \W . In fact χ(S,W ) will

usually be one of these: an S ′ \W contained in S \W will typically be small, so we

do not need to steer this choice. We then replace each ‘good’ S \W by χ(S,W ) and

iterate, a second nice feature of the spread condition being that it is not much affected

by this substitution.

With this outline in place, we are now ready to state and prove our main lemma.

Lemma 3.1. For H as above, and W chosen uniformly from
(
X
np

)
,

E[|{S ∈ H : (S,W ) is bad}|] ≤ |H|C−r/3.

Proof. It is enough to show, for s ∈ (r′, r], that

E [|{S ∈ H : (S,W ) is bad and |S| = s}|] ≤ (γr)−1|H|C−r/3, (8)

or, equivalently, that

|{(S,W ) : (S,W ) is bad and |S| = s}| ≤ (γr)−1N |H|C−r/3. (9)

Note γr = r− r′ bounds the number of s for which the set in question can be nonempty,

whence the negligible factor (γr)−1.

We now use Hs = {S ∈ H : |S| = s}. Let B =
√
C and for Z ⊃ S ∈ Hs, say (S, Z)

is pathological if there is T ⊂ S with t = |T | > r′ and

|{S ′ ∈ Hs : S ′ ∈ [T, Z]}| > Br|H|κ−tps−t. (10)
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From now on, we will always take Z = W ∪ S (with W as in Lemma 3.1); thus |Z| is

typically roughly np and, since H is κ-spread, |H|κ−tps−t is a natural upper bound on

what one might expect for the left-hand side of (10).

Note that in proving (9), we may assume s ≤ n/2: we may of course assume |Hs| is

at least the right-hand side of (8), but then for an S ∈ Hs of the largest multiplicity,

say M , we have

M ≤ κ−s|H| ≤ κ−sγrCr/3|Hs| ≤ κ−sγrCr/3M2n,

which is less than M if s > n/2 (since κ > C).

We bound the nonpathological and pathological parts of (9) separately; this, along

with the introduction of the notion of ‘pathological’, is the source of our improvement

over [2].

Nonpathological contributions. We first bound the number of (S,W ) in (9)

with (S,Z) nonpathological. This basically follows [2], but ‘nonpathological’ allows us

to bound the number of possibilities in Step 3 below by the right-hand side of (10)

(where [2] settles for something like |H|κ−t).

(1) There are at most

s∑
i=0

(
n

np+ i

)
≤
(
n+ s

np+ s

)
≤ Np−s (11)

choices for Z = W ∪ S.

(2) Given Z, let S ′ = ψ(Z). Choose T = S∩S ′, for which there are at most 2|S
′| ≤ 2r

possibilities, and set t = |T | > r′. If t ≤ r′ then, as χ(S,W ) = S ′ \W ⊂ T ,

(S,W ) cannot be bad.

(3) Since we are only interested in nonpathological choices, the number of possibilities

for S is now at most

Br|H|κ−tps−t.

(4) Complete the specification of (S,W ) by choosing W ∩ S, the number of possi-

bilities for which is at most 2s.

In sum, since s ≤ r and t > r′ = (1− γ)r, the number of nonpathological possibilities

is at most

2r+sN |H|Br(pκ)−t ≤ N |H|(4B)rC−t < N |H|
(
4BC−(1−γ)

)r
. (12)

Pathological contributions. We next bound the number of (S,W ) as in (9) with

(S, Z) pathological. The main point here is Step 4 below.

(1) There are at most |H| possibilities for S.

(2) Choose T ⊂ S witnessing the pathology of (S,Z), i.e., for which (10) holds;

there are at most 2s possibilities for T .

8



(3) Choose U ∈ [T, S] for which

|Hs ∩ [U, (Z \ S) ∪ U ]| > 2−(s−t)Br|H|κ−tps−t. (13)

Here the left-hand side counts members of Hs in Z whose intersection with S

is precisely U ; of course, the existence of U as in (13) follows from (10). The

number of possibilities for this choice is clearly at most 2s−t.

(4) Choose Z \ S, the number of choices for which is less than N(2/B)r. To see

this, write Φ for the right-hand side of (13). Noting that Z \ S must belong to(
X\S
np

)
∪
(
X\S
np−1

)
∪ · · · ∪

(
X\S
np−s

)
, we consider, for Y drawn uniformly from this set,

P(|Hs ∩ [U, Y ∪ U ]| > Φ). (14)

Set |U | = u. We have

|Hs ∩ ⟨U⟩| ≤ |H ∩ ⟨U⟩| ≤ |H|κ−u,

while, for any S ′ ∈ Hs ∩ ⟨U⟩,

P(Y ⊃ S ′ \ U) ≤
(

np

n− s

)s−u

,

though, of course, if S ′ ∩ S ̸= U , then the probability in question is zero. It

follows that

ϑ = E [|Hs ∩ [U, Y ∪ U ]|] ≤ |H|κ−u

(
np

n− s

)s−u

≤ |H|κ−u(2p)s−u,

where the last inequality holds since n − s ≥ n/2. Markov’s inequality then

bounds the probability in (14) by ϑ/Φ, and this bounds the number of pos-

sibilities for Z \ S by N(ϑ/Φ) (see (11)), which is easily seen to be less than

N(2/B)r.

(5) Complete the specification of (S,W ) by choosing S ∩W , which can be done in

at most 2s ways.

Combining (and slightly simplifying), we find that the number of pathological possi-

bilities is at most

|H|N(16/B)r. (15)

Finally, the sum of the bounds in (12) and (15) is at most (γr)−1N |H|C−r/3, as

required in (9), proving the lemma. □

As in [2], we handle small uniformities by a simple application of Janson’s inequality.

Lemma 3.2. For an r-bounded, κ-spread G on Y , and α ∈ (0, 1),

P(Yα ̸∈ ⟨G⟩) ≤ exp

−

(
r∑

t=1

(
r

t

)
(ακ)−t

)−1
 . (16)
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Proof. We may assume G is r-uniform, since modifying it according to Observation 2.1

does not decrease the probability in (16). Denote members of G by S1, S2, . . . , S|G| and

set ζi = 1{Yα⊃Si}. Then

µ =

|G|∑
i=1

E[ζi] = |G|αr

and

Λ =

|G|∑
i=1

|G|∑
j=1

E[ζiζj1{Si∩Sj ̸=∅}] ≤ |G|
r∑

t=1

(
r

t

)
κ−t|G|α2r−t = µ2

r∑
t=1

(
r

t

)
(ακ)−t,

where the inequality holds because G is κ-spread, and Janson’s inequality (see [14], for

example) bounds the probability in (16) by exp(−µ2/Λ). □

Corollary 3.3. Let G be as in Lemma 3.2, let t = α|Y | be an integer with ακ ≥ 2r,

and let W = Yt. Then

P(W ̸∈ ⟨G⟩) ≤ 2 exp(−ακ/(2r)).

Proof. Lemma 3.2 gives

exp(−ακ/(2r)) ≥ P(Yα ̸∈ ⟨G⟩) ≥ P(|Yα| ≤ t)P(W ̸∈ ⟨G⟩) ≥ P(W ̸∈ ⟨G⟩)/2,

where we use the fact (see [22]) that any binomial ξ with E[ξ] ∈ N satisfies P(ξ ≤
E[ξ]) ≥ 1/2. □

4. Proofs of the main results

We now give the proofs of our two main results. We start with Theorem 1.6.

Proof of Theorem 1.6. It will be (very slightly) convenient to prove the theorem assum-

ing H is (2κ)-spread. Let γ and C0 be as in Section 3 and H as in the statement of

Theorem 1.6, and recall that asymptotics refer to ℓ. We may of course assume that

κ ≥ 2γ−1C0 log ℓ (or the result is trivial with a suitably adjusted K).

Fix an arbitrary ordering ≺ of H. In what follows, we will have a sequence of

hypergraphs Hi, with H0 = H and

Hi ⊂ {χi(S,Wi) : S ∈ Hi−1},

where Wi and χi will be defined below (with χi a version of the χ of Section 3). We

then order Hi by setting

χi(S,Wi) ≺i χi(S
′,Wi) ⇔ S ≺i−1 S

′.

In other words, each member of Hi ultimately inherits its position in ≺i from some

member of H. This is not very important; we will be applying Lemma 3.1 repeatedly,

and the present convention just provides a concrete ψ for each stage of the iteration.
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Set C = C0 and p = C/κ, define m by (1 − γ)m =
√

log ℓ/ℓ, and set q = log ℓ/κ.

Then m ≤ γ−1 log ℓ and Theorem 1.6 will follow from the next assertion.

Claim 4.1. If W is a uniform ((mp + q)n)-subset of X , then W ∈ ⟨H⟩ with high

probability.

Proof. Set δ = 1/(2m). Let r0 = ℓ and ri = (1 − γ)ri−1 = (1 − γ)ir0 for i ∈ [m]. Let

X0 = X and, for i = 1, 2, . . . ,m, let Wi be uniform from
(
Xi−1

np

)
and set Xi = Xi−1 \Wi.

Finally, note the assumption that κ ≥ 2γ−1C0 log ℓ ensures |Xm| ≥ n/2.

For S ∈ Hi−1, let χi(S,Wi) = S ′ \Wi, where S ′ is the first member of Hi−1 contained

in Wi ∪ S (with Hi−1 ordered by ≺i−1). Say S is good if |χi(S,Wi)| ≤ ri and bad

otherwise, and set

Hi = {χi(S,Wi) : S ∈ Hi−1 is good}.

Thus, Hi is an ri-bounded collection of subsets of Xi and inherits the ordering ≺i as

described above.

Finally, choose Wm+1 uniformly from
(
Xm

nq

)
. Then W = W1 ∪ · · · ∪Wm+1 is as in

Claim 4.1. Note also that W ∈ ⟨H⟩ whenever Wm+1 ∈ ⟨Hm⟩, and more generally,

W1 ∪ · · · ∪Wi ∪ Y ∈ ⟨H⟩ whenever Y ⊂ Xi lies in ⟨Hi⟩.
To prove the claim, it suffices to show that

P(Wm+1 ∈ ⟨Hm⟩) = 1 − o(1), (17)

where P now refers to the entire sequence W1,W2, . . . ,Wm+1.

For i ∈ [m], call Wi successful if |Hi| ≥ (1 − δ)|Hi−1|, call Wm+1 successful if it lies

in ⟨Hm⟩, and say a sequence of Wi’s is successful if each of its entries is. We show a

little more than (17) and prove that

P(W1,W2, . . . ,Wm+1 is successful) = 1 − exp
(
−Ω(

√
log ℓ)

)
. (18)

For i ∈ [m], Lemma 3.1 and Markov’s inequality give

P(Wi is not successful |W1,W2, . . . ,Wi−1 is successful) < δ−1C−ri−1/3,

since W1,W2, . . . ,Wi−1 being successful implies that |Hi−1| > (1 − δ)m|H| > |H|/2,

which ensures that Hi−1 is κ-spread (since H is (2κ)-spread). Thus

P(W1,W2, . . . ,Wm is successful) > 1 − δ−1

m∑
i=1

C−ri−1/3 > 1 − exp
(
−
√

log ℓ
)
, (19)

where we use the fact that rm =
√

log ℓ, δ−1 = 2m, and the fact that C = C0 is

somewhat large.
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Finally, if W1,W2, . . . ,Wm is successful, then Corollary 3.3 (applied with G = Hm,

Y = Xm, α = nq/|Y | ≥ q, r = rm, and W = Wm+1) gives

P(Wm+1 ̸∈ ⟨Hm⟩) ≤ 2 exp
(
−
√

log ℓ/2
)

; (20)

this yields (18) and the claim. □

The above claim implies the result; this completes the proof. □

Next, we give the proof of Theorem 1.7.

Proof of Theorem 1.7. We assume the setup of Theorem 1.7 with γ and C0 as in Section 3

and κ ≥ C2
0 (or there is nothing to prove). We may assume H is ℓ-uniform, since the

construction of Observation 2.1 produces an ℓ-uniform, κ-spread G with ξG ≥ ξH. In

particular, this gives

|H|ℓ =
∑
x∈X

|H ∩ ⟨x⟩| ≤ nκ−1|H|. (21)

We first assume κ is somewhat large, precisely

κ ≥ (log ℓ)3; (22)

the similar (but easier) argument for smaller values will be given at the end. It is worth

mentioning while the bound in (22) provides a convenient demarcation, there is nothing

delicate about this choice.

Claim 4.2. For κ as in (22) and C0 ≤ C ≤ γκ/(4 log ℓ),

P(ξH > (3C/γ)ℓ/κ) < exp(−(log ℓ logC)/4).

Claim 4.2 is easily to seen to handle all κ as in (22). The ‘with high probability’

statement about ξH is immediate (take C = C0). For the expectation ZH, set t =

(3C0/γ)ℓ/κ and T = 3ℓ/(4 log ℓ). By Claim 4.2 we have, for all x ∈ [t, T ],

P(ξH > x) ≤ f(x) = exp (− log ℓ log(γκx/3ℓ)/4) = (bx)a = baxa,

where a = −(log ℓ)/4 and b = γκ/3ℓ. Noting that ξH ≤ ℓ, we then have

ZH ≤ t+

∫ T

t

P(ξH > x)dx+ ℓP(ξH > T ) ≤ t+

∫ T

t

f(x)dx+ ℓf(T ) = O(ℓ/κ).

Here, t = O(ℓ/κ) and the other terms are much smaller; the integral is less than

−1/(a+ 1)bata+1 = O(Ca
0 t/ log ℓ), while (22) easily implies that f(T ) = (γκ/(4 log ℓ))a

is o(1/κ).

Proof of Claim 4.2. Terms not defined here beginning with p = C/κ and Wi (note C is

now as in Claim 4.2, rather than set to C0) are as in the proof of Theorem 1.6, but we

now define m by (1 − γ)m = log ℓ/ℓ and set q = logC(log ℓ)2/κ, noting that (21) gives

p ≥ Cℓ/n.

12



It is now convenient to generate the Wi’s using the ξx’s in the natural way: let

ai =

{
(ip)n if i ∈ {0, 1, . . . ,m},
(mp+ q)n if i = m+ 1,

and let Wi consist of the x’s in positions ai−1 + 1, ai−1 + 2, . . . , ai when X is ordered

according to the ξx’s.

Proposition 4.3. With probability 1 − exp(−Ω(Cℓ)), for all i ∈ {0, 1, . . . ,m+ 1} and

x ∈ Wi, we have

ξx ≤ εi =

{
2ip if i ∈ {0, 1, . . . ,m}
2(mp+ q) if i = m+ 1.

(23)

Proof. Failure at i ≥ 1 implies that

|ξ−1[0, εi]| < ai. (24)

But |ξ−1[0, εi]| is binomial with mean εin = 2ai ≥ 2Cℓ, so the probability that (24)

occurs for some i is less than exp(−Ω(Cℓ)); see [14], for example. □

Now writing W i for W1 ∪ · · · ∪Wi, we have the following fact.

Proposition 4.4. If Wm+1 ∈ ⟨Hm⟩, then W contains some S ∈ H with

|S \W i| ≤ ri ∀i ∈ [m].

Proof. Suppose W ⊃ Sm ∈ Hm. By the construction of the Hi’s, there exist

Sm−1, Sm−2, . . . , S1, S0 = S

with Si ∈ Hi and Si = Si−1 \Wi, whence Si = S \W i for i ∈ [m]; then Si ∈ Hi gives

the proposition. □

We now define ‘success’ for {ξx : x ∈ X} to mean that W1,W2, . . . ,Wm+1 is successful

in our earlier sense and (23) holds. Notice that with our current values of m and q (and

rm = ℓ(1− γ)m = log ℓ), we can replace the error terms in (19) and (20) by δ−1C− log ℓ/3

and e−(logC log ℓ)/2, which with Proposition 4.3 bounds the probability that {ξx : x ∈ X}
is not successful by, say, exp(−(log ℓ logC)/4). We finish with the following observation.

Proposition 4.5. If {ξx : x ∈ X} is successful, then ξH ≤ (3C/γ)ℓ/κ.

Proof. For S as in Proposition 4.4, we have (with W0 = ∅ and ε0 = 0)

ξH ≤
m+1∑
i=1

εi|S ∩Wi| =
m+1∑
i=1

(εi − εi−1)|S \W i−1| ≤ 2

(
m∑
i=1

(1 − γ)i−1p+ (1 − γ)mq

)
ℓ

≤ 2(C/(γκ) + (log ℓ/ℓ)(logC(log ℓ)2/κ))ℓ < (3C/γ)ℓ/κ. □

This completes the proof of the claim, and also the theorem, when κ satisfies (22). □
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Finally, for κ below the bound in (22), a subset of the preceding argument suffices.

We proceed as before, but now with C = C0 (so p = C0/κ), stopping at m defined

by (1 − γ)m = 1/κ (so m = Θ(γ−1 log κ)). Here, the main difference is that there is

no ‘Janson’ phase: W1,W2, . . . ,Wm is successful with probability 1 − exp(−Ω(ℓ/κ)),

and when it is successful, we have (as in the proof of Proposition 4.5, but now taking

Wm+1 = X \Wm)

ξH ≤
m∑
i=1

(εi − εi−1)|S \W i−1| + |S ∩Wm+1| < 2(C0/(γκ))ℓ+ ℓ/κ;

of course, we also get ZH ≤ O(ℓ/κ) + exp(−Ω(ℓ/κ))ℓ = O(ℓ/κ). □

5. Applications

Much of the significance of Theorem 1.1 — and of the skepticism with which Conjec-

ture 1.2 was viewed in [17] — derives from the strength of its consequences, a few of

which we discuss briefly here. For this discussion, Kr
n =

(
V
r

)
is the complete r-graph on

V = [n], and Hr
n,p is the binomial random r-graph, i.e., the r-uniform counterpart of

the usual binomial random graph Gn,p. Given r, n ∈ N and an r-graph H, we use GH

for the collection of unlabelled copies of H in K = Kr
n and FH for ⟨GH⟩, and as usual,

write ∆(H) for the maximum degree of H.

As noted earlier, Conjecture 1.2 was motivated especially by Shamir’s problem, since

resolved in [15], and the conjecture that became Montgomery’s theorem [24]. A brief

summary is as follows: for fixed r ∈ N and n running over multiples of r, Shamir’s

problem asks for the estimation of pc(FH) when H is a perfect matching (i.e., n/r disjoint

edges), and [15] proves the natural conjecture that this threshold is Θ(n−(r−1) log n);

next, for fixed d ∈ N, [24] shows that the threshold for Gn,p to contain a given n-vertex

tree with maximum degree d is Θ(n−1 log n), where the implied constant in the upper

bound depends on d (though it probably should not). In both of these — and in most

of the other examples mentioned below following Theorem 5.1 (with the exception of

the one from [20]) — the lower bounds derive from the ‘coupon-collector’ requirement

that the edges cover the vertices, and it is the upper bounds that are of interest.

In fact, Theorem 1.1 gives not just Montgomery’s theorem, but its natural extension

to r-graphs and more. Say an r-graph F is a forest if it contains no cycle, meaning

distinct vertices v1, v2, . . . , vk and distinct edges e1, e2, . . . , ek such that vi−1, vi ∈ ei for

all i (with subscripts mod k). A spanning tree is then a forest of size (n− 1)/(r − 1).

For an r-graph F , let ρ(F ) be the maximum size of a forest in F and set

φ(F ) = max{1 − ρ(F ′)/|F ′| : ∅ ≠ F ′ ⊂ F}.
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Theorem 5.1. For each r ∈ N and c > 0, there is a K > 0 such that if H is an r-graph

on [n] with ∆(H) ≤ d and φ(H) ≤ c/ log n, then

pc(FH) < Kdn−(r−1) log |H|. □

For example, this gives pc(FH) = Θ(n−(r−1) log n) if H is a perfect matching (as in

Shamir’s problem) or a ‘loose’ Hamiltonian cycle (a result of [5], to which we refer

for the history of the problem). This result also gives pc(FH) < Kdn−(r−1) log n if H

is a spanning tree with ∆(H) ≤ d; for d = O(1), this is the aforementioned r-graph

generalisation of [24], for d = nΩ(1), it is a result of Krivelevich [20], and this bound is

tight up to value of the constant K in both regimes.

The last application we discuss here concerns bounded-degree spanning graphs. Writ-

ing cd = (d!)2/(d(d+1)) and p∗(d, n) = cdn
−2/(d+1)(log n)2/(d(d+1)), we have the following.

Theorem 5.2. For fixed d ∈ N and any graph H on [n] with ∆(H) ≤ d,

pc(FH) < (1 + o(1))p∗(d, n). (25)

When (d+1) |n and H is a Kd+1-factor (i.e., n/(d+1) disjoint Kd+1’s), p
∗(d, n) is the

asymptotic value of pc(FH); in this case, (25) with O(1) in place of 1 + o(1) was proved

in [15], while the precise asymptotics are given by the combination of [16] and [26, 13].

Theorem 5.3. For fixed d ∈ N and ε > 0, and n ranging over multiples of d + 1, if

p > (1 + ε)p∗(d, n), then Gn,p contains a Kd+1-factor with high probability. □

Interest in pc(FH) for H as in Theorem 5.2 dates to at least the early-90s, when

Alon and Füredi [1] showed an upper bound of O(n−1/d(log n)1/d), and has intensified

since [15], motivated by the idea that Kd+1-factors should be hardest such graphs to find.

See [8, 9] for both the history and the most recent results; Theorem 5.2 is conjectured

in [9] (with O(1) in place of 1 + o(1)), and in a stronger ‘universal’ form in [8].

Remark 5.4. Theorem 5.2 likely extends to r-graphs and d of the form
(
s−1
r−1

)
with

s ∈ N. This just needs the extension of the main result of [26] to r-graphs (suggested at

the end of [26]), which (with [16]) would give asymptotics of the threshold for Hr
n,p to

contain a Kr
s-factor.

Each of Theorems 5.1 and 5.2 begins with the following easy observations. The first,

an approximate converse of Proposition 1.5, is the trivial direction of linear programming

duality.

Observation 5.5. If an increasing F supports a q-spread measure, then qf (F) < q.

The second allows us to compute the spread of the hypergraphs GH ; recall that GH is

the collection of unlabelled copies of H in Kr
n.
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Observation 5.6. The uniform measure on GH is q-spread if and only if for each

S ⊂ Kr
n isomorphic to a subhypergraph of H , σ a uniformly random permutation of V ,

and H0 ⊂ Kr
n a given copy of H , we have

P(σ(S) ⊂ H0) ≤ q|S|. (26)

Proving Theorem 5.1 is now just a matter of verifying (26) with q = O(dn−(r−1)),

which we leave to the reader; the calculation is similar to (28) below. Theorem 5.2

requires a short proof, to which we now turn.

Proof of Theorem 5.2. As one might expect, we use Theorem 5.3 for embedding the

copies of Kd+1 and Theorem 1.1 for the rest of H (where we have more room), ordering

these two steps so that the second is still looking at a suitably large number of

vertices.The next assertion is the main thing we need to check here.

Lemma 5.7. There is an ε = εd > 0 such that if H is as in Theorem 5.2 and has no

component isomorphic to Kd+1, then

qf (FH) ≤ n−(2/(d+1)+ε). (27)

Proof. We just need to show (26) for q = n−(2/(d+1)+ε) and S,H0 as in Observation 5.6,

say with W = V (S), s = |S|, and f the size of a spanning forest of S. We may of

course assume S has no isolated vertices, so w = |W | ≤ 2f . We show that

P(σ(S) ⊂ H0) < (e2d/n)f , (28)

and that
f

s
≥ 2(d+ 1)

(d+ 2)d
=

2

d+ 1
+ ε0, (29)

where ε0 = 1/((d+ 2)(d+ 1)d), implying, for any fixed ε < ε0, that (26) holds for large

enough n.

Proof of (28). Let α, β : W → V be, respectively, a uniformly random injection and a

uniformly random map. Then

(d/n)f ≥ P(β(S) ⊂ H0) ≥ P(β is injective)P(β(S) ⊂ H0 | β is injective)

=

(
n−w

w−1∏
i=0

(n− i)

)
P(α(S) ⊂ H0) > e−2fP(σ(S) ⊂ H0). □

Proof of (29). We may of course assume S is connected, in which case we have f = w−1

and the following upper bounds on s:
(
w
2

)
if w ≤ d,

(
d+1
2

)
− 1 if w = d+ 1, and wd/2 if

w ≥ d + 2. The corresponding lower bounds on f/s are 2/d, 2d/((d + 2)(d + 1) − 2)

and 2(d+ 1)/((d+ 2)d), the smallest of which is the last. □

This completes the proof of Lemma 5.7. □
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We are now ready for Theorem 5.2. Let ς = ς(n) be a function going slowly to

0 as n grows (for example, 1/ log n suffices with room to spare). By Theorem 5.3,

there is p1 ∼ p∗(d, n) such that if m > (1 − ς)n and (d + 1) |m, then Gm,p1 contains

a Kd+1-factor with high probability, while by Lemma 5.7 and Theorem 1.1 (or, more

precisely, Remark 2.2), there is p2 with p∗(d, n) ≫ p2 ≫ n−(2/(d+1)+εd) such that if

m ≥ ςn, then for any given m-vertex Kd+1-free H ′ with ∆(H ′) ≤ d, Gm,p2 contains a

copy of H ′ with high probability.

The above two facts allow us to finish with a standard two-round exposure argument.

Let H1 be the union of the copies of Kd+1 in H (each of which must be a component of

H), H2 = H −H1, and ni = |V (Hi)| for i = 1, 2 so that n1 + n2 = n. Let G1 ∼ Gn,p1

and G2 ∼ Gn,p2 be independent on the common vertex set V = [n] and G = G1 ∪G2.

Then G ∼ Gn,p with p = 1 − (1 − p1)(1 − p2) ∼ p∗(d, n) and we just need to show G

contains a copy of H with high probability. In fact, we find each Hi in the corresponding

Gi, in order depending on n2: if n2 ≥ ςn, then with high probability, G1 contains H1,

say on vertex set V1, and with high probability G2[V \ V1] contains H2; if n2 < ςn, then

with high probability G2 contains H2 on some V2, and with high probability G1[V \ V2]
contains H1. □

6. Concluding remarks

A number of open problems remain, perhaps the most basic of which is Conjecture 1.4;

settling this conjecture would now imply Conjecture 1.2. We briefly mention a few

other unresolved issues related to the present work below.

It would be interesting to understand whether, in Shamir’s and related problems, the

log ℓ emerging from our argument somehow reflects the coupon-collector requirement

(edges must cover vertices) that drives the lower bounds. Partly as a way of testing

this, one might try to see if the present machinery can be extended to apply directly

(rather than via [26, 13]) to questions where coupon-collector considerations (correctly)

predict a smaller gap, as in the fractional powers of log n in Theorem 5.3.

The arguments of [24] and [9] give stronger ‘universality’ results; for example, [24]

says that the appropriate random graph with high probability contains every tree

respecting the degree bound. Whether this can be proved along present lines remains

unclear; if so, it would seem to be more a question of managing some understanding of

the class of universal graphs (with, of course, a view to the spread) than of extending

Theorem 1.1.

As mentioned following Corollary 1.8, what prevents us from extending our results

on the assignment problem to other ‘k-dimensional’ variants is inadequate control of

the spread. The difficulty is the same for the related problem of locating thresholds for

the existence of designs. We unfortunately do not have anything to suggest in the way
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of a remedy and just indicate one issue, for simplicity sticking to Steiner triple systems

(see [33] for some background). When X = K3
n (with n ≡ 1 or 3 (mod 6)) and H is the

hypergraph of all Steinter triple systems on X, for the spread κ of H (which in theory

should be Θ(1/n)), we may take

κ = min
S⊂X

(|H|/|H ∩ ⟨S⟩|)1/|S| . (30)

Results of Linial and Luria [21] (upper bound) and Keevash [19] (lower bound) give

|H| =
(
(1/e2 + o(1))n

)n2/6
. (31)

Viewed enumeratively, this is very satisfactory, having been an old conjecture of

Wilson [34]. But for present purposes, even ignoring our weaker understanding of

|H ∩ ⟨S⟩| (i.e., the number of completions of a partial Steiner triple system S), it is

not enough: even if this quantity is, as one expects, roughly (n/e2)n
2/6−|S|, the bounds

of (30) can be dominated by the ‘error’ term (1 + o(1))n
2/(6|S|) if S is small and the o(1)

in (31) is negative.

Finally, we recall a related conjecture from [17] (stated there only for graphs, but this

should not matter). For F = FH as in Section 5, let pe(F) to be the least p such that

for every H ′ ⊂ H, the expected number of unlabeled copies of H ′ in Hr
n,p is at least 1.

Then pe(F)/2 is again a trivial lower bound on pc(F) — and, where it makes sense,

probably more intuitive than q(F) or qf (F) — and we have the following from [17].

Conjecture 6.1. There is a universal K > 0 such that for every F = FH as above,

pc(F) ≤ Kpe(F) log |X|.

Again, we can presumably replace log |X| by log |H|, as would now follow from a

positive answer to the obvious question: do we always have qf (F) = O(pe(F))?
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