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Another Inadequate Gift y

ersian, 1556

The king finally understands that meaningful gifts come from lifelong devotion, the only certain road to heaven.
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Problem

What are the finite primitive structures admitting quantifier
elimination in a binary relational language?

@ Equality (Sym(n)nat); or
@ Oriented p-Cycle (Z/PpZreg);

@ Affine space equipped with an anisotropic quadratic
form (AO, ;)
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Origins The socle of a primitive permutation group is either
elementary abelian, or a direct product of isomorphic
nonabelian simple groups.

Theorem

An affine primitive binary group is either a p-cycle or affine
space with an anisotropic quadratic form.
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The homogeneous finite graphs are as follows.
@ Pentagon (Ds);
® (=3)? (Symg2Symy)pro;
° Kr%:[Kn:F] (Sym,,?Sym n) imp
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Cherlin @ Pentagon (Ds);

Origins ° (:3)2 (Sym3 2Syl’nZ)pm;
© KK (Symy2Sym n)imp

Example (Sheehan, Gardiner)

LACHLAN: The finite homogeneous structures for a finite
relational language fall into finitely many families, of two
types:

@ sporadic finite examples

@ Families of smooth approximations to an infinite stable

structure, also homogeneous for the same language

Smooth approximations: the induced automorphism group
is the full automorphism group.
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Gregory The homogeneous finite graphs are as follows.

Cherlin

@ Pentagon (Ds);

® (=3)? (Symg ! Symy)pro;
° Kr%:[Kn:F] (Sym,,?Sym n) imp
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LACHLAN: The finite homogeneous structures for a finite
relational language fall into finitely many families, of two
types:
@ sporadic finite examples
@ Families of smooth approximations to an infinite stable
structure, also homogeneous for the same language
CFSG
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starting with smooth approximation, and including nontrivial
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E.g. GL(V)nat, which is not homogeneous for a (fixed) finite
relational language.
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KANTOR, LIEBECK, MACPHERSON, 1989

From smooth approximability—or a bound on 5-types—one
gets a classification of the primitive examples.
Grassmannians of classical or semi-classical geometries.



Meanwhile . ..

Finite Binary
Homoge-
neous
Structures

HRUSHOVSKI 1989: Quasifinite axiomatizability of totally
Origins categorical structures
(and Ng-categorical, Ny-stable).

Trento, July, 1987: Trying to combine Hrushovski and KLM



Meanwhile . ..

Finite Binary
Homoge-
neous
Structures

HRUSHOVSKI 1989: Quasifinite axiomatizability of totally
Origins categorical structures
(and Ng-categorical, Ny-stable).

Trento, July, 1987: Trying to combine Hrushovski and KLM
stable embedding, some form of type amalgamation
Vvs. (V, V¥



Meanwhile . ..

Finite Binary
Homoge-
neous
Structures

HRUSHOVSKI 1989: Quasifinite axiomatizability of totally
Origins categorical structures
(and Ng-categorical, Ny-stable).

Trento, July, 1987: Trying to combine Hrushovski and KLM
stable embedding, some form of type amalgamation
Vvs. (V, V¥

MSRI, 1989-1990: affine duality (Hrushovski), connection to
simple theories, type amalgamation, etc. (and ACFA)
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@ Can we do something with finite homogeneous

structures in a relational language of bounded
complexity?
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The meaning of relational complexity
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Cherlin anrv b <~ b € G -a (1
a~gb < a ~bfor|l| =k (2)
Relatona p(G,X) =min(k|a~xb => a~ b) @)

Complexity

| feel this is a natural, and perhaps even fundamental,
invariant.
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d+1 ifF#TF
GL(V)nat: { ?é 2

else d
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a~b < beG-a (1)
Relational an~g b — aj ~ b/ for |I| =k (2)
Complexity p(G, X) = mln(k | ar~y b — a~ b) (3)
Example
d+1 fF#4F
GL(V)nat: 7 2
else d

Because (e, \(€)) ~q (e, N(€))
p =~ dimension?
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Chetlin GL(V)nat: {

d+1 fF#£F,

else d
Relational Symn on [Z] : UnZ kJ + 2’
Comlexity Alt(n)on [[]: n—3 (k > 3,2k +2 # n)

pS(”a k) = In2 k; pA(n7 k) ~n-3

Base: minimal set with trivial stabilizer.

The base bounds the complexity of group elements; the
relational complexity bounds the complexity of the action.
GLUCK-SERESS-SHALEV 1998 Base size is bounded as a
function of complexity of composition factors (e.g., 4 in the
solvable case).
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AGO(d, q) acting naturally.

Relational

Complexity Anistropic case: p = 2.

Isotropic case: roughly d

(e,\(e)), (e,\(e)+v)withv L e, v.

E.g. AGO (6,2): p = 6 (WISCONS via GAP)

... either linear algebra is irrelevant, or it is essential
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Outline
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Structures An affine primitive binary group (G, V) is either a p-cycle or
iz affine space with an anisotropic quadratic form.

Cherlin
G = V.H, V acts by translation and H acts linearly. \
Binary Affine

Groups Target H = O™ (F,2) with quadratic form Nz, (dihedral).

Outline of Proof.

@ H is solvable

@ H embeds into a 1-dimensional semilinear group
r(1,F)
eF=F

@ H=K- (o), K=kerN
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Gre

Binary Affine
Groups



Identification

Finite Binary
Homoge-
neous
Structures

The 1-dimensional semilinear case, G < AGL(1,TF),
F, <G GLF,- (£1)

@ G is generated by involutions
G<F, -K-(0),G=F, X (ao) Take a = 1 for simplicity.
c € K: u? = uc (Theorem 90)
k#+1in X

Binary Affine
Groups

O,u,(1+Ku ~z 0,u (1+kMu



Identification

Finite Binary
Homoge-
neous
Structures

The 1-dimensional semilinear case, G < AGL(1,TF),
F, <G GLF,- (£1)

@ G is generated by involutions

e G<F, -K-(0),G=F, X (ao) Take a = 1 for simplicity.
o c € K: u° = uc (Theorem 90)

k#+1in X

O,u,(1+Ku ~z 0,u (1+kMu

The conjugating element must be co as u is fixed. So ¢ € G.



Examples

Finite Binary
Homoge-
neous
Structures

Gregory
Cherlin

.
.
s
.
.
"

Binary Affine
Groups

n3.3,3)>16
AO(A)
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(The restricted group is primitive in both cases.)
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1, G= VH, K<aH, Vy K-irreducible.

Then p(VoNx(Vo)) < p(G)

BiRTAle 2. K elementary abelian 2-group, V = @ V) weight spaces.
Then p(VAN(V)) < p(G)

(The restricted group is primitive in both cases.)

A more technical lemma in this spirit . ..
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Normalization lemma

Lemma (Main Lemma)

Let G = VH affine and binary. Let K <H, W < V an
irreducible K-submodule.
t € Gis aninvolution; k € K, v € W with

kt

vk £ +v, vi— v~ v vkunderH (e.g., k,t commute)

Then Wt = W.

Proof.
(U1, Up, U3, Ug) = (0, v + VK v+ vE vE VD), U = v+ v

(ur, Up, U3, Ug) ~ (U1, Up, U3, Uy)

—butu, e W, u3 —us € W, us — uj € W




Origin of the Lemma
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Origin of the Lemma
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V:24,H:D3282,K:D§
W = horizontal or vertical, K4 = F4 with F; (o) acting.



Toward Solvability
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Nl G = VH
Target: EG = 1 (no nontrivial quasisimple factor)

@ Char 2:

e Torsion: no elements of order 4

e (Bender) H = PSLy, J;, or 2G»
Binary Afine e Eliminate via action of Borel subgroup and induction
Groups @ Odd char:

Torsion: no p-elements, complete reducibility
Exclude Qg, Alty

L< EG: PSL; or 2B,

Weight spaces V) for max el. abelian 2-group E:
ud = f(\)ux

Ng(E)-orbits on A length at most 2

o EG=1




Problems
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gy ° Computatignal complexity of p(G, X) in the primitive

Cherlin case, and in general.

@ Qualitative theory of primitive k-ary groups (including
the binary non-affine case)

Binary Affine e Lower bounds on p for most OS-types, reducing to

R affine and almost simple cases (WISCONS, in progress)

o Affine case: More representation theory

e Almost simple case: Aschbacher classification should
reduce to small maximal subgroups

@ Estimate p for classical actions.

@ Imprimitive case (model theory)??
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