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Problem I. The n-dimensional case.

Remark. All homogeneous ordered graphs have an obvious
source; to what extent does adding an order to a language
lead to new examples?

Problem | is the base case!

Problem II. When does a countable universal permutation
exist for a family determined by finitely many constraints?
(More relevant to the study of permutation pattern classes,
but we leave it aside.)
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Problem

Normal subgroup structure of the automorphism groups;
there is a metric element, as we shall see.
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Example

(Q x Q, Eq, E2) (product, boolean lattice with two atoms).
Extends to (Q?, Ey, Eo, <7, <3) by generically ordering the
quotient Qg?/E;. This allows a change of language to
(@, <1, <y, <2, <b).

This is a difficult example to understand abstractly, and does
not give a good model for the proof of the representation
theorem (as far as | know).
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Problem
Classify the 3-constrained examples explicitly!

Remark. The same problem arose in the case of metrically
homogeneous graphs. In that case the solution is a family of
examples which is uniformly definable in Presburger

arithmetic.
There is no obvious parallel to look for in the present case.
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This holds for all homogeneous finite dimensional
permutation structures.

What is known?
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3 2
4 3,4

A less numerical version of the argument pushes k — 1 down
to 3 when n = 3, confirming the conjecture in this case.
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these pairs is non-adjacent with respect to that order.

Details Then we can add ¢ — 1 points so that every pair becomes
non-adjacent with respect to every order, and view the
extended structure on k + ¢ — 1 points as the unique
amalgam resulting from factors of order

kKt (0—1)—t=k—1

(remove one point from each of the ¢ pairs). O
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If 0 is meet irreducible, then the universal homogeneous
N-metric space has an expansion by linear orders to a
homogeneous structure in which all meet irreducible
equivalence relations are convex with respect to at least one

such.
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(B/*rf;irms;g; (3) If 0 is meet irreducible, expand by linear orders making
meet irreducibles convex, then replace by an equivalent
language of linear orders.

If 0 is not meet irreducible, replace A by A’ = [0/, A] and then
factor out Eg

The last step is admittedly not very plausible: Eg is not
convex and it is hard to see what structure is inherited by
the quotient, or why it should be homogeneous .. ..
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Is distributivity necessary?

Lemma

IfT is a non-trivial homogeneous n-dimensional
permutations structure, then any proper inclusion F < E in
the lattice of ()-definable equivalence relations has infinite
index.

ifT is a homogeneous structure in a language with
equivalence relations satisfying this infinite index condition,
then the lattice is distributive.




Is distributivity necessary?

A Census of
Homoge-
neous finite

Permutation

e IfT is a non-trivial homogeneous n-dimensional

S permutations structure, then any proper inclusion F < E in
Chai the lattice of ()-definable equivalence relations has infinite

index.

ifT is a homogeneous structure in a language with

equivalence relations satisfying this infinite index condition,

then the lattice is distributive.

Details

This does not prove the necessity of distributivity: maybe
the reduct to the language of equivalence relations is not
homogeneous!

But it makes it very plausible . ...
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Compare the (x, u) to the path (x, y, u), noting that
d(x,y) <enf.
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Compare the (x, u) to the path (x, y, u), noting that
d(x,y) <enf.

How do we get the factors? An analog of Neumann’s
Lemma
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This says from p, g, r we get the 2-type majority(p,q,r). [
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