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Examples

° (Q<)
@ A regular tree, as a metric space.
@ The random graph
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P =|(a,b,c)| = 2(k+ I+ m); m= P/2 - d(a,b)
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Consequences Any finite partial isomorphism between two
countable models extends to an isomorphism.
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Alice’s Restaurant Axioms
VXy,...,Xn You can get anything you want

Truth With probability 1, these axioms are true;

Consequences Any finite partial isomorphism between two
countable models extends to an isomorphism.

Hence: Uniqueness and Homogeneity

Corollary (0-1 law; Fagin76, GKLT69)

Any first order property of graphs has asymptotic probability
0 or 1 in large random graphs.

’
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Classifications

ey @ Finite homogeneous for a finite relational language

neous

Combinatorial (Lachlan): finitely many families, each consisting of
Structures approximations to an infinite limit;
Cherin @ Some binary relational structures (ad hoc)

Introduction Method Example Reference
Structural Colored T. de Sousa/Truss
Analysis P. O. 2008
" Permutation patterns Cameron 2002
Artful Graphs Lachlan/Woodrow
Induction 1980
Ramsey Method Tournaments Lachlan 1984

" Directed graphs Cherlin 1998

Some Open Cases
@ metrically homogeneous graphs (Cameron, 1998)
@ k-dimensional permutation patterns (Cameron, 2002)
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@ The “gl’l'd” K3 &® K3 = L[K3,3]
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Varying the language (Lachlan’s theory).

litesicen The graphs K, ® K, are homogeneous relative to the
4-place parallelism relation, and occur as a family at that
level of Lachlan’s classification.
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Varying the language (Lachlan’s theory).

litesicen The graphs K, ® K, are homogeneous relative to the
4-place parallelism relation, and occur as a family at that
level of Lachlan’s classification.

On the other hand, the n-cycles C, remain sporadic forever.
They are metrically homogeneous but the number of binary
relations involved is unbounded.
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Can one classify the finite primitive structures
homogeneous for a language of bounded arity?

Introduction

The binary case: (known examples)
@ Equality;
@ Cp,or Cp;
o [IE‘qz -ker(N)] - (Frq)

(O’Nan-Scott-Aschbacher?—cf. Saracino 1996-7)
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There is a converse ...
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The Fraissé limit

Definition (Amalgamation Class)
A set A of f.g. structures is an amalgamation class if

@ Itis closed under isomorphism and substructure;

@ It has the joint embedding and amalgamation
properties

Theorem (Fraissé)

If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure I' with Sub(l') = A
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The Fraissé limit

Definition (Amalgamation Class)
A set A of f.g. structures is an amalgamation class if

@ Itis closed under isomorphism and substructure;

@ It has the joint embedding and amalgamation
properties

A

Theorem (Fraissé)

If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure I' with Sub(l') = A

A

(Q, <) is the Fraissé limit of the class £ of finite linear
orders.
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Classification

of Homoge- @ The generic partial order P
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Structures @ The generic K,-free graph I', [Henson 71]
Dy @ The generic 7-free directed graph [Henson 72]
@ The rational Urysohn space Ug [Urysohn 1924]

Amalgamation

Fréchet’s problem: is there a universal separable complete
metric space?
Urysohn: Let U be the completion of the rational Urysohn
space Up.
... In addition [it] satisfies a quite powerful condition
of homogeneity: the latter being, that it is possible
to map the whole space onto itself (isometrically)
S0 as to carry an arbitrary finite set M into an
equally arbitrary set My, congruent to the set M.
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Theorem (Schmerl 1979)
Gregory

Cherlin A nontrivial homogeneous partial order is either a
composition 1,[Q] or Q[L,], or the generic partial order P.

Classification

Theorem (Torrezao de Sousa, Truss 2008)

A homogeneous countably vertex colored partial order is
built from generically colored components by assembly
along a skeleton, which is a countable partial order with
labels on edges indicating the isomorphism type of each
pair of components.
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then it contains all finite partial orders.

Step 1. +1; and duality.
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then it contains all finite partial orders.

Step 2. Fan-in and fan-out.
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then it contains all finite partial orders.

Step 3. Forced amalgamations
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Transitive!

c~c:ic<c <c;C/ ~is apartially ordered set.



P.O. with vertex colors
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Classification Transitivity

¢ via
Amalgamation

Transitive! ®

The components of I are the vertices whose colors belong
to a fixed color class.

Lemma (1 Component)

The components are generically colored homogeneous
partial orders.




Homogeneous Permutation Patterns
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neous . . . . )

SRRl A permutation is a structure consisting of two linear orders.
ructures

e The isomorphism types are the permutation patterns.

Theorem (Cameron 2002)

The nontrivial primitive homogeneous permutations are
@ I (<2=<1) andI* (<x=<7?), or
@ Generic.

The imprimitive homogeneous permutations are
compositions of primitive ones: 1[1%], I°(I]

Classification

(Main Lemma)

If a homogeneous permutation contains all permutation
patterns of order 3, then it contains all patterns.
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Homogeneous graphs

Theorem (Lachlan/Woodrow 1980)

The homogeneous graphs are as follows:
@ C5 andKs ® K3
@ I,[K,] and K, [I,] (compositions)
@ The generic K, -free graph Iy, or its complement;
@ The random graph T o,

Reduction: w.l.o.g. I contains I, I1 & Ko, Po.
Target: Some I', (n < o0).

(Alice’s Restaurant Lemma)

If the “generators” 1, 11 + Ko, P> occur as well as K, then
any finite graph omitting K,,. 1 occurs.
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B = Ay ® Az. Amalgamating B U {a} with B U {b*} will force
A.
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Factors:
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Bl 2 <€ A (a,b) an edge, (a,b’) anonedge. Aj = A\ {a,b},
CEN A, = A\ {a,b}.

B = Ay ® Az. Amalgamating B U {a} with B U {b*} will force
A.

Classification
A Ay

ag @b* .
Ay A,

Factors:

How can we make this work?
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consequence of the generators.
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e IfH is a consequence of the generators and a € A,
a’ € H then the almost disjoint sum A ©,—, H is a
consequence of the generators.
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Greedy Induction

(Main Lemma’)
For any finite A omitting K, 1

IfH is a consequence of the generators and a € A,
a’ € H then the almost disjoint sum A ©,—, H is a
consequence of the generators.

Main Factor:

H =
1@

A,

H = (A2®,H) = Ay @, (A2 @, H) (by induction)

2nd factor: disjoint union. Explicit amalgamation arguments



Explicit Amalgamation Arguments
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Question (Main Classification Problem—Lachlan)

Given finitely many positive constraints A+, ..., Ax and
negative constraints By, . . . ,By, is there a homogeneous
structure meeting the constraints?

Classification

Is this decidable?
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Classification A tournament is a local order if for each vertex v the left and
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Structures The homogeneous local orders are L1, Cs, Q, and the
redory generic local order Q*.
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Theorem (Lachlan 1984)

The homogeneous tournaments are the homogeneous local
Classification orders and the generic tournament.

The “generator” [L1, C3]

[Llf C3]
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[Ly,C3] = Everything l
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Tournaments: The Ramsey Method

[Ly,C3] = Everything \

Step 1. Duality:

[L1 ) C3] = [C37 L1] .

Tournaments omitting [C3, L1] have the form [L, S] with L
linear and S a local order. In the homogeneous case, T
must be one or the other.




Tournaments: The Ramsey Method

Classification
of Homoge-
neous
Combinatorial

Structures [Lq, 63] = Everything
Gregory

cherin Step 1. Duality:

[L1 s C3] g [C37 L1] .

Tournaments omitting [C3, L1] have the form [L, S] with L
Hesgitesiien linear and S a local order. In the homogeneous case, T
must be one or the other.

Step 2. Linear extensions

A* = {A:AllAUL lie in A}

A* is an amalgamation class. l
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Tournaments: The Ramsey Method

[Ly,C3] = Everything l

Step 1. Duality:

[L1 ) C3] = [C37 L1] .

Tournaments omitting [C3, L1] have the form [L, S] with L
linear and S a local order. In the homogeneous case, T
must be one or the other.

Step 2. Linear extensions

A* = {A:AllAUL lie in A}

A* is an amalgamation class. l

Therefore it suffices to prove: [Ly, C3] € A*.
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Cherlin Then A IS In A*.

LN Amalgamate many 1-point extensions.
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The Ramsey Argument

Stacks: L[A] is a stack of A’s.

Lemma

Assume every 1-point extension of a stack of A’s is in A.
Then A is in A*.

Amalgamate many 1-point extensions.

Amalgamating over a stack

A copy of L will appear. O
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Cherlin )
Proof.

Induction on the height of the stack.
Classification ~
A = Cs.
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Gregory [L1 9 C3]
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Proof.

Induction on the height of the stack.
Classification ~
A = Cs.
T = (A’, AP) is a partitioned tournament, homogeneous
relative to the partition.
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Structures

Gregory [L1 5 C3]

Cherlin

Proof.

Induction on the height of the stack.

Classification A= 63.

T = (A’, AP) is a partitioned tournament, homogeneous
relative to the partition.

O]

v

Final version: if T = (T4, T2) is an ample 2-tournament, and
A C Ty, A~ C3, then

(A'(T1), AP(T2)) is an ample 2-tournament.
[Finitized]
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The Case of Directed Graphs

IfT is a primitive homogeneous directed graph thenT is one
of the following.

@ A tournament or independent set of vertices;
@ A local partial order S(2), P, or P(3).
@ [, or7 (Henson digraphs).

Proof.

As for tournaments, allowing for some ambiguity in the
Ramsey argument.

A" = {A : Every r-Ramsey extension of A lies in A}.
Instead of 1-point extensions of stacks of generators, we
use disjoint sums of generators.

Ol

v
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Some Classification Problems
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@ Homogeneous k-dim. permutations (<1, ..., <k).
(Compositions of generic for < k linear orders?)

@ Finite primitive binary homogeneous structures
(O’Nan-Scott-Aschbacher)

@ Metrically Homogeneous Graphs.

Problems



Metrically Homogeneous Graphs

Sl The known metrically homogeneous graphs are of the

of Homoge-

o following forms.
siietires @ Homogenous Graphs (Lachlan/Woodrow)
Chetin @ The n-gon C,, or an antipodal double of Cs or K5 @ Ks.
@ Tree-like graphs T, ,: r-fold branching of s-cliques.
® I} c.s Where
— 0 is the diameter
e — K = (K4, K>) controls triangles of odd perimeter
— C = (Cyp, Cy) controls triangles of large perimeter (> 24)
— S is a Henson-style constraint involving
(1, 9)-subspaces.
@ An antipodal variation of the previous example, Fin
omitting K, and some related subgraphs.
The evidence for completeness is spotty, but this gives a
clear target.
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