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Homogeneous Permutations

CAMERON 2002: Homogeneous permutations.

What is a permutation?
(A;<1, <2)
Isomorphism type is the permutation pattern in the usual
sense.

2-dimensional diagrams:

(Waton)
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Classification of homogeneous permutations

1 Trivial: |A| = 1
2 Nontrivial primitive: <2=<±1 or <1, <2 independent

(generic)
3 Imprimitive: (Q2;<1,E1) lexicographic realized as

(Q2, <1, <2) in one of two ways.

Problem I. The n-dimensional case.
Remark. All homogeneous ordered graphs have an obvious
source; to what extent does adding an order to a language
lead to new examples?
Problem I is the base case!
Problem II. When does a countable universal permutation
exist for a family determined by finitely many constraints?
(More relevant to the study of permutation pattern classes,
but we leave it aside.)



A Census of
Homoge-

neous finite
dimensional
Permutation
Structures
(After Sam
Braunfeld)

Gregory
Cherlin

Overview

Details

Classification of homogeneous permutations

1 Trivial: |A| = 1
2 Nontrivial primitive: <2=<±1 or <1, <2 independent

(generic)
3 Imprimitive: (Q2;<1,E1) lexicographic realized as

(Q2, <1, <2) in one of two ways.

Problem I. The n-dimensional case.
Remark. All homogeneous ordered graphs have an obvious
source; to what extent does adding an order to a language
lead to new examples?
Problem I is the base case!

Problem II. When does a countable universal permutation
exist for a family determined by finitely many constraints?
(More relevant to the study of permutation pattern classes,
but we leave it aside.)



A Census of
Homoge-

neous finite
dimensional
Permutation
Structures
(After Sam
Braunfeld)

Gregory
Cherlin

Overview

Details

Classification of homogeneous permutations

1 Trivial: |A| = 1
2 Nontrivial primitive: <2=<±1 or <1, <2 independent

(generic)
3 Imprimitive: (Q2;<1,E1) lexicographic realized as

(Q2, <1, <2) in one of two ways.

Problem I. The n-dimensional case.
Remark. All homogeneous ordered graphs have an obvious
source; to what extent does adding an order to a language
lead to new examples?
Problem I is the base case!
Problem II. When does a countable universal permutation
exist for a family determined by finitely many constraints?
(More relevant to the study of permutation pattern classes,
but we leave it aside.)



A Census of
Homoge-

neous finite
dimensional
Permutation
Structures
(After Sam
Braunfeld)

Gregory
Cherlin

Overview

Details

Higher dimensions: first census

1 Trivial
2 Nontrivial primitive: apart from restrictions <j=<

±
i , no

other variations known.
3 Imprimitive: Lexicographic Qk , up to k = 2n−1 (with the

corresponding chain of equivalence relations
definable).

WHAT ELSE?
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Higher dimensions: second census

Sam Braunfeld’s examples:

Theorem
Any finite distributive lattice can occur as the lattice of all
∅-definable equivalence relations in a finite dimensional
permutation structure.

These examples may be constructed by enriching a
homogeneous structure in the language of the specified
equivalence relations by suitable linear orders.

Problem
Normal subgroup structure of the automorphism groups;
there is a metric element, as we shall see.



A Census of
Homoge-

neous finite
dimensional
Permutation
Structures
(After Sam
Braunfeld)

Gregory
Cherlin

Overview

Details

Higher dimensions: second census

Sam Braunfeld’s examples:

Theorem
Any finite distributive lattice can occur as the lattice of all
∅-definable equivalence relations in a finite dimensional
permutation structure.

These examples may be constructed by enriching a
homogeneous structure in the language of the specified
equivalence relations by suitable linear orders.

Problem
Normal subgroup structure of the automorphism groups;
there is a metric element, as we shall see.



A Census of
Homoge-

neous finite
dimensional
Permutation
Structures
(After Sam
Braunfeld)

Gregory
Cherlin

Overview

Details

Example

(Q× Q,E1,E2) (product, boolean lattice with two atoms).
Extends to (Q2,E1,E2, <

∗
1, <

∗
2) by generically ordering the

quotient Qq2/Ei . This allows a change of language to
(Q2, <1, <

′
1, <2, <

′
2).

This is a difficult example to understand abstractly, and does
not give a good model for the proof of the representation
theorem (as far as I know).
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New Census

1 3-constrained.
2 Triangle constraints do one of the following.

(a) Define equivalence relations.
(b) Impose convexity conditions on them.

(1,2) =⇒ All primitive examples are 2-constrained
=⇒ All primitive examples are known.

Problem
Classify the 3-constrained examples explicitly!

Remark. The same problem arose in the case of metrically
homogeneous graphs. In that case the solution is a family of
examples which is uniformly definable in Presburger
arithmetic.
There is no obvious parallel to look for in the present case.
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Genericity Criterion

Theorem (Cameron)
If all 3-types are realized by a homogeneous permutation
then it is generic.

Conjecture
This holds for all homogeneous finite dimensional
permutation structures.

What is known?
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Genericity Criterion

Proposition
Suppose k ,n satisfy the following condition.

k !

(k − `)!
> n · 2` ` = bk/2c

Then any homogeneous n-dimensional permutation
structure which realizes all (k − 1)-types is generic.

k − 1 n
2 1
3 2
4 3,4

A less numerical version of the argument pushes k −1 down
to 3 when n = 3, confirming the conjecture in this case.
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Genericity Criterion: Proof

Proof.
We show that any structure of order k is the unique
amalgam of two substructures of order k − 1.
The numerical condition allows us to choose ` pairs of
indices (i , j) such that for any one of the n orders, one of
these pairs is non-adjacent with respect to that order.

Then we can add `− 1 points so that every pair becomes
non-adjacent with respect to every order, and view the
extended structure on k + `− 1 points as the unique
amalgam resulting from factors of order

k + (`− 1)− ` = k − 1

(remove one point from each of the ` pairs).
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Realization of lattices

Let Λ be a finite distributive lattices.
(1) A Λ-metric space is Λ-valued with triangle inequality

d ≤ d” ∨ d ′′

(Corresponds to: Eλ(x , y) ⇐⇒ d(x , y) ≤ λ.)

(2) Canonical amalgamation:

d(a1,a2) =
∧

(d(a1, x) ∨ d(a2, x))

Is this strong?—If 0 is meet irreducible.

Lemma
If 0 is meet irreducible, then the universal homogeneous
Λ-metric space has an expansion by linear orders to a
homogeneous structure in which all meet irreducible
equivalence relations are convex with respect to at least one
such.
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Realization, continued

(3) If 0 is meet irreducible, expand by linear orders making
meet irreducibles convex, then replace by an equivalent
language of linear orders.

If 0 is not meet irreducible, replace Λ by Λ′ = [0′,Λ] and then
factor out E0

The last step is admittedly not very plausible: E0 is not
convex and it is hard to see what structure is inherited by
the quotient, or why it should be homogeneous . . . .
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Is distributivity necessary?

Lemma
If Γ is a non-trivial homogeneous n-dimensional
permutations structure, then any proper inclusion F < E in
the lattice of ∅-definable equivalence relations has infinite
index.
if Γ is a homogeneous structure in a language with
equivalence relations satisfying this infinite index condition,
then the lattice is distributive.

This does not prove the necessity of distributivity: maybe
the reduct to the language of equivalence relations is not
homogeneous!
But it makes it very plausible . . . .
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Proof of distributivity

Compare the (x ,u) to the path (x , y ,u), noting that
d(x , y) ≤ e ∧ f .

How do we get the factors? An analog of Neumann’s
Lemma
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2-Constrained Classes

Proposition
If Γ is 2-constrained then it is of standard primitive type: that
is, we impose a set of conditions <j= ± <±j ′ and nothing
else.

(If 2-constraints determine the 3-constraints then similarly.)

Proof.

This says from p,q, r we get the 2-type majority(p,q, r ).
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