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Some Fraı̈ssé Classes of Finite Integral
Metric Spaces

Gregory Cherlin

Bertinoro, May 27



Some Fraı̈ssé
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The Classification Problem

Γ connected, with graph metric d .
Γ is metrically homogeneous if the metric space (Γ,d) is
(ultra)homogeneous.

(Cameron 1998) Classify the countable metrically
homogeneous graphs.
Contexts: infinite distance transitive graphs, homogeneous
graphs, homogeneous metric spaces
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Finite Distance Transitive Graphs

distance transitivity = metric homogeneity for pairs

Smith’s Theorem:
• Imprimitive case: Bipartite or Antipodal (or a cycle)
Antipodal: maximal distance δ

• Reduction to the primitive case (halving, folding)
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Classification of Homogeneous Graphs

Metrically homogeneous diameter ≤ 2 = Homogeneous.
(The metric is the graph)

Fraı̈ssé Constructions: Henson graphs Hn, Hc
n

Lachlan-Woodrow 1980 The homogeneous graphs are

m · Kn and its complement;

The pentagon and the line graph of K3,3 (3 × 3 grid)

The Henson graphs and their complements (including
the Rado graph)

Method: Induction on Amalgamation Classes
Claim: If A is an amalgamation class of finite graphs
containing all graphs of order 3, I∞, and Kn, then A contains
every Kn+1-free graph.
Proof by induction on the order |A| where A is Kn+1-free
This doesn’t work directly, but a stronger statement can be
proved by induction.
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Induction via Amalgamation

A′ is the set of finite graphs G such that any 1-point
extension of G lies in A.
Inductive claim: Every finite graph belongs to A′.

Not making much progress yet, but . . .

1-complete: complete. 0-complete: co-complete.
Ap is the set of finite graphs G such that any finite
p-complete graph extension of G belongs to A.
Ap ⊆ A′

Ap is an amalgamation class

Target: The generators of A all lie in one Ap, for some p.
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Lachlan’s Ramsey Argument

How to get into Ap:

1-point extensions of a large direct sum ⊕Ai

=⇒
p-extensions of one of the Ai .

If Ai is itself a direct sum of generators, we get a fixed value
of p.

First used for tournaments: Lachlan 1984, cf. Cherlin 1988



Some Fraı̈ssé
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Homogeneous Metric Spaces

Rational-valued Urysohn space.
Z-valued Urysohn space is a metrically homogeneous
space.
Or Z ∩ [0, δ]-valued.
S-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diameter δ is:
A Z-valued homogeneous metric space with bound δ, and
all triangles (1, i , i + 1) allowed (connectivity).
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Special Cases

Diameter ≤ 2 (Lachlan/Woodrow 1980)

Locally finite (Cameron, Macpherson)

Γ1-exceptional

Imprimitive (Smith’s Theorem)
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The Locally Finite Case

Finite of diameter at least 3 and vertex degree at least 3:
Antipodal double covers of certain finite homogeneous
graphs (Cameron 1980)

Figure: Antipodal Double cover of C5

Infinite, Locally Finite: Tree-like Tr ,s (Macpherson 1982)
Construction:
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The graphs Tr ,s

The trees T (r , s): Alternately r -branching and s-branching.
Bipartite, metrically homogeneous if the two halves of the
partition are kept fixed.

The graph obtained by “halving” on the r -branching side is
Tr ,s.
Each vertex lies at the center of a bouquet of r s-cliques.

Another point of view: the graph on the neighbors of a fixed
vertex:
Γ1 : r · Ks−1.

From this point of view, we may also take r or s to be infinite!
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Γ1

Γi = Γi(v): Distance i , with the induced metric.

Remark

If distance 1 occurs, then the connected components of Γi

are metrically homogeneous.

In particular Γ1 is a homogeneous graph.

Exceptional Cases: finite, imprimitive, or Hc
n .

The finite case is Cameron+Macpherson, the imprimitive
case leads back to Tr ,s with r or s infinite, and Hc

n does not
occur for n > 2 (Cherlin 2011)
In other words, the nonexceptional cases are

I∞
Henson graphs Hn including Rado’s graph.
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Imprimitive Graphs

“Smith’s Theorem” (Amato/Macpherson, Cherlin):
Part I: Bipartite or antipodal, and in the antipodal case with
classes of order 2 and the metric antipodal law for the
pairing:

d(x , y ′) = δ − d(x , y)

Hence no triangles of diameter greater than 2δ:

d(x , z) ≤ d(x , y ′) + d(y ′, z) = 2δ − d(x , y)− d(x , z)

Part II: The bipartite case reduces by halving to a case in
which Γ1 is the Rado graph.
On the other hand, the antipodal case does not reduce:
while distance transitivity is inherited after “folding,” metric
homogeneity is not.
There is also a bipartite antipodal case.
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Some Amalgamation Classes

Within Aδ: finite integral metric spaces with bound δ:

Aδ
K ,even: No odd cycles below 2K + 1.

Aδ

C,bounded: Perimeter at most C.

(1, δ)-constraints.

The first two classes are given (implicitly) in
Komjath/Mekler/Pach 1988 as examples of constraints
admitting a universal graph, which is constructed by
amalgamation.
The last is a generalization of Henson’s construction. A
(1, δ)-space is a space in which only the distances 1 and δ

occur (a vacuous condition if δ = 2).
Any set S of (1, δ)-constraints may be imposed.

Mixing: Aδ
K ,C;S
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Expectations ca. 2008

The generic case is Aδ
∆,S with ∆ some set of forbidden

triangles . . .

and ∆ is a mix of parity constraints K and size
constraints C.

Not quite . . .
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Variations on a theme

More examples

C = (C0,C1): C0 controls large even parity, C1 controls
large odd parity
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Variations on a theme

More examples

C = (C0,C1): C0 controls large even parity, C1 controls
large odd parity

K = (K1,K2): K1 controls odd cycles at the bottom, K2

controls odd cycles midrange.

(i, j, k): P = i + j + k
For P odd, forbid

P < 2K1 + 1 (1)

P > 2K2 + i (2)



Some Fraı̈ssé
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Triangle Constraints

Theorem

If A is a geodesic amalgamation class of finite integral
metric spaces with diameter δ, determined by triangles, then
A is one of the classes

Aδ
K ,C;S

with K = (K1,K2) and C = (C0,C1).

But not all such classes work . . . .
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Definability in Presburger Arithmetic

The classes Aδ
K ,C are uniformly definable in Presburger

arithmetic from the parameters K1,K2,C0,C1, δ.
The k-amalgamation property is amalgamation for diagrams
of order at most k .
With constraints of order 3, one expects k-amalgamation for
some low k to imply amalgamation. (In the event, k = 5.)

Observation

k-amalgamation is a definable property in Presburger
arithmetic for the classes Aδ

K ,C .

Therefore it should be expressible using inequalities and
congruence conditions on linear combinations of the
parameters.
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Acceptable Parameters

δ ≥ 3.

1 ≤ K1 ≤ K2 ≤ δ or K1 = ∞ and K2 = 0;

2δ + 1 ≤ Cmin < Cmax ≤ 3δ + 2, with one even and one
odd.

Conditions for amalgamation (or 5-amalgamation):
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Conditions on K , C

If K1 = ∞:

K2 = 0, C1 = 2δ + 1,

If K1 < ∞ and C ≤ 2δ + K1:

C = 2K1 + 2K2 + 1, K1 + K2 ≥ δ, and K1 + 2K2 ≤ 2δ −

If C′ > C + 1 then K1 = K2 and 3K2 = 2δ − 1.

If K1 < ∞, and C > 2δ + K1:

K1 + 2K2 ≥ 2δ − 1 and 3K2 ≥ 2δ.
If K1 + 2K2 = 2δ − 1 then C ≥ 2δ + K1 + 2.
If C′ > C + 1 then C ≥ 2δ + K2.

Notes:
C = min(C0,C1), C′ = max(C0,C1)
C′ > C + 1 means we need both C0 and C1.
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Conditions on S

If K1 = ∞:

S is

{

empty if δ is odd, or C0 ≤ 3δ

a set of δ-cliques if δ is even, C0 = 3δ + 2

If K1 < ∞ and C ≤ 2δ + K1:

If K1 = 1 then S is empty.

If K1 < ∞, and C > 2δ + K1:

If K2 = δ then S cannot contain a triangle of type (1, δ, δ

If K1 = δ then S is empty.

If C = 2δ + 2, then S is empty.
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Antipodal Variations

Aδ
a = Aδ

1,δ−1; 2δ+2,2δ+1; ∅ is the set of finite integral
metric spaces in which no triangle has perimeter
greater than 2δ.

Aδ
a,n is the subset of Aδ

a containing no subspace of the
form Iδ−1

2 [Kk ,Kℓ] with k + ℓ = n; here Iδ−1
2 denotes a

pair of vertices at distance δ − 1 and Iδ−1
2 [Kk ,Kℓ] stands

for the corresponding composition, namely a graph of
the form Kk ∪ Kℓ with Kk , Kℓ cliques (at distance 1), and
d(x , y) = δ − 1 for x ∈ Kk , y ∈ Kℓ. In particular, with
k = n, ℓ = 0, this means Kn does not occur.
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Necessity: Amalgamation diagrams

Lemma

Let A be an amalgamation class of diameter δ determined
by triangle constraints with associated parameters
K1,K2,C,C′. Then

C > min(2δ + K1,2K1 + 2K2)



Some Fraı̈ssé
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Necessity: Amalgamation diagrams

Lemma

Let A be an amalgamation class of diameter δ determined
by triangle constraints with associated parameters
K1,K2,C,C′. Then

C > min(2δ + K1,2K1 + 2K2)

We suppose
C ≤ 2δ + K1

and we show that
C > 2K1 + 2K2

Set j = ⌊C−K1
2 ⌋, and i = (C − K1)− j . Then 1 < j ≤ i ≤ δ.
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C > min(2δ + K1, 2K1 + 2K2)

In the following amalgamation, vertices u1,u2 force
d(a1,a2) = K1 and |a1a2c| = C:

d(c,u1) = d(c,u2) = i − 1

So omit ca2u1 or ca2u2, with P ≥ 2K1 + 1, . . .



Some Fraı̈ssé
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Proofs of amalgamation

Three amalgamation strategies:

d−(a,b) = max(d(a, x)− d(a,b))

d+(a,b) = inf d(a, x) + d(x ,b)

d̃(a,b) = inf[C − (d(a, x) + d(a,b))]
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Amalgamation for Aδ
K ,C

If C ≤ 2δ + K1:
If d−(a1, a2) ≥ K1 then take d(a1, a2) = d−(a1, a2).
Otherwise:
If C′ = C + 1 then:

If d+(a1, a2) ≤ K2 then take
d(a1, a2) = min(d+(a1, a2), d̃(a1, a2))
If d−(a1, a2) < K1 and K2 < d+(a1, a2) then take
d(a1, a2) = d̃(a1, a2) if d̃(a1, a2) ≤ K2 and
d(a1, a2) = K1 otherwise.

if C′ > C + 1 then:
If d+(a1, a2) < K2 then take d(a1, a2) = d+(a1, a2);
If d−(a1, a2) < K2 ≤ d+(a1, a2) then take

d(a1, a2) =

{

K2 − 1 if there is v ∈ A0 with d(a1, v) = d(a2,

K2 otherwise

If C > 2δ + K1:
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Amalgamation for Aδ
K ,C

If C ≤ 2δ + K1:
If C > 2δ + K1:

If d−(a1, a2) > K1 then take d(a1, a2) = d−(a1, a2);
Otherwise:
If C′ = C + 1 then:

If d+(a1, a2) ≤ K1 then take
d(a1, a2) = min(d+(a1, a2), d̃(a1, a2));
If d+(a1, a2) > K1 then take

d(a1, a2) =



















K1 + 1 if there is v ∈ A0 with

d(a1, v) = d(a2, v) = δ,

and K1 + 2K2 = 2δ − 1

K1 otherwise

If C′ > C + 1 then:
If d+(a1, a2) < K2 then take d(a1, a2) = d+(a1, a2);
If d+(a1, a2) ≥ K2 then take
d(a1, a2) = min(K2,C − 2δ − 1).
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Completeness?

Good points:

All cases with exceptional Γ1

δ ≤ 3, probably (Amato/Cherlin/Macpherson)

Exact as far as triangle constraints are concerned

Smith’s Theorem

Weak points

Smith’s Theorem
Bipartite to be completed inductively
Antipodal description may be incomplete

Induction to Γi is not always available

In fact, for antipodal graphs omitting Kn, triangles and
(1, δ)-constraints do not suffice.
That class was found on an ad hoc basis. (And is invisible in
diameter 3.)
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Toward a classification theorem

Strategy?

(Step 0) Prepare diameter 4 and Γ2 generally?
(Prudent)

(Step 1) Characterize triangles occurring in
amalgamation classes

(Step 2) Show that if the triangle constraints are as
expected, then Γi has the expected constraints.

(Step 3) Assuming the first two conditions, characterize
Γ.

(Works in diameter 3)

. . . With Lachlan’s Ramsey method in reserve.
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Furthermore

No need to wait for a classification:

Ramsey theory for these homogeneous metric spaces

Topological dynamics

Other aspects of the automorphism group (normal
subgroups, subgroups of small index)
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