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Categoricity in Power

κ-categorical theory:

Determines its models of cardinality κ, up to isomorphism

Countable (Q, <) Combinatorics
Uncountable (C,+, ·) Algebra

Total (VFq) Both

Theorem (Morley ( Loś Conjecture))

There is only one flavor of uncountable categoricity.

Theorem (Baldwin-Lachlan)

. . . and the models are classified by dimensions—so the
countable models form a tower.
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Morley’s Problem

Can an uncountably categorical theory be finitely
axiomatizable?

(Peretyatkin, 1980) Yes: theory of a pseudo-successor.

(Zilber, 1980) No, if we require total categoricity

Theorem (Zilber, Finite Model Property)

If a model of a totally categorical theory has a first order
property φ, then φ holds in a finite substructure.
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Dimension Theory

Morley rank ⋃
n

Def(Γn)→ Ord

Stone Duality: S↔ Ŝ clopen in the Stone dual to Def(Γn).
ℵ0-stability: the dual spaces are countable if Γ is countable
rk (S) = maxΓ CB-rk(ŜΓ)
e.g.: Zariski dimension of closure
Degree: Number of components of maximal rank.

Example

rk 0: Finite
rk 1, degree 1: “Strongly minimal”—Every definable subset is
finite or cofinite.
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Strongly Minimal Sets (dimension 1)

acl(X) pregeometry on Σ

Example

linear dimension, transcendence degree . . .

Theorem (Baldwin-Lachlan)

Models of uncountably categorical theories are prime and
minimal over a suitable strongly minimal set, hence classified
by the corresponding dimension.

Special Case: “almost strongly minimal”— Γ = acl(Σ)

Theorem (Zilber)

If a theory is uncountably categorical but not almost strongly
minimal, then some definable permutation group of finite
Morley rank acts outside acl(Σ).
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Strongly Minimal Sets (dimension 1)

acl(X) pregeometry on Σ

Example

linear dimension, transcendence degree . . .

Theorem (Baldwin-Lachlan)

Models of uncountably categorical theories are prime and
minimal over a suitable strongly minimal set, hence classified
by the corresponding dimension.

Special Case: “almost strongly minimal”— Γ = acl(Σ)

Example

(Z/p2Z)(ω): A[p] is a vector space, A/A[p] is fibered by affine
spaces of the same type. But acl(A[p]) = A[p].

Theorem (Zilber)

If a theory is uncountably categorical but not almost strongly
minimal, then some definable permutation group of finite
Morley rank acts outside acl(Σ).
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Strictly minimal geometries

acl() is locally finite.

[Σ \ acl(∅)]/ ∼ where ∼ is: coalgebraic

Theorem (Zilber; Mills, Cherlin, Neumann, Kantor; Evans;
1980–1986)

A strictly minimal geometry is degenerate, affine, or projective,
over a finite field.

Jordan Group: Aut(Σ) is transitive on the complement of a
subspace.
Local modularity: Two subspaces which meet are independent
over their intersection.
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The Finite Model Property

Definition (Zilber Envelopes)

A ⊆ Σ finite.
E maximal containing A and independent from Σ over A.

Theorem (Zilber)

If A is finite then E is finite.

limA→Σ Th(E) = Th(Γ)
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Homogeneity

Any isomorphism between finite substructures is induced by an
automorphism

Example (Lachlan/Woodrow)

The countable homogeneous graphs are

The 5-cycle C5;

The 9-point “grid” K3 ⊗K3 with automorphisms S3 o C2;

The disconnected graphs m ·Kn and their complements;

The infinite random graph;

The generic Kn-free graphs, and their complements
(Henson).

Finite case: Gardiner and Sheehan, independently.
The infinite ones are classified by Lachlan/Woodrow by a
subtle argument.
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Smooth Approximation

Observations.

The graphs m ·Kn are smoothly embedded in the graphs
∞ ·K∞ in the sense that conjugacy of k-tuples in the
smaller graph under its automorphism group is equivalent
to conjugacy under the full automorphism group.

The classifying parameters m, n are the orders of certain
“indices” [E1 : E2] counting fine equivalence classes
contained in a coarse equivalence class.

Theorem (Lachlan)

For relational systems of a given finite type, the finite
homogeneous structures are exactly . . .
Furthermore, the finite homogeneous structures together with
their smooth limits at infinity are exactly the stable
homogeneous structures of the given type.
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∞ ·K∞ in the sense that conjugacy of k-tuples in the
smaller graph under its automorphism group is equivalent
to conjugacy under the full automorphism group.
The classifying parameters m, n are the orders of certain
“indices” [E1 : E2] counting fine equivalence classes
contained in a coarse equivalence class.

Theorem (Lachlan)

For relational systems of a given finite type, the finite
homogeneous structures are exactly the smooth approximations
to a finite number of maximal homogeneous structures; and
these approximations are classified by numerical invariants of
the form [E1 : E2] with E1,E2 nested, invariant equivalence
relations.

. . .
Furthermore, the finite homogeneous structures together with
their smooth limits at infinity are exactly the stable
homogeneous structures of the given type.
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A technical lemma

Theorem (Cherlin/Lachlan)

Any transitive permutation group (Γ,G) for which Γ is
sufficiently large relative to |Γ5/G| contains a large set of
indiscernible elements (G induces the full symmetric group).
In other words, there is a function µ(s, n) such that whenever

|Γ5/G| ≤ s

|Γ| > µ(s, n)

then Γ contains n elements on which G induces Sn.

Remark. A good deal can be said in terms of Γ2/G, but we
must avoid projective lines.



Finite Groups
and Model

Theory

Gregory
Cherlin

I

II

III

IV

Proof outline

A counterexample to the theorem, for a given value of s and n,
would be a sequence of finite permutation groups of unbounded
size with |Γ5/G| ≤ s and no indiscernible set of size n.
Choose such a counterexample with s minimized.

The general theory of primitive permutation groups
(O’Nan-Scott-Aschbacher) provides a general plan of analysis
for primitive permutation groups.

The case of nonabelian socle reduces quickly to the study of
actions of almost simple groups and then via the classification
of the finite simple groups, to a close study of maximal
subgroups of simple groups. The bound on Γ5/G reduces the
relevant actions to very classical cases for which indiscernibles
are visible, by inspection (linearly independent sets of isotropic
vectors and the like).

The case of abelian socle takes somewhat more analysis. Our
analysis was simplified by Kantor along the following lines:
Reduce to an irreducible action of a quasisimple group, and
handle this case by a direct argument.
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Lachlan Conjecture

Conjecture
Smooth limits of finite structures

with a bound on |Γ5/G|
can be classified, similarly.

Theorem (CH 1990–2003)

Large finite structures with few orbits on Γ5 are the smooth
approximations to “Lie coordinatized” structures.

Stability theory in a non-stable setting.
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with a bound on |Γ5/G|
can be classified, similarly.

Theorem (Kantor-Liebeck-Macpherson 1988)

The primitive finite structures with Γ5/G bounded are all
derived from essentially classical structures (one slightly
peculiar one in characteristic 2).

Theorem (CH 1990–2003)

Large finite structures with few orbits on Γ5 are the smooth
approximations to “Lie coordinatized” structures.
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Conjecture
Smooth limits of finite structures

with a bound on |Γ5/G|
can be classified, similarly.

Theorem (Kantor-Liebeck-Macpherson 1988)

The primitive finite structures with Γ5/G bounded are all
derived from essentially classical structures (one slightly
peculiar one in characteristic 2).

Example

A dual pair (V,V∗): in the finite case, V is just a vector space
with no further structure; at infinity, it acquires a topology
from V∗ (which is a countable dense subset of the full dual).

Theorem (CH 1990–2003)

Large finite structures with few orbits on Γ5 are the smooth
approximations to “Lie coordinatized” structures.

Stability theory in a non-stable setting.
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Lachlan Conjecture

Conjecture
Smooth limits of finite structures

with a bound on |Γ5/G|
can be classified, similarly.

Theorem (CH 1990–2003)

Large finite structures with few orbits on Γ5 are the smooth
approximations to “Lie coordinatized” structures.

Stable embedding: The analog of a strongly minimal set will be
the underlying geometry associated with a KLM-structure.
These will be stably embedded in the sense that any relation
definable “from the outside” is definable “from the inside”.
(Cf. (V,V∗).)

Stability theory in a non-stable setting.
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Algebraicity Conjecture

Zilber: complicated uncountably categorical theories involve
definable infinite permutation groups of finite Morley rank.

Example

Any algebraic group over an algebraically closed field, acting
algebraically, is an example.

Conjecture (Algebraicity Conjecture)

A simple group of finite Morley rank is algebraic.

Feit-Thompson case: No involutions (or extreme
Feit-Thompson: torsion-free).
Open!!!
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Characteristic 2

Definition

A simple group of finite Morley rank is said to have
characteristic 2 type if it contains an infinite elementary abelian
2-subgroup.

Theorem (ABC 2008)

Simple groups of finite Morley rank of characteristic 2 type are
algebraic.

Remark

Inspired by CFSG; inductive

No Feit-Thompson theorem

Themes: strongly embedded subgroups, amalgam method,
conjugacy of decent tori, properties of algebraic groups, and
various specialized topics from finite group theory.
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Application

Theorem

If G acts primitively and definably on a set of given rank, then
the rank of G can be bounded. In particular, the degree of
generic t-transitivity can be bounded.

Cf.Popov for generically doubly transitive actions in the
algebraic category, in characteristic 0.
Open for characteristic p, and for finite Morley rank actions of
simple algebraic groups in characteristic 0.
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A linearity conjecture

Conjecture

Let G be a simple algebraic group with an irreducible action on
an abelian group V, so that (V,G) has finite Morley rank.
Then G acts linearly.

Known so far only for SL2 through rank 3f where f is the rank
of the field (C-Deloro).
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Relational Complexity

(Γ,G) finite.
Lk is the class of G-invariant subsets of Gk, viewed as relations
on G.
ρ(Γ,G) is the least k such that Γ is homogeneous as an
Lk-structure, with automorphism group G.

ā ∼k b̄ ⇐⇒ ā ∼ b̄

Example

(V,GL(V)): dimV + 1.

(V,V ·O(V)): 2, if the form is anisotropic

The Petersen graph: 3.
({1, 2}, {1, 3}, {1, 4}) vs. ({1, 2}, {1, 3}, {2, 3}).
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Primitive k-ary Groups

ā ∼k b̄ ⇐⇒ ā ∼ b̄

Generalizing KLM: can we understand all large primitive
permutation groups with bounded relational complexity?
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The binary case

Conjecture

The finite primitive binary permutation groups are the
following:

(n,Sn) with natural action;

Cp with natural action;

(V ,V · O(V )) with V anisotropic.

(O’Nan-Scott-Aschbacher again?)

Claim (July 2012)
This is true in the affine case.
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