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Topics

Model Theory of C
Diophantine problems in commutative algebraic groups
Definably compact groups in expansions of R
Finite dimensional simple groups
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Two properties of ACF0

The Nullstellensatz
Structure theory
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The Nullstellensatz (1893)

Theorem

TFAE
1 VK (f1, . . . , fn) has a point.
2 VK ′(f1, . . . , fn) has a point (some K ′ ⊇ K )
3 1 /∈ (f1, . . . , fn)

2 ⇐⇒ 3: K ′ = K [X ]/m
1 ⇐⇒ 2: this could be a definition . . . (Abraham Robinson)
“Existentially closed” fields



Model Theory and Algebraic Groups

Model Theory of C

Existentially closed . . .

Ordered fields: Artin-Schreier (Hilbert’s 17th problem) 1927
p-adically closed fields: Ax-Kochen 1965—Integrality-satz
Differentially closed fields: Seidenberg 1956/Robinson 1959
Separably closed fields: Ershov 1967
Existentially closed difference fields (ACFA): 1990’s

• “Applied” model theory

Question: Can one do “geometry” over any theory?
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Structure Theory

Steinitz 1910
Transcendence basis, uniqueness of algebraic closure.

Corollary

Any ACF0 of cardinality c is isomorphic to C.

κ-categoricity (for κ uncountable)
κ = ℵ0? (Q, <): something else entirely
Morley 1963 (answering Łoś): κ categoricity for one
uncountable κ implies κ-categoricity for all

• “Pure” model theory



Model Theory and Algebraic Groups

Model Theory of C

Dimension

Lemma (Morley)

If M is a model of an uncountably categorical theory then M
has a well behaved notion of dimension for definable sets.

• Terminology: Morley rank, rk

rk :
⋃

n Def(Mn)→ ordinals

ACF : rk (X ) = dim(X̄ )

Bonus: dimensions are actually finite (Baldwin, Zilber).
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Model Theory of C

Worlds Collide I

Theorem (Lindstrøm)

If a theory is κ-categorical and closed under unions of
increasing chains, then its infinite models are existentially
closed.

Proof.

Suppose not.
Build M1 and M2 both of cardinality κ, one existentially closed
and the other not.
(M1): trivial
(M2): cardinality shifting (Löwenheim-Skolem)
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Model Theory of C

Worlds Collide II

Lenore Blum (1968): Differentially closed fields have Morley
rank ω.
Application: uniqueness of differential closure (via Shelah).

Angus Macintyre (1971): fields with Morley rank are
algebraically closed

Carol Wood (1979): separably closed fields are “stable” (local
Morley rank)
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Worlds Collide III

Hrushovski 1996: Geometric Mordell-Lang in all characteristics,
with uniformities, via the model theory of abelian groups of
finite Morley rank.
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Mordell/Lang

Mordell/Faltings: Finiteness of rational points in genus ≥ 2.

C ↪→ J(C) Jacobian (abelian variety), dim(J) = genus(C)
elliptic curve

Mordell/Weil: finite generation of rational points on an abelian
variety.

Mordell/Lang: C ∩ Γ for Γ of finite rank.
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Geometric Mordell/Lang

An analog of Mordell/Lang for K a function field over K0

Theorem

X ⊆ A K/K0 function field, X ∩ Γ Zariski dense.

Γ a subgroup of
finite rank defined over the algebraic closure of K .

Then either Stab(X ) is infinite or X comes from K0.
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Geometric Mordell/Lang

An analog of Mordell/Lang for K a function field over K0

Theorem

X ⊆ A K/K0 function field, X ∩ Γ Zariski dense. Γ a subgroup of
finite rank defined over the algebraic closure of K .
Then either Stab(X ) is infinite or there is a bijective morphism
X ↔ X0 onto a variety X0 defined over K0.
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Geometric Mordell/Lang

Groups of finite Morley rank?

Morley rank is an abstraction of dim, the main case being the
classical one. How can it help?

Manin, Buium, . . . use additional structure
K embeds into a differentially closed field K̂ with K0 as the
constant field.
Then Γ embeds into a K̂ -definable group of finite Morley rank Γ̂.
Why not Γ = A?
rk (K̂ ) = ω, so now finite rank is a finiteness condition on Γ
Now study X ∩ Γ̂.
Lost: the apparatus of algebraic geometry.
Kept: the theory of dimension.
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Geometric Mordell/Lang

Zariski Geometries

Irreducible one-dimensional sets (curves).
Zilber’s Conjecture: degenerate, linear, or fields.

False (Hrushovski 1988); rescued by Zariski geometries
(Hrushovski,Zilber 1996)
Applies to finite dimensional sets in differentially closed fields
by quantifier elimination (theory of prolongations)
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Geometric Mordell/Lang

Variations

How to get characteristic p.

Replace DCF by SCF , rinse, and repeat.
Lose Morley rank, keep stability. E.g.:
K0 =

⋂
K̂ pn

(not even definable . . . )
Manin-Mumford: via ACFA, not even stable, (Chatzidakis,
Hrushovski)
• Plug in various expansions of ACF
More: Scanlon, BSL 7 (2001)
Drinfeld modules, André-Oort
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Pillay’s Conjectures

o-minimality

Definition

A structure with an ordering is o-minimal if every definable
subset is a finite union of intervals.

Ref: van den Dries 1998: Tame Topology and o-minimal
structures
Wilkie 1996: Reals with exponentiation
Speissegger 2000: the “Pfaffian closure” (Hovanski)
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Pillay’s Conjectures

Groups definable in o-minimal structures

Generalized infinitesimals: G◦◦

The intersection of the∞-definable subgroups of bounded
index.
Existence is highly nontrivial; granted existence, the quotient is
a compact topological group in the “logic topology” (definable
→ closed).

Example. (S1)◦◦ is the infinitesimal neighborhood of the identity.
The quotient is S1 and will be S1 even if the model is extended.
Example. (R,+): now the infinitesimals have unbounded index
and R◦◦ turns out to be R, with trivial quotient.
Restrict to: definably compact groups
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Pillay’s Conjectures

Pillay’s conjectures

Theorem

G/G◦◦ is a compact Lie group, of the same real dimension as
the formal dimension of G.

1 A descending chain condition for∞-definable subgroups;
2 Control of dimension (?)
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Pillay’s Conjectures

Three ingredients

Structure theory (simple case)
Topology (abelian case)
Model theory (mixed case)
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Pillay’s Conjectures

Simple Groups

Theorem (PPS 2000-2002)

Let G be a definably simple group in an o-minimal structure.
Then G is a model of the same theory as some definably
simple Lie group.

In the noncompact case G◦◦ = G which is sad, but in the
compact case G◦◦ is the infinitesimal neighborhood of the
identity and G/G◦◦ is the corresponding compact Lie group.
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Pillay’s Conjectures

Abelian Groups

Ā = A/A◦◦.

1 Ā[m] ' (Z/mZ)dim Ḡ (clear)
2 A[m] ' (Z/mZ)dim G (cohomology)
3 A[m] ' Ā[m] (model theory)
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Pillay’s Conjectures

A little model theory

• X ⊆ G is generic if finitely many translates cover G.

From stable group theory: when we have Morley rank, X is
generic iff dim X = dim G. (False here.)
Somewhere between: dim(G \X ) < dim G and dim X = dim G.
Pathology: R = (∞,0] ∪ [0,∞) the union of two nongeneric
sets.
Peterzil-Pillay: not in definably compact groups.
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Pillay’s Conjectures

A little topology

Euler characteristic χ(X ).
“Cardinality”:

χ(R) = −1, χ(C) = +1, χ(C×) = 0, χ(S1) = 0.

Lagrange: χ(G) = χ(G/H) · χ(H).
χ = ±1 =⇒ torsion-free
Cauchy: If p|χ(G) then G has an element of order p.

Cor. No elementary abelian p-groups.
Proof: By Lagrange χ(A) = 0 so by Cauchy there are elements
of all prime orders.
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Pillay’s Conjectures

Composition Series

The general group is neither simple nor abelian. How can we
climb up a composition series?
Hrushovski, Peterzil, Pillay: Groups, measures, and the NIP.
Generalized stable group theory.



Model Theory and Algebraic Groups

Simple Groups of finite Morley rank

1 Model Theory of C

2 Geometric Mordell/Lang

3 Pillay’s Conjectures

4 Simple Groups of finite Morley rank



Model Theory and Algebraic Groups

Simple Groups of finite Morley rank

Algebraicity Conjecture

Conjecture

A simple group of finite Morley rank is algebraic.

Borovik: mine the classification of the finite simple groups.

This leads to:

Theorem (ABC)

Let G be a simple group of finite Morley rank containing an
infinite elementary abelian 2-subgroup. Then G is algebraic.

Parabolic subgroup: contains N(S) for S a Sylow 2-subgroup.
Thin (1 minimal parabolic): strong embedding.
Quasi-thin (2 minimal parabolics): amalgam method.
Generic type (many minimal parabolics): Niles’ theorem.
Generation: C(G,T ) theorem.
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Simple Groups of finite Morley rank

Something more geometric

Theorem (BBC)

A connected group of finite Morley rank containing an involution
has an infinite Sylow 2-subgroup.

Irreducibility arguments: a connected group of finite Morley
rank does not contain two disjoint generic subsets.

“Semisimple torsion”: Altınel, Burdges, Deloro, Frécon
Burdges-Deloro: The Weyl group in a minimal simple group is
cyclic.
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Simple Groups of finite Morley rank

Carter Subgroups

Definition: Connected, almost self-normalizing, and nilpotent.

Theorem (Frécon-Jaligot 2005)

Carter subgroups exist.

(via Burdges unipotence theory.)
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Simple Groups of finite Morley rank

Genericity and Generosity

Generous:
⋃

QG is generic.

Theorem (Jaligot 2007)

Any two generous Carter subgoups are conjugate.

Lemma

A point belonging to finitely many conjugates of a given Q
belongs to a unique one.

Proof.

X : the intersection of the conjugates. N(X ) acts on the set of
such conjugates, so N◦(X ) normalizes each one; as they are
Carters, N◦(X ) is contained in each one, hence in X , and so
X = Q.
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Simple Groups of finite Morley rank

Conjugacy of Carter subgroups

Theorem (Frécon, in press)

Carter subgroups of K ∗-groups are conjugate.

. . . a tour de force
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Simple Groups of finite Morley rank

Conclusion

• One can do a surprising amount of geometry equipped with a
rudimentary notion of dimension, particularly when inside a
group.

And, this is sometimes useful.
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