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Abstract. A family of sets A is said to be an antichain if x ̸⊂ y for all distinct

x, y ∈ A, and it is said to be a distance-r code if every pair of distinct elements

of A has Hamming distance at least r. Here, we prove that if A ⊂ 2[n] is both an

antichain and a distance-r code, then |A| = Or(2
nn−1/2−⌊(r−1)/2⌋). This result, which

is best-possible up to the implied constant, is a purely combinatorial strengthening

of a number of results in Littlewood–Offord theory; for example, our result gives a

short combinatorial proof of Hálasz’s theorem, while all previously known proofs of

this result are Fourier-analytic.

1. Introduction

In this paper, motivated by considerations from Littlewood–Offord theory, we study

the intersection of two classical combinatorial problems in the hypercube, namely that

of finding large antichains and that of finding large distance-r codes.

A family of sets A ⊂ 2[n] is an antichain if x ̸⊂ y for any distinct x, y ∈ A. For

example, the k-th layer (
[n]

k

)
= {x ⊂ [n] : |x| = k}

is an antichain for all 0 ≤ k ≤ n, and it is a classical result of Sperner [11] that every

antichain in the hypercube 2[n] has size at most
(

n
⌊n/2⌋

)
. There are a huge number of

strengthenings and variants of Sperner’s theorem; we refer the reader to [2] for more

background.

A family of vectors B ⊂ {0, 1}n is called a distance-r code if the Hamming distance

between any pair of vectors in B is at least r; identifying {0, 1}n and 2[n] in the natural

way, we call a family A ⊂ 2[n] a distance-r code if the symmetric difference x△ y of any

two distinct x, y ∈ A has size at least r. One of the central problems of coding theory

is to find large distance-r codes with various desirable properties, and the existence of

such codes has many applications in both pure and applied problems. We refer the

reader to [6] for more on coding theory, and mention only the basic fact (as evidenced by

BCH codes) that the largest possible distance-r codes in 2[n] have size Θ(2nn−⌊(r−1)/2⌋).
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Here, we aim to answer the following natural question: how large can the cardinality

of an antichain code in 2[n] be? After some thought, one finds that it is difficult to do

much better than taking the intersection of a large code and a large antichain; our main

result shows that such constructions are indeed optimal.

Theorem 1.1. For any fixed r ∈ N, if A ⊂ 2[n] is both an antichain and a distance-r

code, then

|A| = O
(
2nn−1/2−⌊(r−1)/2⌋) .

This result is best-possible up to multiplicative constants for antichain codes of any

fixed distance, as we now explain.

Focusing first on codes of odd distance, we know (as discussed above) that for fixed

r ∈ N and all large enough n ∈ N, it is possible to construct a distance-(2r + 1) code

A ⊂ 2[n] with |A| = Θ(2nn−r). By simple averaging, it is easy to show that there exists

some x ⊂ [n] for which A△x = {a△x : a ∈ A}, which is also a distance-(2r + 1) code,

intersects the ⌊n/2⌋-th layer in at least

Ω

((
n

⌊n/2⌋

)
n−r

)
= Ω

(
2nn−1/2−r

)
sets; then (A△x) ∩

(
[n]

⌊n/2⌋

)
gives us an antichain code whose size matches the bound in

Theorem 1.1.

Turning next to codes of even distance, we note that if A ⊂ 2[n] is an antichain and

a distance-(2r + 1) code of cardinality Θ(2nn−1/2−r) as constructed above, then by

simple considerations of parity, either the even-sized elements of A or the odd-sized

elements of A constitute an antichain and a distance-(2r + 2) code of cardinality at

least |A|/2 = Ω(2nn−1/2−r), again matching the corresponding bound in Theorem 1.1.

As mentioned earlier, the primary motivation for Theorem 1.1 comes from the

Littlewood–Offord theory of anti-concentration. In particular, Theorem 1.1 may be

viewed as a purely combinatorial abstraction of an important result of Halász [7] that

is widely used in the study of random matrices and random polynomials; see [5, 8]

and the many references therein. To explain this connection, we need to fill in some

background, a task to which we now turn.

Recall that the Littlewood–Offord problem asks the following: given a vector a =

(a1, . . . , an) of non-zero real numbers, estimate

ρ(a) = max
α∈R

P[ε1a1 + · · ·+ εnan = α],

where the εi’s are independent Bernoulli random variables with P[εi = 0] = P[εi = 1].

In their study of random polynomials, Littlewood and Offord [9] showed that ρ(a) =

O(n−1/2 log n) for any such a, and soon after, Erdős [3] used Sperner’s theorem to give

a simple combinatorial proof of the sharp estimate ρ(a) ≤ 2−n
(

n
n/2

)
= O(n−1/2).
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There has since been considerable interest in establishing better bounds on ρ(a)

under stronger assumptions on the arithmetic structure of a. For example, Erdős and

Moser [4] proved that ρ(a) = O(n−3/2 log n) whenever all of the entries of a are distinct,

Sárközy and Szemerédi [10] improved this to the asymptotically best-possible bound of

ρ(a) = O(n−3/2), and Stanley [12] subsequently discovered how to deduce (very) sharp

bounds for this problem from the hard Lefschetz theorem. Of particular interest to us

is a far-reaching generalisation of the Sárközy–Szemerédi theorem due to Halász [7],

one formulation of which is as follows.

Theorem 1.2. Let a = (a1, . . . , an) be a vector of real numbers with no linear rela-

tionships of complexity at most 2r between its entries, i.e., such that for any disjoint

subsets x, y ⊂ [n] with |x|+ |y| ≤ 2r, we have∑
i∈x

ai ̸=
∑
j∈y

aj.

Then, we have

ρ(a) = Or

(
n−1/2−r

)
.

Note in particular that the hypothesis in the result above in the r = 1 case is

equivalent to saying that ai ≠ aj for any i ̸= j, so the result in this case reduces to the

Sárközy–Szemerédi theorem on the Erdős–Moser problem.

Halász’s theorem has since become a widely used tool in the study of random

matrices and random polynomials. All known proofs of Halász’s theorem use some

Fourier analysis, and are very much arithmetic in nature. While searching for an

analogue of Halász’s theorem for some anti-concentration problems over the symmetric

group, it became clear to us that it would be of some help to find a purely combinatorial

proof of this result, in the spirit of Erdős’ classical approach. Arguably, the primary

motivation for Theorem 1.1 is that Halász’s theorem is an easy corollary.

Proof of Theorem 1.2 assuming Theorem 1.1. We may start by assuming without loss

of generality that ai > 0 for all i; this follows from noting that ρ(a) is unaltered if we

replace the 0/1-valued Bernoulli random variables in its definition with −1/1-valued

Rademacher random variables.

Now, fix any real number α and let A denote the family of subsets x ⊂ [n] such that∑
i∈x ai = α. First, note that A is an antichain. Indeed, having x ⊂ y both in A would

imply

α =
∑
i∈x

ai <
∑
i∈y

ai = α,
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with the second inequality using ai > 0 for all i. Next, observe that A is a distance-

(2r + 1) code. Indeed, for any distinct x, y ∈ A we must have∑
i∈x\y

ai =
∑
j∈y\x

aj;

this implies, by the hypothesis on a, that |x△ y| = |x\y|+ |y\x| > 2r, as desired. Thus,

we may apply Theorem 1.1 to A and conclude that the probability that ε1a1+· · ·+εnan =

α is Or(n
−1/2−r); since this bound holds for any α ∈ R, we get the desired bound on

ρ(a). □

Before we proceed, it is worth mentioning that there are more general forms of

Halász’s theorem that give bounds on ρ(a) in terms of the number of linear relationships

of complexity at most 2r between the entries of a (as opposed to the hypothesis that

there are no such relationships, as in Theorem 1.2). Such statements may also be

deduced from the proof of Theorem 1.1, albeit not directly from its statement. This

involves bounding the cardinality of a family A that is approximately both an antichain

and a distance-(2r + 1) code; however, to avoid obscuring the ideas involved in the

proof of Theorem 1.1, we do not pursue these generalisations in detail here. Since the

relevant parts of the proof of Theorem 1.1 are based on (delicate but elementary) double

counting, the modifications needed to establish such generalisations are not particularly

involved, and we leave the details — with some hints appearing in the sequel — to the

interested reader

Our proof of Theorem 1.1 relies on rather weak expansion properties of the Boolean

lattice used in conjunction with some delicate double counting arguments (inspired by

studying short random walks in the hypercube); this is presented, along with some

motivating remarks, in Section 2. We close with a brief discussion of directions for

subsequent work in Section 3.

2. Proof of the main result

We start with some brief comments on notation. We adopt the convention that lower

case letters (such as a, b, c, x, y, z) represent subsets of [n], and that upper case letters

(such as A, S) represent families of sets, i.e., subsets of 2[n]. If S ⊂ 2[n] and r ≥ 1 is an

integer, we write ∂rS for the r-fold shadow of S, i.e., the collection of sets which can be

obtained by deleting r elements of [n] from some set in S. Similarly, we write ∂−rS for

the collection of sets which can be obtained by adding r elements to some set in S. For

singletons we abuse notation by writing ∂rx for ∂r{x} and ∂−rx for ∂−r{x}. Finally,
we write x△ y for the symmetric difference of x and y.

As we have already seen, we need only prove Theorem 1.1 for codes of odd distance;

we state (and prove) this equivalent formulation below since this allows us to avoid

cluttering the notation with floors and ceilings that are not crucial.
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Theorem 2.1. For any fixed r ∈ N, if A ⊂ 2[n] is both an antichain and a distance-

(2r + 1) code, then

|A| = O
(
2nn−1/2−r

)
.

Before we state and prove the main lemma that drives the proof of Theorem 2.1, we

recall one proof of Sperner’s theorem that serves as our inspiration. The local-LYM

inequality (see [1]) asserts that for any S ⊂
(
[n]
k

)
, we have

|∂S|
(

n

k − 1

)−1

≥ |S|
(
n

k

)−1

.

It is not hard to show using local-LYM that any antichain A ⊂ 2[n] may be ‘shifted’,

by means of taking shadows, into the middle layer without decreasing the size of the

resulting family, whence we conclude that |A| ≤
(

n
⌊n/2⌋

)
.

A natural approach to proving Theorem 2.1, say for antichain codes of distance 3 to be

concrete, is to proceed along similar lines as above, except using the distance condition

instead of the local-LYM inequality to generate more ‘local expansion’. Concretely,

given A ⊂ 2[n] that is both an antichain and a distance-3 code, it is easy to see for

all k that |∂Ak| ≥ k|Ak|, where Ak = A ∩
(
[n]
k

)
; in particular, for k ≈ n/2, this tells

us that |∂Ak| ≳ n|Ak|/2, which is a significant improvement over the rather modest

bound |∂Ak| ≳ |Ak| promised by local-LYM. It is then natural to attempt to transform

a given antichain code A of distance 3, by means of taking shadows, into a family that

lives in the middle layer that is about n times larger, which would then show that

|A| ≲
(

n
⌊n/2⌋

)
/n = O(2nn−3/2), as desired.

To implement such an idea, we need to deal with how the shadows of the different

Ak’s overlap as we repeatedly take shadows to move A into the middle layer. For

example, an estimate of the following form would be ideal: for any S ⊂
(
[n]
k

)
disjoint

from Ak (i.e., thinking of S as the shadow of all the Aℓ’s with ℓ > k in layer k), we have

|∂(S ∪ Ak)| ≥ |S| + k|Ak|/100. Unfortunately, this is too much to hope for: if there

are no conditions on the arbitrary set S, then it can be arranged so that ∂S contains

the entirety of ∂Ak. Nevertheless, the following lemma shows that something like this

ideal estimate does in fact hold when one studies the expansion of antichain codes over

(slightly) longer ranges.

Lemma 2.2. Let n, r ≥ 1 be integers with n ≥ 8r. If

(1) S ⊂
(
[n]
k

)
,

(2) n/2 + 3r ≤ k ≤ 3n/4, and

(3) A ⊂
(

[n]
k−r

)
\∂rS is a distance-(2r + 1) code,

then ∣∣∂3rS ∪ ∂2rA
∣∣ ≥ |S|+ nr|A|

4(2r)3r
.
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Proof. Observe that because k ≥ n/2 + 3r, local-LYM tells us that |∂B| ≥ |B| for any
family B inside one of the layers

(
[n]
k

)
, . . . ,

(
[n]

k−3r+1

)
. As a result, there is nothing to

prove when A = ∅, so let us assume that A ≠ ∅. Let us also suppose for the sake of

contradiction that |∂3rS ∪ ∂2rA| < |S|+ nr|A|/4(2r)3r.
Pick a uniformly random a ∈ A. Let b and b′ denote a uniformly random pair of

disjoint r-subsets of a, and c a uniformly random r-subset of [n] \ a. Note that since A

is a distance-(2r + 1) code, a△ b is a uniform random element of ∂rA, and similarly,

a△ c is a uniform random element of ∂−rA. Note also that a is uniquely determined

by specifying either a△ b or a△ c.

Claim 2.3. The random element a△ b of ∂rA satisfies

P
[
a△ b /∈ ∂2rS

]
<

1

4
.

Proof. By assumption,

|S|+ nr|A|
4(2r)3r

>
∣∣∂3rS ∪ ∂2rA

∣∣ ≥ ∣∣∂2rS ∪ ∂rA
∣∣

=
∣∣∂2rS

∣∣+ ∣∣∂rA\∂2rS
∣∣

≥ |S|+
∣∣∂rA\∂2rS

∣∣ .
Since A is a distance-(2r + 2) code in

(
[n]
k−r

)
and k − r ≥ n/2, we have

|∂rA| =
(
k − r

r

)
|A| ≥

(
k − r

r

)r

|A| ≥ nr

(2r)r
|A| ≥ nr

(2r)3r
|A|.

Combining this with the inequality above gives∣∣∂rA\∂2rS
∣∣ < nr|A|

4(2r)3r
≤ 1

4
|∂rA| .

This proves the claim since a△ b is a uniform random element of ∂rA. □

Claim 2.4. The random element a△ (b ∪ b′ ∪ c) of ∂2r∂−rA satisfies

P
[
a△ (b ∪ b′ ∪ c) ∈ ∂2rS

]
<

1

8
.

Proof. Let P be the set of pairs (x, y) ∈ ∂−rA× ∂2rS for which y ∈ ∂2rx. There are a

total of
(
n−k+2r

2r

)
|∂2rS| ways of picking an element y ∈ ∂2rS and an element x ∈ ∂−2ry,

and of these ways at least
(
k
2r

)
|S| satisfy x ∈ S. Since A is disjoint from ∂rS, we have

that ∂−rA is disjoint from S, so

|P | ≤
(
n− k + 2r

2r

) ∣∣∂2rS
∣∣− (

k

2r

)
|S|

≤
(
n/2

2r

)(∣∣∂2rS
∣∣− |S|

)
<

n3r|A|
12 · 2rr3r(2r)!

;
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here, the second inequality relies on k ≥ n/2 + 2r and n/2 ≥ 4r, and the last inequality

uses
(
n/2
2r

)
≤ (n/2)2r/(2r)! and |∂2rS| ≤ |∂3rS ∪ ∂2rA| < |S|+ nr|A|/4(2r)3r.

Also, observe that a△ c is a uniform random element of ∂−rA, so a△ (b∪b′∪c) ∈ ∂2rS

if and only if (a△ c, a△ (b ∪ b′ ∪ c)) ∈ P . Note that b, b′, c are chosen uniformly at

random out of(
k − r

r

)(
k − 2r

r

)(
n− k + r

r

)
≥

(
k − r

r

)r (
k − 2r

r

)r (
n− k + r

r

)r

≥ n3r

16rr3r
(1)

possibilities, with the last inequality holding since both k − 2r ≥ n/2 and k ≤ 3n/4.

Since at most (2r)! tuples (a, b, b′, c) correspond to the same pair (a△ c, a△ (b∪ b′ ∪ c))

(as a△ c determines a and c, the only non-injectivity comes from swapping elements

between b, b′), we obtain

P
[
a△ (b ∪ b′ ∪ c) ∈ ∂2rS

]
≤ (2r)!|P |

|A| · n3r/16rr3r
<

1

4 · 2r
≤ 1

8
. □

We use these two claims to show that ∂2rS has large distance-2r ‘edge expansion’ in(
[n]

k−2r

)
.

Claim 2.5. There are at least
n3r|A|

2 · 16rr3r

pairs (x, y) ∈
(

[n]
k−2r

)2
at distance 2r with x ∈ ∂2rS and y ̸∈ ∂2rS.

Proof. By the two previous claims, we have both P[a△ b /∈ ∂2rS] < 1/4 and P[a△ (b ∪
b′∪c) ∈ ∂2rS] < 1/8. Thus, if we generate a random pair (x, y) = (a△ b, a△ (b∪b′∪c)),

then x, y automatically have distance 2r, and with probability at least 1−1/4−1/8 ≥ 1/2

they satisfy x ∈ ∂2rS and y ̸∈ ∂2rS. The total number of potential pairs (x, y) as above

is

|∂rA|
(
k − 2r

r

)(
n− k − r

r

)
=

(
k − r

r

)
|A| ·

(
k − 2r

r

)(
n− k − r

r

)
≥ n3r

16rr3r
|A|,

with this last inequality using (1); we get the desired result by multiplying by 1/2, i.e.,

the lower bound for the probability that both x ∈ ∂2rS and y ̸∈ ∂2rS. □

We finish by enumerating in two ways the set Q of pairs (y, z) ∈
(

[n]
k−2r

)
×

(
[n]

k−3r

)
where z ∈ ∂3rS, z ∈ ∂ry, and y ̸∈ ∂2rS. On the one hand, any pair (x, y) from the

previous claim corresponds to such a pair (y, z) ∈ Q by taking z = x ∩ y, and this

correspondence is at most
(
n−k+2r

r

)
-to-one. By the previous claim,

|Q| ≥ n3r|A|
2 · 16rr3r ·

(
n−k+2r

r

) ≥
(
n

r

)−1
n3r|A|

2 · 16rr3r
.
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On the other hand, the number of ways to pick z is |∂3rS|, the number of ways to pick

y ∈ ∂−rz is
(
n−k+3r

r

)
, and of these pairs, at least

(
k−2r
r

)
|∂2rS| satisfy y ∈ ∂2rS. Thus,

|Q| ≤
(
n− k + 3r

r

) ∣∣∂3rS
∣∣− (

k − 2r

r

) ∣∣∂2rS
∣∣ < (

n/2

r

)(∣∣∂3rS
∣∣− ∣∣∂2rS

∣∣)
≤

(
n/2

r

)(∣∣∂3rS ∪ ∂2rA
∣∣− |S|

)
≤

(
n/2

r

)
nr|A|
4(2r)3r

.

To get a contradiction, it suffices to show(
n/2

r

)(
n

r

)
< 2 · 2−rn2r,

which follows from
(
n/2
r

)
≤ (n/2)r and

(
n
r

)
≤ nr. □

Our main result follows quickly from Lemma 2.2.

Proof of Theorem 2.1. Recall that our goal is to prove that if A ⊂ 2[n] is both an

antichain and a distance-(2r + 1) code for some fixed r ≥ 1, then

|A| = O
(
2nn−1/2−r

)
.

Let Ak = A ∩
(
[n]
k

)
and let Sk ⊂

(
[n]
k

)
consist of the sets x ⊂ [n] which are contained

in some element of A. Since A is an antichain, we have Ak+2r ⊂
(

[n]
k+2r

)
\ ∂rSk+3r.

Additionally, since Sk ⊃ ∂3rSk+3r ∪ ∂2rAk+2r, it follows from Lemma 2.2 that we have

|Sk| ≥ |Sk+3r|+
nr |Ak+2r|
4(2r)3r

for all n/2 ≤ k ≤ 3n/4−3r. By applying this bound inductively, we find for all k ≥ n/2

that

|Sk| ≥
nr

4(2r)3r

∑
ℓ∈Lk

|Aℓ| , (2)

where Lk is the set of those k ≤ ℓ ≤ 3n/4− 3r such that ℓ ≡ k + 2r (mod 3r).

We now finish the proof by arguing that we may restrict our attention to a subset of

the layers of the hypercube where the information supplied by (2) is easily utilised.

By decreasing the size of A by at most a factor of 2, we may assume Aℓ = ∅ for

all ℓ < n/2. Similarly, by decreasing the size of A by a factor of at most 3r, we may

assume there exists some i such that Aℓ = ∅ for all ℓ ̸≡ i (mod 3r). Furthermore,

observe that since Aℓ is itself a distance-(2r + 1) code, every r-fold shadow ∂rx for

x ∈ Aℓ is a disjoint collection of
(
ℓ
r

)
sets in

(
[n]
ℓ−r

)
. Hence, for each n/2 ≤ ℓ ≤ 3n/4, we

have
(
ℓ
r

)
|Aℓ| = O(2nn−1/2), and consequently, |Aℓ| = O(2nn−1/2−r). Therefore, we may

remove
⋃

n/2≤ℓ≤n/2+3r Aℓ from A and assume Aℓ = ∅ for all n/2 ≤ ℓ ≤ n/2 + 3r. By

standard estimates for the binomial coefficients, we have that
∑

ℓ≥3n/4−3r

(
n
ℓ

)
≤ 1.9n for
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all sufficiently large n ∈ N. Thus, if k ≥ n/2 is the smallest integer with k ≡ i − 2r

(mod 3r), the above assumptions and the bound (2) together imply that we have

nr

4(2r)3r
(|A| − 1.9n) ≤ |Sk| ≤

(
n

k

)
= O

(
2nn−1/2

)
for all sufficiently large n ∈ N; rearranging this gives us the desired bound on |A| and
completes the proof. □

Finally, as mentioned earlier, it is possible to strengthen Theorem 1.2 to show that if

there are at most Λnr solutions to ∑
i∈x

ai =
∑
j∈y

aj

amongst the entries of a with x and y satisfying {|x| = |y| = r} ∧ {x ∩ y = ∅}, then

ρ(a) = Or

(
Λn−1/2−r

)
.

Such a result may also be established using our methods. To this end, we need a

version of Lemma 2.2 where the assumption that A is an antichain is replaced by the

assumption that there are at most Λnr paths of length 2r going from A to ∂rA and

back to A, and where our desired lower bound is one of the form |S|+ Ωr(n
r|A|/Λ).

The key to proving such a version of Lemma 2.2 is to note that the hypothesis

implies that at least a (99/100)-fraction of the length-r paths from A to ∂rA must reach

elements of ∂rA lying below at most 100Λ elements of A; let us write ∂r
≤100ΛA for the

set of such elements. Now, an easy double counting argument may be used to show that∣∣∂r
≤100ΛA

∣∣ = Ωr (n
r|A|/Λ) .

We may define ∂−r
≤100ΛA analogously, and the rest of the argument proceeds essentially

as before, but with these ‘robust’ shadow operators replacing the shadow operators ∂r

and ∂−r.

3. Conclusion

To us, the most attractive feature of Theorem 1.1 is that the double counting

arguments involved in its proof rely on rather weak expansion properties of the Boolean

lattice (namely the local-LYM inequality), so we are optimistic that these techniques

will apply elsewhere as well.

Concretely, we anticipate the techniques developed here to have some bearing on

anti-concentration problems situated in posets where the Fourier-machinery needed for

Halász’s theorem might be unavailable, but where some form of expansion is nonetheless

available; we hope to revisit some of these problems (such as in the symmetric group,

for example) in future work.

9



Acknowledgements

The second author was supported by the NSF grant DMS-2103154, the third author

was supported by NSF grants CCF-1814409 and DMS-1800521, and the fourth author

was supported by the NSF grant DMS-2202730. We are grateful to Noga Alon and

Ross Berkowitz for stimulating conversations, and to Matthew Kwan for pointing out a

small gap in an earlier draft of this paper.

References

1. B. Bollobás, Combinatorics, Cambridge University Press, Cambridge, 1986. 5

2. K. Engel, Sperner theory, Cambridge University Press, Cambridge, 1997. 1
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