1 Metrically Homogeneous Graphs

The Classification Problem
I" connected, with graph metrit
I is metrically homogeneousthe metric spac€l’, d) is (ultra)homogeneous.

(Cameron 1998) Classify the countable metrically homogea@raphs.
Contexts: infinite distance transitive graphs, homoges@paphs, homogeneous
metric spaces

1.1 Finite Distance Transitive Graphs

Finite Distance Transitive Graphs
distance transitivityz metric homogeneity for pairs

Smith’s Theorem:

e Imprimitive case: Bipartite or Antipodal (or a cycle)
Antipodal: maximal distancé

e Reduction to the primitive case (halving, folding)

1.2 Homogeneous Graphs

Classification of Homogeneous Graphs
Metrically homogeneous diametgr2 = Homogeneous.
(The metricis the graph)

Fraissé Constructions: Henson graphs H¢
Lachlan-Woodrow 1980 The homogeneous graphs are

e m - K, and its complement;
e The pentagon and the line graphief s (3 x 3 grid)
e The Henson graphs and their complements (including the Beajth)

Method: Induction on Amalgamation Classes

Claim: If A is an amalgamation class of finite graphs containing alllysayb order
3, I, and K, then A contains everys,, . ,-free graph.

Proof by induction on the ord¢d| whereA is K, 1-free

This doesn’t work directly, but a stronger statement canrbega by induction.

Induction via Amalgamation
A’ is the set of finite graph& such that any -point extension o7 lies in A.
Inductive claim: Every finite graph belongs.t.

Not making much progress yet, but ...

1-complete: completé)-complete: co-complete.
AP is the set of finite graph& such that any finite-complete graph extension of
G belongs toA.



AP C A
AP is an amalgamation class

Target: The generators of all lie in one A?, for somep.

Lachlan’s Ramsey Argument
How to get intoA?:

1-point extensions of a large direct supm;
=
p-extensions of one of thd;.

If A; isitself a direct sum of generators, we get a fixed valug of

First used for tournaments: Lachlan 1984, cf. Cherlin 1988

1.3 Homogeneous Metric Spaces

Homogeneous Metric Spaces
Rational-valued Urysohn space.
Z-valued Urysohn space is a metrically homogeneous space.
OrZ N [0, 6]-valued.
S-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diamedes:
A Z-valued homogeneous metric space with boéinahd all triangleg1,4,7 + 1)
allowed (connectivity).

2 A Catalog
2.1 Special Cases

Special Cases

e Diameter< 2 (Lachlan/Woodrow 1980)

e Locally finite (Cameron, Macpherson)

e I'j-exceptional

e Imprimitive (Smith’s Theorem)
The Locally Finite Case

Finite of diameter at least and vertex degree at leakst Antipodal double covers
of certain finite homogeneous graphs (Cameron 1980)

Infinite, Locally Finite: Tree-likel. ; (Macpherson 1982)
Construction:



Figure 1: Antipodal Double cover @f5

The graphsT;
The treed'(r, s): Alternatelyr-branching and-branching.
Bipartite, metrically homogeneous if the two halves of tiaetition are kept fixed.

The graph obtained by “halving” on thebranching side i, ;.
Each vertex lies at the center of a bouquet efcliques.

Another point of view: the graph on the neighbors of a fixedeser
Fl re stl-

From this point of view, we may also takeor s to be infinite!
Iy
I'; = T';(v): Distancei, with the induced metric.

Remark 1. If distancel occurs, then the connected componentE,odire metrically
homogeneous.

In particularl’; is a homogeneous graph.

Exceptional Cases: finite, imprimitive, f¢.

The finite case is Cameron+Macpherson, the imprimitive ¢teses back td;,
with r or s infinite, andH ¢ does not occur forn > 2 (Cherlin 2011)

In other words, the nonexceptional cases are

o [

e Henson graph#/,, including Rado’s graph.
Imprimitive Graphs

“Smith’s Theorem” (Amato/Macpherson, Cherlin):

Part I Bipartite or antipodal, and in the antipodal casénwlaisses of ordet and
the metric antipodal law for the pairing:

d(xvyl) =0- d(x,y)



Hence no triangles of diameter greater than
d(z,2) < d(z,y') +d(y', z) = 20 — d(z,y) — d(, z)

Part II: The bipartite case reduces by halving to a case irthwhj is the Rado
graph.

On the other handhe antipodal case does not reduaehile distance transitivity
is inherited after “folding,” metric homogeneity is not.

There is also a bipartite antipodal case.

2.2 Generic Cases

Some Amalgamation Classes
Within A?: finite integral metric spaces with bound

o A% everi No odd cycles belo®K + 1.

o A dPerimeter at most.

4
c,bounde

e (1,4)-constraints.

The first two classes are given (implicitly) in Komjath/MeklPach 1988 as exam-
ples of constraints admitting a universal graph, which isstaucted by amalgamation.

The last is a generalization of Henson’s construction.1A5)-space is a space in
which only the distancesandd occur (a vacuous condition if = 2).

Any setS of (1, §)-constraints may be imposed.

Mixing: A% c.s

Expectations ca. 2008

e The generic case iA‘&S with A some set of forbidden triangles ...
e andA is a mix of parity constraint®&” and size constrainis.
Not quite ...

Variations on a theme
More examples

e C = (Cy,C1): Cy controls large even parity;; controls large odd parity
e K = (K1, K»): K, controls odd cycles at the bottory; controls odd cycles
midrange.
- (4,4, k):P=i+j+k
— For P odd, forbid

P<2K;+1 (1)
P>2Ky+i (2



Triangle Constraints

Theorem 1. If A is a geodesic amalgamation class of finite integral metracgs with
diameters, determined by triangles, thes is one of the classes

1)
'AK,C:,S

with K = (K1, K3) andC = (Cop, C1).
But not all such classes work ... ..

Definability in Presburger Arithmetic

The classes4‘}(,c are uniformly definable in Presburger arithmetic from the pa
rameterss;, Ko, Cy, C1, 0.

The k-amalgamation properig amalgamation for diagrams of order at mbst

With constraints of orde3, one expecté-amalgamation for some low to imply
amalgamation. (In the everit,= 5.)

Observation 1. k-amalgamation is a definable property in Presburger arittimyéor
the classesd); ..

Therefore it should be expressible using inequalities amfjuence conditions on
linear combinations of the parameters.

Acceptable Parameters

e 0> 3.
e 1<K <Ky<dorK; =oc0andKy =0;
e 20 +1 < Chin < Cmax < 35 + 2, with one even and one odd.

Conditions for amalgamation (6ramalgamation):
Conditionson K, C
o If K1 = oc:
Ky;=0,C,=25+1,
e If K1 < ccandC <26 + K;:

C:2K1—|—2K2+1,K1+K2Z5,andK1+2K2§25—1
If C'>C+1thenK; = Ky and3K, = 26 — 1.



e If K1 < o0, andC > 26 + K;:

K +2K, 225—1and3K2 > 26.
If K1 +2K5=26—1thenC > 26+ K1 + 2.
If ' > C +1thenC > 26 + Ko.

Notes:
C = min(Co, Cl), C/ = max(Co, Cl)
C’ > C + 1 means we need bottyy andC;.

ConditionsonS
o If K1 = oc:

is empty if§ is odd, orCy < 39
a set ofé-cliques ifdisevenCy = 30 + 2

e If K1 < ccandC <26 + K;:
If K1 =1thenS is empty.
o If K < oo,andC > 2§ + K;:

If K3 = § thenS cannot contain a triangle of tyfdé, ¢, ).
If K1 = §thenS is empty.
If C =26+ 2, thenS is empty.

2.3 Proofs

Antipodal Variations

. Ag = Afﬁil;zgﬂmﬂ;@ is the set of finite integral metric spaces in which no
triangle has perimeter greater thizi

o A%, isthe subset of’ containing no subspace of the fodi ' [K,, K] with
k+¢ = n; hereI{ ! denotes a pair of vertices at distamcel andId K}, K/
stands for the corresponding composition, namely a grapimecform K, U K,
with Ky, K, cliques (at distance 1), anf{z,y) = § — 1 forx € Ky, y € K.
In particular, witht = n, ¢ = 0, this meand¥,, does not occur.



Necessity: Amalgamation diagrams

Lemma 2. Let A be an amalgamation class of diameteidetermined by triangle
constraints with associated parametéts, K>, C,C’. Then

C > min(26 + K1,2K1 + 2K5)

We suppose
C <20+ K,

and we show that
C > 2K+ 2K,

Setj = €51, andi = (C — K1) — j. Thenl < j <i < 4.
C > min(26 + K1,2K, + 2K2)

In the following amalgamation, vertices, us forced(ay, az) = K; and|ajasc| =
C-

® LA
Y 2 2

So omitcasu; Or casus, With P > 2K + 1, ...

Proofs of amalgamation
Three amalgamation strategies:

e d~(a,b) = max(d(a,z) — d(a,b))
e d*(a,b) =infd(a,z) + d(z,b)
e d(a,b) = inf[C' — (d(a,z) + d(a,D))]



Amalgamation for A3 .,

o If C <20+ Ki:
— If d*(al, ag) > K; then tak&l(al, ag) = d*(al, CLQ).
Otherwise:
- IfC"=C+1then:
s If dt(ay,as) < Ko then takel(ay, az) = min(d* (a1, az), d(a1, az))

* If d=(a1,a2) < Ky andK, < d™ (a1, az) then taked(ai,a2) =
d(al, ag) if d(al, ag) < K, andd(al, ag) =K otherwise.

—if C" > C + 1then:
x If d+(a1, ag) < Ko then tak&i(al,ag) = d+(a1, ag);
* If d™ (al, ag) < Ky < d+(a1, ag) then take

K, —1 ifthereisv € Ag with d(aq,v) = d(az,v) =46
Ky otherwise

d(al, ag) = {

o IfC >20+ Ki:
o IfC >20+ Ki:
— If d=(a1,a2) > K7 thentakel(a;,as) = d~ (a1, a2);
Otherwise:
— If ¢’ =C + 1then:

s If dt (a1, a2) < K thentakel(a1, az) = min(dt (a1, az), d(ay, a2));
* If d¥(a1,a2) > K; then take

K1+ 1 ifthereisv € Ay with
d(ay,v) = d(az,v) =4,
andK; +2K, =26 -1
K otherwise

d(al, CLQ) =

—If ¢’ > C + 1then:
* If d*(al, ag) < K then tak&i(al,ag) = d*(al, ag);
* If d+(a1, ag) > K then tak&i(al,ag) = min(Kg, C—2— 1)

3 Conclusion

Completeness?
Good points:

e All cases with exceptiondl



e § < 3, probably (Amato/Cherlin/Macpherson)
e Exact as far as triangle constraints are concerned

e Smith’s Theorem
Weak points

e Smith’s Theorem

— Bipartite to be completed inductively
— Antipodal description may be incomplete

e Induction tol'; is not always available

In fact, for antipodal graphs omittingy,,, triangles and 1, §)-constraints do not
suffice.
That class was found on an ad hoc basis. (And is invisibleamdter 3.)

Toward a classification theorem
Strategy?
e (Step 0) Prepare diameter 4 anglgenerally? (Prudent)
¢ (Step 1) Characterize triangles occurring in amalgamatiasses

e (Step 2) Show that if the triangle constraints are as expedtenI’; has the
expected constraints.

e (Step 3) Assuming the first two conditions, charactefize

(Works in diameter 3)

... With Lachlan’'s Ramsey method in reserve.

Furthermore
No need to wait for a classification:

e Ramsey theory for these homogeneous metric spaces
e Topological dynamics

e Other aspects of the automorphism group (normal subgrsupgroups of small
index)



