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Homogeneity

Definition
A structure is homogeneous iff every isomorphism between
f.g. substructures is induced by an automorphism.

Examples

(Q, <)

A regular tree, as a metric space.
The random graph
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Regular trees as metric spaces

Recovering the convex closure from the metric.

P = |(a, b, c)| = 2(k + l + m); m = P/2− d(a, b)
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The Random Graph

Alice’s Restaurant Axioms
∀x1, . . . , xn You can get anything you want

Remark

Truth With probability 1, these axioms are true;
Consequences Any finite partial isomorphism between two

countable models extends to an isomorphism.
Hence: Uniqueness and Homogeneity

Corollary (0-1 law; Fagin76, GKLT69)
Any first order property of graphs has asymptotic probability
0 or 1 in large random graphs.
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Classifications

Finite homogeneous for a finite relational language
(Lachlan): finitely many families, each consisting of
approximations to an infinite limit;
Some binary relational structures (ad hoc)

Method Example Reference
Structural Colored T. de Sousa/Truss

Analysis P. O. 2008
" Permutation patterns Cameron 2002
Artful Graphs Lachlan/Woodrow

Induction 1980
Ramsey Method Tournaments Lachlan 1984

" Directed graphs Cherlin 1998

Some Open Cases
metrically homogeneous graphs (Cameron, 1998)
k -dimensional permutation patterns (Cameron, 2002)
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“Sporadic” finite structures

Theorem (Sheehan 74, Gardiner 76)
The finite homogeneous graphs are:

m · Kn and its complement;
The pentagon C5;
The “grid” K3 ⊗ K3 = L[K3,3]

Kn ⊗ Kn
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Grids and Cycles

Varying the language (Lachlan’s theory).

The graphs Kn ⊗ Kn are homogeneous relative to the
4-place parallelism relation, and occur as a family at that
level of Lachlan’s classification.

On the other hand, the n-cycles Cn remain sporadic forever.
They are metrically homogeneous but the number of binary
relations involved is unbounded.
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The finite primitive case

Question
Can one classify the finite primitive structures
homogeneous for a language of bounded arity?

The binary case: (known examples)
Equality;
Cn, or ~Cn;
[Fq2 · ker(N)] · 〈Frq〉

(O’Nan-Scott-Aschbacher?—cf. Saracino 1996–7)
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The amalgamation property

Remark (Fraı̈ssé)

If Γ is a homogeneous structure then the category Sub(Γ) of
f.g. substructures has the amalgamation property and joint
embedding.

Proof.

There is a converse . . .
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The Fraı̈ssé limit

Definition (Amalgamation Class)
A set A of f.g. structures is an amalgamation class if

It is closed under isomorphism and substructure;
It has the joint embedding and amalgamation
properties

Theorem (Fraı̈ssé)
If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure Γ with Sub(Γ) = A

Example

(Q, <) is the Fraı̈ssé limit of the class L of finite linear
orders.
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If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure Γ with Sub(Γ) = A

Example
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Examples

The generic partial order P
The generic Kn-free graph Γn [Henson 71]
The generic T -free directed graph [Henson 72]
The rational Urysohn space U0 [Urysohn 1924]

Fréchet’s problem: is there a universal separable complete
metric space?
Urysohn: Let U be the completion of the rational Urysohn
space U0.

. . . in addition [it] satisfies a quite powerful condition
of homogeneity: the latter being, that it is possible
to map the whole space onto itself (isometrically)
so as to carry an arbitrary finite set M into an
equally arbitrary set M1, congruent to the set M.
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Colored partial orders

Theorem (Schmerl 1979)
A nontrivial homogeneous partial order is either a
composition In[Q] or Q[In], or the generic partial order P.

Theorem (Torrezão de Sousa, Truss 2008)
A homogeneous countably vertex colored partial order is
built from generically colored components by assembly
along a skeleton, which is a countable partial order with
labels on edges indicating the isomorphism type of each
pair of components.
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Amalgamation arguments

Lemma
If a homogeneous partial order contains

then it contains all finite partial orders.

Proof.
Step 3. Forced amalgamations
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Amalgamation arguments

Lemma
If a homogeneous partial order contains

then it contains all finite partial orders.

Proof.
Step 1. +I1 and duality.

Step 3. Forced amalgamations
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Amalgamation arguments

Lemma
If a homogeneous partial order contains

then it contains all finite partial orders.

Proof.
Step 2. Fan-in and fan-out.

Step 3. Forced amalgamations
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Explicit Amalgamation

Claim (Step 1)

Proof.
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Proof.
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P.O. with vertex colors

Colors C.

Definition
c1 ≤ c2 if ∃x1 ≤ x2 of those colors.

Remark

Transitive!

The components of Γ are the vertices whose colors belong
to a fixed color class.

Lemma (1 Component)
The components are generically colored homogeneous
partial orders.
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P.O. with vertex colors

Colors C.

Definition
c1 ≤ c2 if ∃x1 ≤ x2 of those colors.

Remark

Transitive!

c ∼ c′: c ≤ c′ ≤ c; C/ ∼ is a partially ordered set.

The components of Γ are the vertices whose colors belong
to a fixed color class.

Lemma (1 Component)
The components are generically colored homogeneous
partial orders.
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Homogeneous Permutation Patterns

Definition
A permutation is a structure consisting of two linear orders.

The isomorphism types are the permutation patterns.

Theorem (Cameron 2002)
The nontrivial primitive homogeneous permutations are

I (<2=<1) and Iop (<2=<op
1 ); or

Generic.
The imprimitive homogeneous permutations are
compositions of primitive ones: I[Iop], Iop[I]

(Main Lemma)
If a homogeneous permutation contains all permutation
patterns of order 3, then it contains all patterns.
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Homogeneous graphs

Theorem (Lachlan/Woodrow 1980)
The homogeneous graphs are as follows:

C5 and K3 ⊗ K3

Im[Kn] and Kn[Im] (compositions)
The generic Kn-free graph Γn, or its complement;
The random graph Γ∞

Reduction: w.l.o.g. Γ contains I∞, I1 ⊕ K2, P2.
Target: Some Γn (n ≤ ∞).

(Alice’s Restaurant Lemma)
If the “generators” I∞, I1 + K2, P2 occur as well as Kn, then
any finite graph omitting Kn+1 occurs.
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Induction fails

|A| = k.
a ∈ A, (a, b) an edge, (a, b′) a nonedge. A1 = A \ {a, b},
A2 = A \ {a, b′}.
B = A1 ⊕ A2. Amalgamating B ∪ {a} with B ∪ {b∗} will force
A.

Factors:

How can we make this work?
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Greedy Induction

(Main Lemma′)
For any finite A omitting Kn+1

If H is a consequence of the generators and a ∈ A,
a′ ∈ H then the almost disjoint sum A⊕a=a′ H is a
consequence of the generators.

Main Factor:

H =⇒ (A2 ⊕a H) =⇒ A1 ⊕a (A2 ⊕a H) (by induction)

2nd factor: disjoint union. Explicit amalgamation arguments
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(Main Lemma′)
For any finite A omitting Kn+1

If H is a consequence of the generators and a ∈ A,
a′ ∈ H then the almost disjoint sum A⊕a=a′ H is a
consequence of the generators.

Now the amalgamation looks like this:

Main Factor:

H =⇒ (A2 ⊕a H) =⇒ A1 ⊕a (A2 ⊕a H) (by induction)
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Explicit Amalgamation Arguments

Question (Main Classification Problem—Lachlan)
Given finitely many positive constraints A1, . . . , Ak and
negative constraints B1, . . . , B`, is there a homogeneous
structure meeting the constraints?

Is this decidable?
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Tournaments: The Ramsey Method

A tournament is a local order if for each vertex v the left and
right sides v− and v+ are linear orders (transitive).
The homogeneous local orders are L1, ~C3, Q, and the
generic local order Q∗.

(Main Lemma)

[L1, ~C3] =⇒ Everything

Step 1. Duality:
[L1, ~C3] =⇒ [~C3, L1]
Tournaments omitting [~C3, L1] have the form [L, S] with L
linear and S a local order. In the homogeneous case, T
must be one or the other.
Step 2. Linear extensions

A∗ = {A : All A ∪ L lie in A}

Lemma
A∗ is an amalgamation class.

Therefore it suffices to prove: [L1, ~C3] ∈ A∗.
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(Main Lemma)

[L1, ~C3] =⇒ Everything

Step 1. Duality:
[L1, ~C3] =⇒ [~C3, L1]
Tournaments omitting [~C3, L1] have the form [L, S] with L
linear and S a local order. In the homogeneous case, T
must be one or the other.
Step 2. Linear extensions

A∗ = {A : All A ∪ L lie in A}

Lemma
A∗ is an amalgamation class.

Therefore it suffices to prove: [L1, ~C3] ∈ A∗.
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The Ramsey Argument

Stacks: L[A] is a stack of A’s.

Lemma
Assume every 1-point extension of a stack of A’s is in A.
Then A is in A∗.

Proof.
Amalgamate many 1-point extensions.

A copy of L will appear.
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Stacks: L[A] is a stack of A’s.
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Assume every 1-point extension of a stack of A’s is in A.
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Proof.
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A copy of L will appear.
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Stacks

Lemma

Any 1-point extension of a stack of ~C3’s is a consequence of
[L1, ~C3].

Proof.
Induction on the height of the stack.
A = ~C3.
T = (A′, Ap) is a partitioned tournament, homogeneous
relative to the partition.

Final version: if T = (T1, T2) is an ample 2-tournament, and
A ⊆ T1, A ' ~C3, then

(A′(T1), Ap(T2)) is an ample 2-tournament.

[Finitized]
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The Case of Directed Graphs

Theorem
If Γ is a primitive homogeneous directed graph then Γ is one
of the following.

A tournament or independent set of vertices;
A local partial order S(2), P, or P(3).
ΓIn or ΓT (Henson digraphs).

Proof.
As for tournaments, allowing for some ambiguity in the
Ramsey argument.
Ar = {A : Every r-Ramsey extension of A lies in A}.
Instead of 1-point extensions of stacks of generators, we
use disjoint sums of generators.
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Some Classification Problems

Homogeneous k-dim. permutations (<1, . . . , <k).
(Compositions of generic for ≤ k linear orders?)
Finite primitive binary homogeneous structures
(O’Nan-Scott-Aschbacher)
Metrically Homogeneous Graphs.
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Metrically Homogeneous Graphs

The known metrically homogeneous graphs are of the
following forms.

Homogenous Graphs (Lachlan/Woodrow)
The n-gon Cn, or an antipodal double of C5 or K3 ⊗ K3.
Tree-like graphs Tr,s: r-fold branching of s-cliques.
Γδ

K,C,S where
— δ is the diameter
— K = (K1, K2) controls triangles of odd perimeter
— C = (C0, C1) controls triangles of large perimeter (≥ 2δ)
— S is a Henson-style constraint involving

(1, δ)-subspaces.
An antipodal variation of the previous example, Γδ

a,n
omitting Kn and some related subgraphs.

The evidence for completeness is spotty, but this gives a
clear target.
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